Skip to content

Model for formation_energy_peratom

  • Description: This is a benchmark to evaluate how accurately an AI model can predict the superconducting transition temperature of 3D materials. Ref: https://www.nature.com/articles/s41524-022-00933-1.


Reference(s): https://doi.org/10.1103/PhysRevMaterials.2.083801, https://www.nature.com/articles/s41524-022-00933-1, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.145301, https://arxiv.org/abs/2405.03680, https://www.nature.com/articles/s41524-021-00650-1

Model benchmarks

Model nameDataset MAE Team name Dataset size Date submitted Notes
cfiddft_3d1.9989JARVIS61601-14-2023CSV, JSON, run.sh, Info
alignn_modeldft_3d2.0316ALIGNN61601-14-2023CSV, JSON, run.sh, Info
cgcnn_modeldft_3d2.5743CGCNN61601-14-2023CSV, JSON, run.sh, Info
atomgpt_modeldft_3d1.5187AtomGPT61605-23-2024CSV, JSON, run.sh, Info