Skip to content

Model for Li FF energyΒΆ

  • Description: This is an AI benchmark to evaluate how accurately a machine learning force-field (MLFF) can predict the total energy of Li using the relaxation trajectories (energy and forces of intermediate steps) of the mlearn dataset, calculated with the PBE density functional. The dataset contains different types of chemical formula and atomic structures. Here we use mean absolute error (MAE) to compare MLFFs with respect to DFT (PBE) accuracy. External links: https://github.com/materialsvirtuallab/mlearn
snap_mlearnchgnet_pretrainedalignnff_mlearn_all_wt1m3gnet_pretrainedmatgl_pretrainedalignnff_mlearn_wt10204060
AI-MLFF-energy-mlearn_Li-test-maeMAE (energy)


Reference(s): https://github.com/materialsvirtuallab/maml, https://github.com/CederGroupHub/chgnet, https://github.com/materialsvirtuallab/m3gnet, https://www.nature.com/articles/s43588-022-00349-3, https://doi.org/10.1021/acs.jpca.9b08723, https://pubs.rsc.org/en/content/articlehtml/2023/dd/d2dd00096b

Model benchmarks

Model nameDataset Accuracy Team name Dataset size Date submitted Notes
alignnff_mlearn_wt1mlearn_Li74.7772JARVIS27001-14-2023CSV, JSON, run.sh, Info
chgnet_pretrainedmlearn_Li0.4067CHGNET27008-07-2023CSV, JSON, run.sh, Info
m3gnet_pretrainedmlearn_Li1.0878M3GNET27001-14-2023CSV, JSON, run.sh, Info
matgl_pretrainedmlearn_Li1.6401Matgl27001-14-2023CSV, JSON, run.sh, Info
snap_mlearnmlearn_Li0.1017JARVIS27001-14-2023CSV, JSON, run.sh, Info
alignnff_mlearn_all_wt1mlearn_Li1.0089JARVIS27001-14-2023CSV, JSON, run.sh, Info