Skip to content

Model for Ni FF stresses

  • Description: This is an AI benchmark to evaluate how accurately a machine learning force-field (MLFF) can predict the stresses of Ni using the relaxation trajectories (energy and forces of intermediate steps) of the mlearn dataset, calculated with the PBE density functional. The dataset contains different types of chemical formula and atomic structures. Here we use multi-mean absolute error (multi-MAE) to compare MLFFs with respect to DFT (PBE) accuracy. External links: https://github.com/materialsvirtuallab/mlearn


Reference(s): https://doi.org/10.1021/acs.jpca.9b08723, https://www.nature.com/articles/s43588-022-00349-3, https://pubs.rsc.org/en/content/articlehtml/2023/dd/d2dd00096b

Model benchmarks

Model nameDataset Accuracy Team name Dataset size Date submitted Notes
matgl_pretrainedmlearn_Ni38.842144743058384Matgl29401-14-2023CSV, JSON, run.sh, Info
alignnff_mlearn_all_wt1mlearn_Ni57.30426926812459JARVIS29401-14-2023CSV, JSON, run.sh, Info
alignnff_mlearn_wt1mlearn_Ni54.393778522505706JARVIS29401-14-2023CSV, JSON, run.sh, Info