Skip to content

Model for n-powerfact

  • Description: This is a benchmark to evaluate how accurately an AI model can predict the n-doped Power Factor using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.


Reference(s): https://www.nature.com/articles/s41524-021-00650-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://github.com/aimat-lab/gcnn_keras, https://www.nature.com/articles/s41524-020-00440-1, https://doi.org/10.48550/arXiv.2305.11842

Model benchmarks

Model nameDataset MAE Team name Dataset size Date submitted Notes
kgcnn_megnetdft_3d501.3722kgcnn2321005-06-2023CSV, JSON, run.sh, Info
alignn_modeldft_3d442.2993ALIGNN2321001-14-2023CSV, JSON, run.sh, Info
matminer_rfdft_3d475.0085UofT2321005-22-2023CSV, JSON, run.sh, Info
matminer_xgboostdft_3d469.6279UofT2321005-22-2023CSV, JSON, run.sh, Info
kgcnn_coNGNdft_3d456.6118kgcnn2321005-06-2023CSV, JSON, run.sh, Info
kgcnn_dimenetPPdft_3d568.8357kgcnn2321005-06-2023CSV, JSON, run.sh, Info
kgcnn_coGNdft_3d452.235kgcnn2321005-06-2023CSV, JSON, run.sh, Info
kgcnn_cgcnndft_3d485.5895kgcnn2321009-26-2023CSV, JSON, run.sh, Info
kgcnn_schnetdft_3d495.4136kgcnn2321009-26-2023CSV, JSON, run.sh, Info