Skip to content

Model for ehull

  • Description: This is a benchmark to evaluate how accurately an AI model can predict the energy above the convex hull (Ehull) using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.


Reference(s): https://github.com/divelab/AIRS/tree/main/OpenMat/PotNet, https://www.nature.com/articles/s41524-020-00440-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301, https://doi.org/10.48550/arXiv.2305.11842, https://www.nature.com/articles/s41524-021-00650-1, https://github.com/aimat-lab/gcnn_keras

Model benchmarks

Model nameDataset MAE Team name Dataset size Date submitted Notes
kgcnn_coNGNdft_3d0.0485kgcnn5536405-06-2023CSV, JSON, run.sh, Info
kgcnn_cgcnndft_3d0.059kgcnn5536409-26-2023CSV, JSON, run.sh, Info
matminer_rfdft_3d0.112UofT5536405-22-2023CSV, JSON, run.sh, Info
kgcnn_dimenetPPdft_3d0.3685kgcnn5536405-06-2023CSV, JSON, run.sh, Info
alignn_modeldft_3d0.0763ALIGNN5536401-14-2023CSV, JSON, run.sh, Info
potnetdft_3d0.0522DIVE@TAMU5536406-02-2023CSV, JSON, run.sh, Info
kgcnn_megnetdft_3d0.0569kgcnn5536405-06-2023CSV, JSON, run.sh, Info
cgcnn_modeldft_3d0.173CGCNN5536401-14-2023CSV, JSON, run.sh, Info
matminer_xgboostdft_3d0.0601UofT5536405-22-2023CSV, JSON, run.sh, Info
kgcnn_coGNdft_3d0.0466kgcnn5536405-06-2023CSV, JSON, run.sh, Info
kgcnn_schnetdft_3d0.1014kgcnn5536409-26-2023CSV, JSON, run.sh, Info