Skip to content

Model for epsz

  • Description: This is a benchmark to evaluate how accurately an AI model can predict the static dielectric constant (z-direction) at the OPTB88vdW level of theory using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT (OPT) accuracy.


Reference(s): https://www.nature.com/articles/s41524-020-00440-1, https://doi.org/10.1103/PhysRevMaterials.2.083801, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://doi.org/10.48550/arXiv.2305.11842, https://www.nature.com/articles/s41524-021-00650-1, https://hackingmaterials.lbl.gov/matminer/, https://github.com/aimat-lab/gcnn_keras

Model benchmarks

Model nameDataset MAE Team name Dataset size Date submitted Notes
kgcnn_coNGNdft_3d17.8104kgcnn4449005-06-2023CSV, JSON, run.sh, Info
kgcnn_cgcnndft_3d21.121kgcnn4449009-26-2023CSV, JSON, run.sh, Info
matminer_rfdft_3d20.9693UofT4449005-22-2023CSV, JSON, run.sh, Info
kgcnn_dimenetPPdft_3d33.8379kgcnn4449005-06-2023CSV, JSON, run.sh, Info
cfiddft_3d24.781JARVIS4449001-14-2023CSV, JSON, run.sh, Info
alignn_modeldft_3d19.5678ALIGNN4449001-14-2023CSV, JSON, run.sh, Info
matminer_lgbmdft_3d22.288Matminer4449001-14-2023CSV, JSON, run.sh, Info
kgcnn_megnetdft_3d22.6781kgcnn4449005-06-2023CSV, JSON, run.sh, Info
matminer_xgboostdft_3d20.8888UofT4449005-22-2023CSV, JSON, run.sh, Info
kgcnn_coGNdft_3d19.6192kgcnn4449005-06-2023CSV, JSON, run.sh, Info
cfid_chemdft_3d31.0199JARVIS4449001-14-2023CSV, JSON, run.sh, Info
kgcnn_schnetdft_3d21.5016kgcnn4449009-26-2023CSV, JSON, run.sh, Info