Skip to content

Model for Mo FF stressesΒΆ

  • Description: This is an AI benchmark to evaluate how accurately a machine learning force-field (MLFF) can predict the stresses of Mo using the relaxation trajectories (energy and forces of intermediate steps) of the mlearn dataset, calculated with the PBE density functional. The dataset contains different types of chemical formula and atomic structures. Here we use multi-mean absolute error (multi-MAE) to compare MLFFs with respect to DFT (PBE) accuracy. External links: https://github.com/materialsvirtuallab/mlearn
alignnff_mlearn_all_wt1matgl_pretrainedalignnff_mlearn_wt1020406080100
AI-MLFF-stresses-mlearn_Mo-test-multimaeMULTIMAE (stresses)


Reference(s): https://www.nature.com/articles/s43588-022-00349-3, https://doi.org/10.1021/acs.jpca.9b08723, https://pubs.rsc.org/en/content/articlehtml/2023/dd/d2dd00096b

Model benchmarks

Model nameDataset Accuracy Team name Dataset size Date submitted Notes
alignnff_mlearn_wt1mlearn_Mo100.7215222247062JARVIS21701-14-2023CSV, JSON, run.sh, Info
matgl_pretrainedmlearn_Mo62.96174856569738Matgl21701-14-2023CSV, JSON, run.sh, Info
alignnff_mlearn_all_wt1mlearn_Mo44.869556923541296JARVIS21701-14-2023CSV, JSON, run.sh, Info