Skip to content

Model for avg_hole_mass

  • Description: This is a benchmark to evaluate how accurately an AI model can predict the average hole mass using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.


Reference(s): https://www.nature.com/articles/s41524-020-00440-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://doi.org/10.48550/arXiv.2305.11842, https://www.nature.com/articles/s41524-021-00650-1, https://github.com/aimat-lab/gcnn_keras

Model benchmarks

Model nameDataset MAE Team name Dataset size Date submitted Notes
kgcnn_coNGNdft_3d0.1285kgcnn1764205-06-2023CSV, JSON, run.sh, Info
kgcnn_cgcnndft_3d0.1406kgcnn1764209-26-2023CSV, JSON, run.sh, Info
matminer_rfdft_3d0.1435UofT1764205-22-2023CSV, JSON, run.sh, Info
kgcnn_dimenetPPdft_3d0.1709kgcnn1764205-06-2023CSV, JSON, run.sh, Info
alignn_modeldft_3d0.1239ALIGNN1764201-14-2023CSV, JSON, run.sh, Info
kgcnn_megnetdft_3d0.1416kgcnn1764205-06-2023CSV, JSON, run.sh, Info
matminer_xgboostdft_3d0.1529UofT1764205-22-2023CSV, JSON, run.sh, Info
kgcnn_coGNdft_3d0.1372kgcnn1764205-06-2023CSV, JSON, run.sh, Info
kgcnn_schnetdft_3d0.1459kgcnn1764209-26-2023CSV, JSON, run.sh, Info