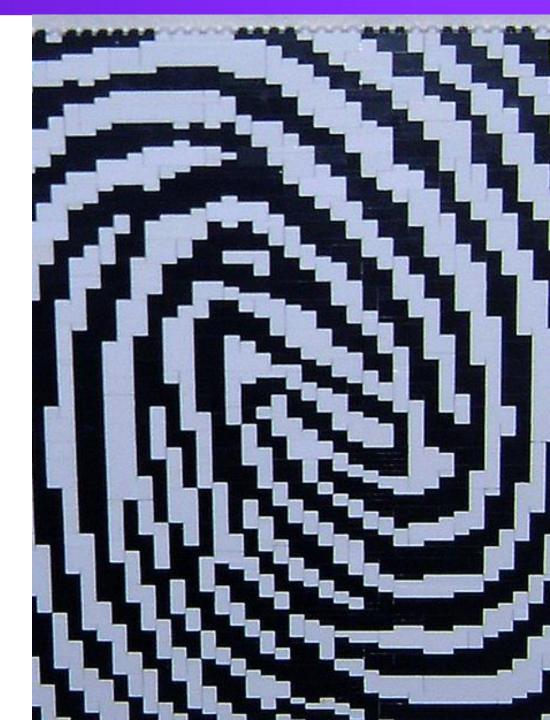


Likelihood Ratio Model in AFIS Testing a New Tool to Measure the Weight of Latent Evidence

Eric Ray, CLPE

Technical Project Leader, IDEMIA Identity and Security North America

INTRODUCTION


Eric Ray, CLPE

Background

- 12 years as a Latent Print Examiner for AZ and I3
- B.S. in Biochemistry and Biology from University of Arizona
- Member of OSAC Friction Ridge Subcommittee
- Editorial Board of the Journal for Forensic Identification
- Training to Latent Print Examiners across the US, Europe, and Asia
- Co-host of the Double Loop Podcast (250+ episodes over 9+ years)

IDEMIA

- Technical Project Leader Product Management
- ABIS products MBIS and STORM
- Design of new web-based ABIS
- Convey user needs and recommend product improvements
- Training and troubleshooting

- Introduction
- Statistical Basics
- Theoretical Model
- Practical Model
- Test Results
- Questions

How Do We Arrive at an Identification?

- "Friction ridge identification is established through the agreement of friction ridge formations, in sequence, having sufficient uniqueness [discriminating power]"
 - Quantitative-Qualitative Friction Ridge Analysis
 by David Ashbaugh 1999
- In order to reach an ID:
 - The two impression must have sufficient correspondence
 - The latent print must have sufficient discriminating power
- For every examination, we mentally measure both:
 - How similar are the features in these two impressions?
 - How specific or generic is this set of features?

Calls for a Statistical Approach

- National Research Council Strengthening Forensic Science in the United States
 - More research is needed regarding the <u>discriminating value</u> of the various ridge formations and clusters of ridge formations. It also would lead to a good framework for future <u>statistical models</u> and provide the courts with additional information
- NIST Latent Print Examination and Human Factors: Improving the Practice through a Systems Approach
 - [The federal government should] facilitate the validation of <u>probabilistic models</u> and other statistical research
 - The latent print examiner community should expand the training of examiners... to properly utilize the output of probabilistic models.
- PCAST Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods
 - [E]xpert should report the <u>probative value</u> of the observed match based on the specific features <u>observed in the case</u>.
 - An expert should not make claims or implications that go beyond the empirical evidence and the applications of valid statistical principles to that evidence.
- OSAC Friction Ridge Subcommittee Needs Assessment
 - Expanded research on different <u>statistical models</u> that can be used in association with a friction ridge comparison... for <u>quantification of evidence</u>

Benefits of a Statistical Approach

- Inform and support the opinions of Latent Print Examiners
 - Will not replace ACE-V or the expert opinions of LPEs
- More resilient to admission challenges
 - NC v. McPhaul LPE must document and testify to the specific features in this examination
 - MD v. Abruquah FTE should not be permitted to offer an unqualified opinion on bullet comparison
- More objective measurement of evidence
 - Not solely based on examiner opinion ("Just trust me!")
- Quantifies the weight of the evidence
 - Specific to the evidence in this case
 - Differentiates "barely ID" vs. "overwhelming ID"
 - Assists in estimating the risk of error for this comparison
- Focuses additional Quality Assurance measures
 - Highlight challenging or risky examinations for blind verification or further review

Statistical Basics

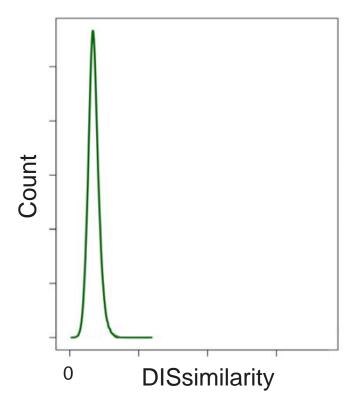

- Likelihood ratio (LR) (or a Bayes factor) can calculate the weight of the evidence
- LR starts with stating two, mutually exclusive propositions
 - H₁ Prosecution proposition Latent print originated from Mr. X
 - H₂ Defense proposition Latent print did not originate from Mr. X, but from a different person
- What is the probability of observing the evidence given the prosecution proposition?
 - If the correspondence is very strong (almost an overlay), then this probability increases.
 - If the correspondence is weak and requires "making it fit", then this probability decreases.
- What is the probability of observing the evidence given the defense proposition?
 - If the corresponding features are very generic, then this probability increases. (Maybe it's a CNM?)
 - If the corresponding features are very specific, then this probability decreases. (Not likely a CNM)
- This lines up very well with what we do during comparison
 - How similar are the features in these two impressions?
 - How specific or generic is this set of features?

Statistical Basics

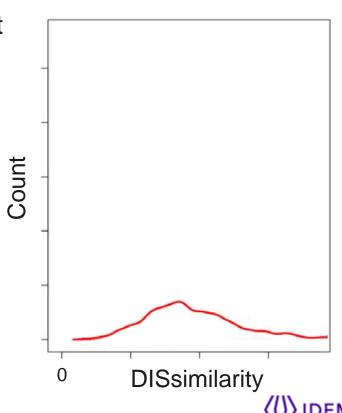
$$Likelihood\ Ratio = \frac{Similarity}{Rarity}$$

- Measuring similarity (or dissimilarity)
 - Similarity an exact overlay of two impressions produces the highest value
 - Dissimilarity an exact overlay of two impressions = 0 dissimilarity; higher values = more differences
 - High similarity or low dissimilarity corresponds to a high probability for the prosecutor proposition
- Measuring rarity or specificity
 - Search a large database representative of the relevant population
 - If there is high similarity (or low dissimilarity) to non-matching prints, then features are not very specific
 - If very few have high similarity (or low dissimilarity) to the latent print, then features are relatively specific

What Are We Looking For?


- Something that answers our two questions
 - How similar are the features in these two impressions?
 - How specific or generic is this set of features?
- Needs to be based on the latent print in this case
 - Not based on averages or samples
- Ratios need to use the same terms
 - The Prosecution and Defense propositions must use the same process so we can create a valid Likelihood Ratio
- Tested on Close Non-Matches
 - Not based on obvious non-matches
- Available
 - Law enforcement must be able to purchase and deploy

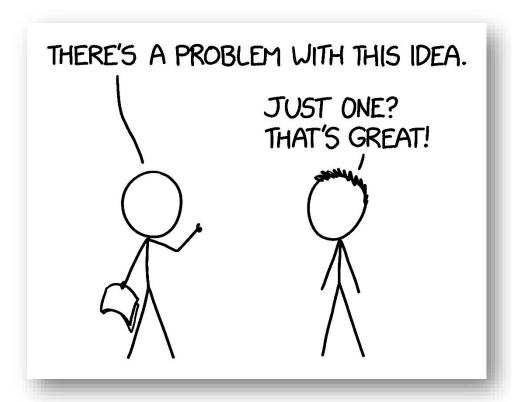
Theoretical Model


- We've reached an Identification conclusion, and want to test this hypothesis
 - We ask Mr. X to make a million latent prints using the same area of skin as the Latent Print
 - Measure and graph the DISsimilarity of the Latent Print to each of the million latent prints
- If the Known Print truly is the source of the Latent Print, then most of the samples will have low dissimilarity
 - Samples with more distortion will have higher dissimilarity
 - Samples that almost perfectly overlay with the Latent Print will have dissimilarity close to 0
- If we obtain even more sample latent prints from Mr. X, then the part of this curve that approaches zero dissimilarity estimates the Prosecution Proposition

Theoretical Model

- Now let's consider the Relevant Population
 - We next ask everyone that could have ever left the latent print to each make a million latent prints using the most similar area of skin possible
 - Measure and graph the DISsimilarity of the Latent Print to each of the millions and millions of latent prints
- Most of the new latent prints will be very dissimilar to the Latent Print
 - Some Close Non-Matches will have low dissimilarity
- If the Latent Print is very specific with rare features, then this distribution will be shifted to the right
- If the Latent Print is very generic and has low specificity,
 then this distribution will be shifted to the left
- If we obtain even more sample latent prints from the Relevant Population, then the part of this curve that approaches zero dissimilarity estimates the Defense Proposition

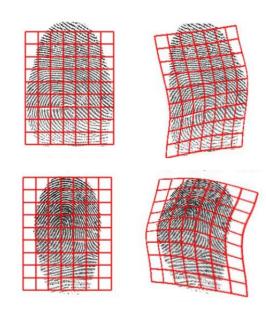
Theoretical Model


Is this what we're looking for?

- Measures the (dis)similarity between Latent Print and Known Print
- Measures the specificity or rarity of the Latent Print features
- Both distributions are based on the Latent Print in this case
- Same process used for both propositions so we can create a valid ratio

Problems

- It's unlikely that we can get the suspect's cooperation to make millions of latent prints
- And the rest of population of the world probably has better things to do
- And it might take awhile for us to do all those comparisons

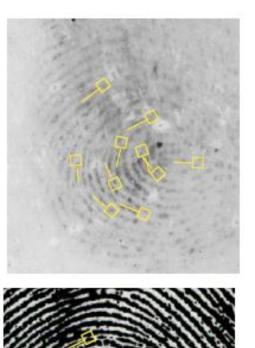

How can we make this work?

Practical Model

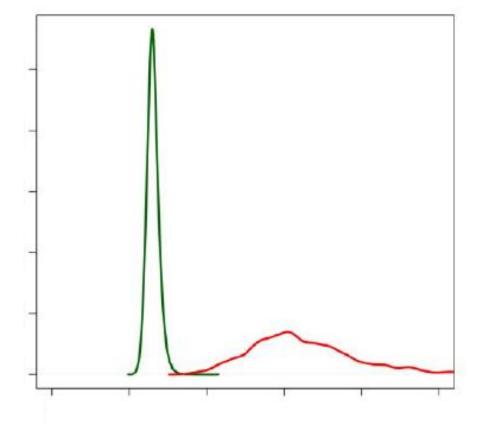
- How do we get so many latent prints from Mr. X?
 - Create them digitally
 - Use a Distortion Model on the Known Print of Mr. X to digitally create many pseudo-latent prints
- How do we get so many latent prints from the Relevant Population?
 - A sufficiently large AFIS database can serve as the Relevant Population
 - Use the same Distortion Model on prints from AFIS to digitally create many pseudo-latent prints
 - Since we only care about the left side of the distribution, only distort the prints for the "closest" ~100 people
- How do we do all these comparisons?
 - Use the AFIS to measure the dissimilarity between the Latent Print and all the pseudo-latents

Note: Image is conceptual only and does not represent the actual method used to distort prints

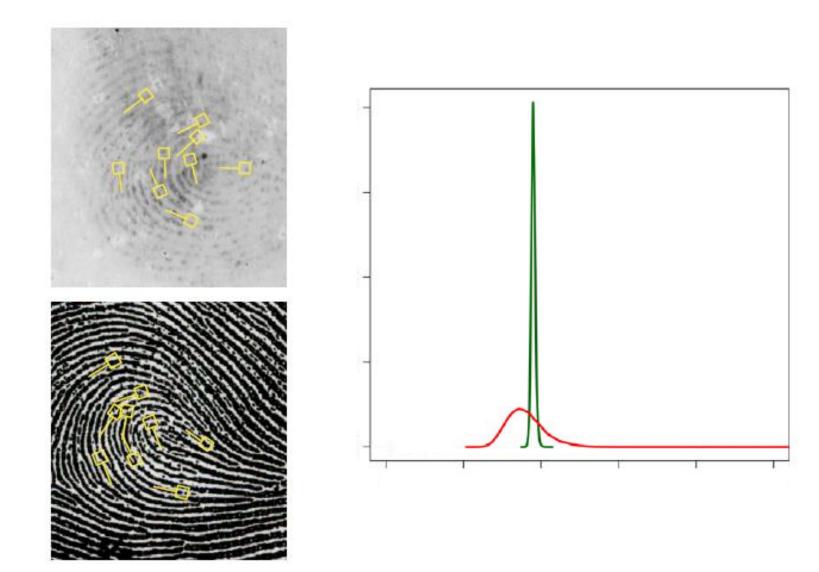
Does it Work?

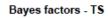

- Latent Print
 - 207 sample latent prints
 - 1837 minutiae configurations

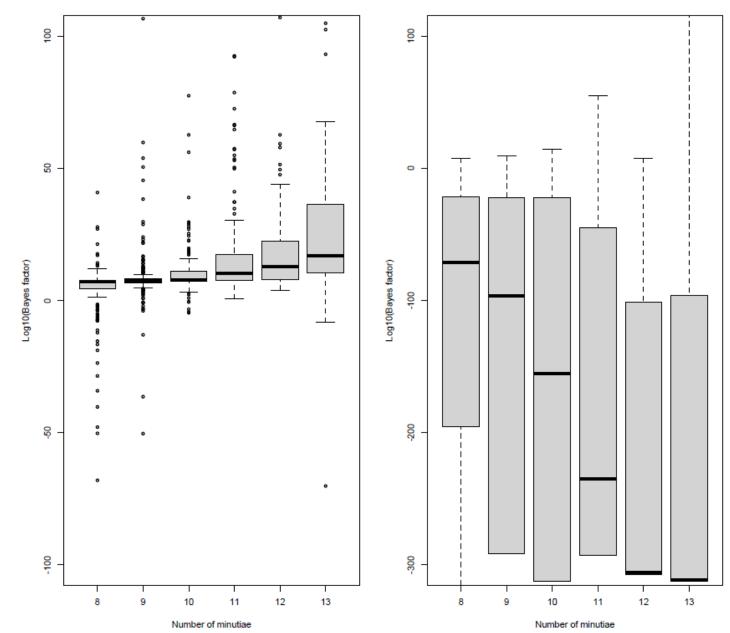
# minutiae	6	7	8	9	10	11	12	13	14	15
# configurations	196	193	193	189	188	184	179	176	171	168

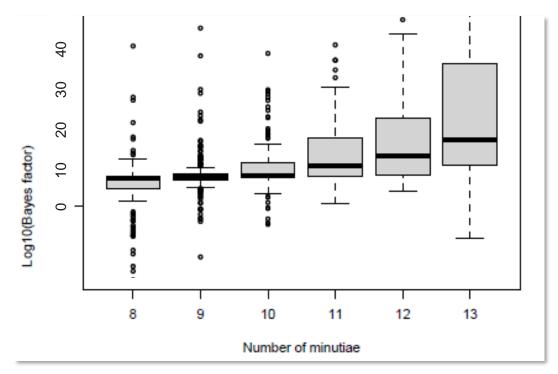

- Known Print
 - True Source finger corresponding minutiae between each Latent Print and Known Print marked by a qualified LPE
 - Close Non-Match finger highest scoring finger in AFIS database corresponding minutiae marked by AFIS
- Distortion Model
 - 500k pseudo-latent prints from the TS or CNM
 - 500k pseudo-latent prints from 99 closest fingers in AFIS (not counting the CNM)
- Each LP/TS and LP/CNM sample was run 3 times

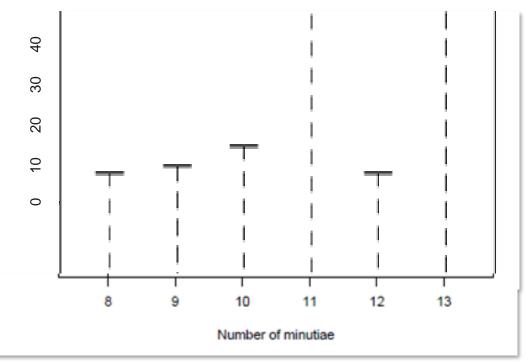
Latent Print and True Source






Latent Print and Close Non-Match


Bayes factors - CNM - paired minutiae



Test Results

- At minutiae configurations of **less than 8**, the metric was not discriminative enough
 - Could not distinguish results for TS and CNM tests
- At minutiae configurations greater than 13, the results were near infinity (for TS tests)
 or near zero (for CNM tests)

Test Results

# minutiae	8	9	10	11	12	13
Rate of Misleading Evidence in favor of Prosecution (LR > 1 for a CNM test)	18%	17%	22%	16%	9%	17%
Rate of Misleading Evidence in favor of Defense (LR < 1 for a TS test)	28%	11%	6%	0%	0%	2%

- A Likelihood Ratio greater than 1 does not seem sufficient to support an Identification
- Further research is needed to set an appropriate threshold to minimize misleading evidence that would favor the Prosecution

What Next?

- Preliminary tests need to expand into a full validation study
 - IDEMIA does not have access to large datasets
 - Need to partner with law enforcement agencies to validate method
 - Explore topics related to non-mated minutiae and quality
 - Explore potential need for calibration
- Need to determine an appropriate threshold above which would support an Identification conclusion
- Need to establish formal training on how to use this tool
- Need to establish formal training on how to describe this process and these results in a courtroom
- Need to establish agency policies on when to use this tool

References

- David R. Ashbaugh. Quantitative-Qualitative Friction Ridge Analysis: An Introduction to Basic and Advanced Ridgeology. Boca Raton, CRC Press 1999.
- Francis Galton. Finger Prints. London, MacMillan and Co., 1892.
- Jessie Hendricks, Cedric Neumann, Christopher P. Saunders. "Quantification of the weight of fingerprint evidence using a ROC-based Approximate Bayesian Computation algorithm for model selection." Electronic Journal of Statistics, 15(1) 1228-1262 2021.
- Edmond Locard. La Preuve Judiciaire par Les Empreintes Digitales. Lyon, A. Rey, 1914.
- National Research Council. (2009) Strengthening Forensic Science in the United States: A Path Forward. Washington, DC: The National Academies Press.
- Cedric Neumann, Ian W. Evett, James Skerrett. "Quantifying the weight of evidence from a forensic fingerprint comparison: A new paradigm." Journal of the Royal Statistical Society: Series A (Statistics in Society), 175(2), 2012, Pages 371–415.
- Cedric Neumann. "Defence against the modern arts: the curse of statistics: Part I—FRStat", Law, Probability and Risk, Volume 19, Issue 1, March 2020, Pages 1–20.
- Cedric Neumann, Madeline Ausdemore. "Defence against the modern arts: the curse of statistics—Part II: 'Score-based likelihood ratios'", Law,
 Probability and Risk, Volume 19, Issue 1, March 2020, Pages 21–42.
- Cedric Neumann, Jessie Hendricks, Madeline Ausdemore. Statistical Support for Conclusions in Fingerprint Examinations from: Handbook of Forensic Statistics. Boca Raton, CRC Press, 2021.
- Cedric Neumann. (2019-2021). Data-driven decision-making in fingerprint examination. Unpublished reports.
- OSAC Friction Ridge Subcommittee. (2021) OSAC Research Needs Assessment Form: Friction Ridge Statistical Modeling. Organization of Scientific Area Committees for Forensic Science.
- PCAST. (2016) Report to the President: Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods. Washington,
 D.C.: Executive Office of the President's Council of Advisors on Science and Technology
- Henry Swofford, et al. "A method for the statistical interpretation of friction ridge skin impression evidence: Method development and validation."
 Forensic Science International, Volume 287, 2018, Pages 113-126.
- Melissa Taylor, et al. (2012) Latent Print Examination and Human Factors: Improving the Practice through a Systems Approach, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD

QUESTIONS?

Eric Ray, CLPE
Technical Project Leader | IDEMIA

M. +1 657-230-0745

E. Eric.Ray@us.idemia.com

