Model for avg_elec_mass¶
- Description: This is a benchmark to evaluate how accurately an AI model can predict the average electron mass using the JARVIS-DFT (dft_3d) dataset. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare models with respect to DFT accuracy.
Reference(s): https://www.nature.com/articles/s41524-020-00440-1, https://www.nature.com/articles/s41524-023-01012-9;https://hackingmaterials.lbl.gov/matminer, https://doi.org/10.48550/arXiv.2305.11842, https://www.nature.com/articles/s41524-021-00650-1, https://github.com/aimat-lab/gcnn_keras
Model benchmarks
Model name | Dataset | MAE | Team name | Dataset size | Date submitted | Notes |
---|---|---|---|---|---|---|
kgcnn_coNGN | dft_3d | 0.0876 | kgcnn | 17642 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_cgcnn | dft_3d | 0.0921 | kgcnn | 17642 | 09-26-2023 | CSV, JSON, run.sh, Info |
matminer_rf | dft_3d | 0.1032 | UofT | 17642 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_dimenetPP | dft_3d | 0.112 | kgcnn | 17642 | 05-06-2023 | CSV, JSON, run.sh, Info |
alignn_model | dft_3d | 0.0853 | ALIGNN | 17642 | 01-14-2023 | CSV, JSON, run.sh, Info |
kgcnn_megnet | dft_3d | 0.0896 | kgcnn | 17642 | 05-06-2023 | CSV, JSON, run.sh, Info |
matminer_xgboost | dft_3d | 0.107 | UofT | 17642 | 05-22-2023 | CSV, JSON, run.sh, Info |
kgcnn_coGN | dft_3d | 0.0917 | kgcnn | 17642 | 05-06-2023 | CSV, JSON, run.sh, Info |
kgcnn_schnet | dft_3d | 0.0866 | kgcnn | 17642 | 09-26-2023 | CSV, JSON, run.sh, Info |