Modelling the odds of false acceptance and false rejection of a privacy-preserved multimodal system involving face modality

Dr Norman Poh | <u>npoh@truststamp.net</u> Chief Science Officer, Trust Stamp and AiiD Global Affiliate Associate Professor, University of Malta

Malta Office:

Level 1, Tagliaferro Business Centre, High Street, Sliema, SLM 1551, Malta

Atlanta Office:

3017 Bolling Way NE, Suite 248 Atlanta, GA 30305

🔞 **Trust**Stamp

<u>https://truststamp.ai</u> <u>https://www.aiid.co</u>

Other offices:

Rwanda, Netherlands, Philippines, Denmark, New York, Silicon Valley

NIST International Face Performance Conference (IFPC) 2022

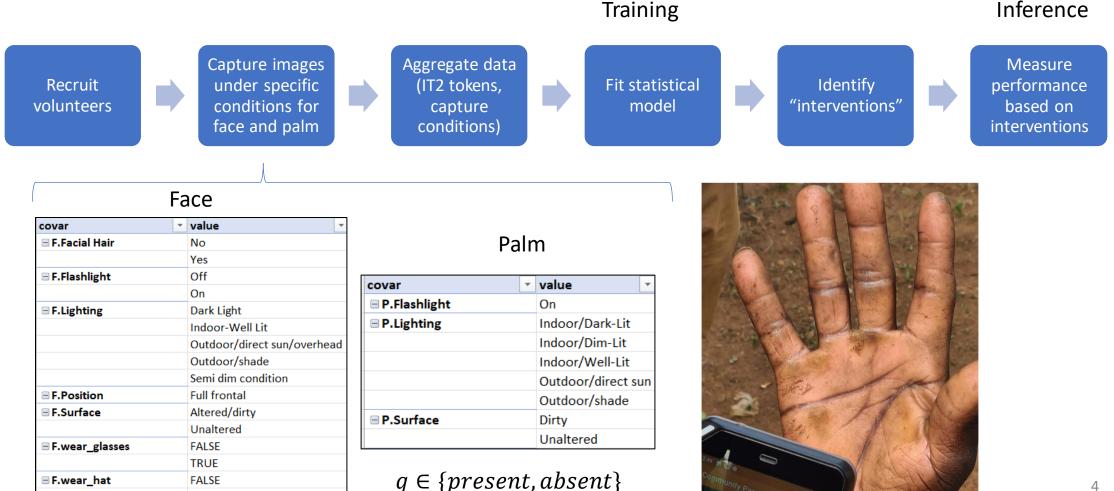
Talk abstract

In this talk, I propose a likelihood ratio framework that can model the odds of false acceptance and false rejection of the performance of a multimodal biometric system involving face and two palms. The methodology is generic and can be applied to any unimodal or multimodal systems.

To cope with limited training data, the quality conditions (which are manually annotated) are assumed to be independent of each other. Moreover, it is also assumed that there is no distinction between a probe sample and a gallery template.

This model was applied to a field study taking place in Africa. The software used Trust Stamp's privacypreserved biometric representation known as Irreversibly Transformed Identity Token, or IT2.

Despite using the simplified assumptions above and that the model can only observe the fused score (without access to the underlying matching scores of the individual modalities), the model is found to be powerful enough to explain capture conditions that favour the face and palm biometric modalities *individually*.


For instance, the model found that, for the face modality, dark lighting increases the odds of false rejection and false acceptance at the same time; whereas indoor/well-lit conditions improve the odds of true acceptance and true rejection at the same time. Outdoor direct sunlight, on the other hand, increases false acceptance whereas outdoor shade improves the true rejection. This forms lighting-based intervention that can be used to build a gallery. In addition to the lighting-based intervention, a full intervention consist of taking off glasses and hats for the face modality and cleaning palms for the contactless palmprint modality.

Identification experiments were simulated with varying proportions of templates fulfilling the above interventions in the gallery without subjecting the probe samples to the same interventions. If the same interventions were applied to the probe samples, the identification error rates can improve even further, thus demonstrating the effectiveness of the proposed LLR model in relating biometric performance to the capture conditions.

- Project requirements:
 - Contactless biometrics left and right palms and face
 - Biometric data never leaves the device
 - All biometric templates are represented using Trust Stamp's <u>Irreversibly Transformed Identity</u> <u>Token</u>, or IT2 (privacy-preserved biometrics) which was delivered in the form of an Android SDK
 - Must support 1:1 and 1:N at scale on device
 - Must operate offline most of the time. The biometric gallery is synched to server when it has access to the Internet
 - Affordable Android devices

Goal: Understand the factors that influence the multimodal smartphone-based capture solution in the privacy-preserved domain (IT2)

TRUE

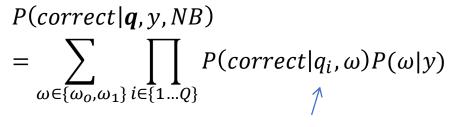
How to improve the "odds" of a correct outcome?

• Definition of a correct outcome

	System accepts claim	System rejects claim
Mated comparison, ω_1	Correct Acceptance	False Rejection
Nonmated comparison, ω_0	False Acceptance	Correct Rejection

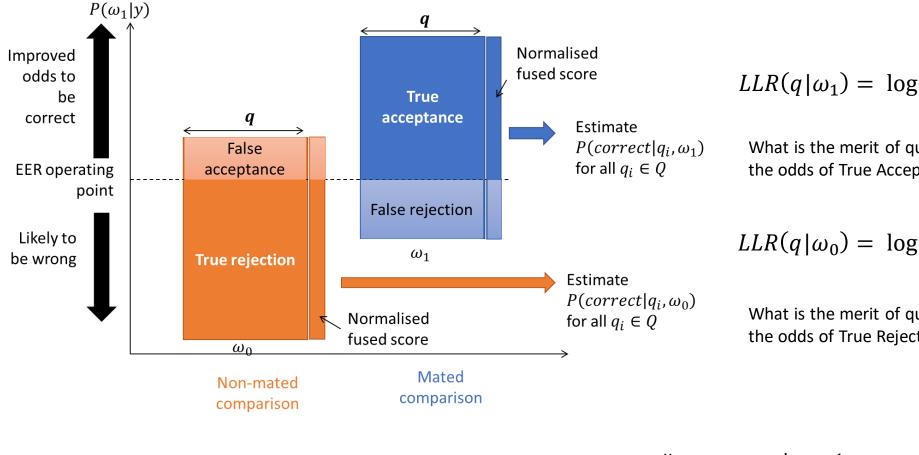
$$P(correct|q,y) = \sum_{\omega \in \{\omega_0,\omega_1\}} P(correct|q,\omega)P(\omega|y)$$

$$CR \qquad CA \qquad \text{If we can pick a subset of} \qquad \text{Map a comparison} \\ q = [q_0, q_1, ...] \text{ as} \\ \text{interventions, we can} \\ \text{improve the odds of success} \end{cases}$$


Naïve Bayes assumption

$$P(correct|\boldsymbol{q}, y) = \sum_{\omega \in \{\omega_o, \omega_1\}} P(correct|\boldsymbol{q}, \omega) P(\omega|y)$$

Var	Domain	meaning
0	$o \in \{correct, wrong\}$	Outcome of the comparison: correct means true acceptance and true rejection
q	$q = [q_1, \dots, q_Q]$	Quality conditions assigned during data collection. They contain the quality conditions of template and probe.
ω	$\omega \in \{\omega_o, \omega_1\}$	Non-mated and mated comparison, respectively
$P(\omega y)$	Probability (normalised score)	Calibrated probability, mapping from distance y to probability score

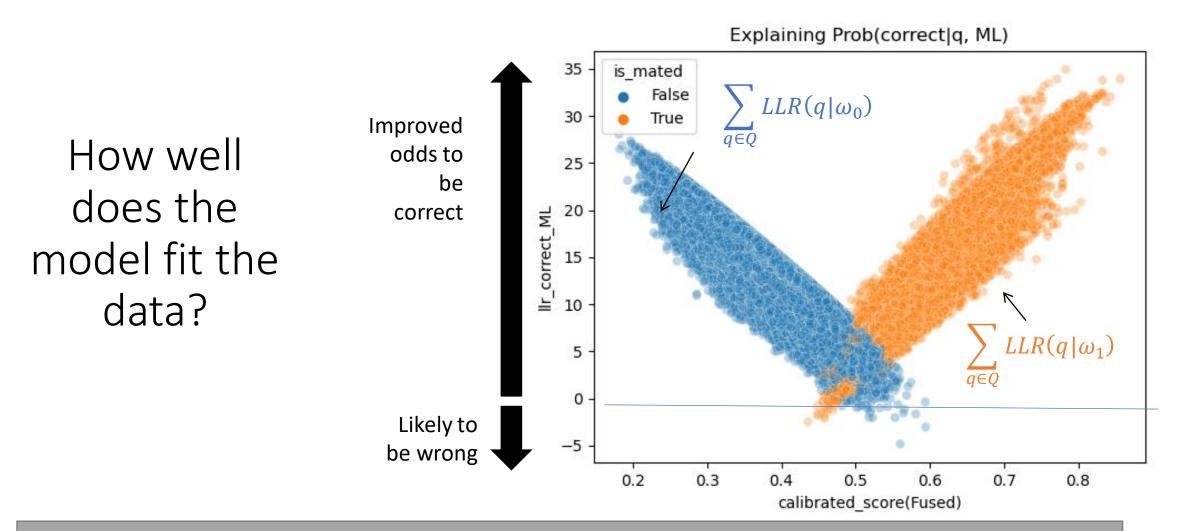


Don't care if it is a template or a probe

Terms	Meaning
$P(correct q_i, \omega_0)$	Probability of true rejection for quality condition q_i
$P(correct q_i, \omega_1)$	Probability of true acceptance for quality condition q_i

Bottom line: By estimating the probability of a correct decision, we can determine which covariates (quality conditions) are important.

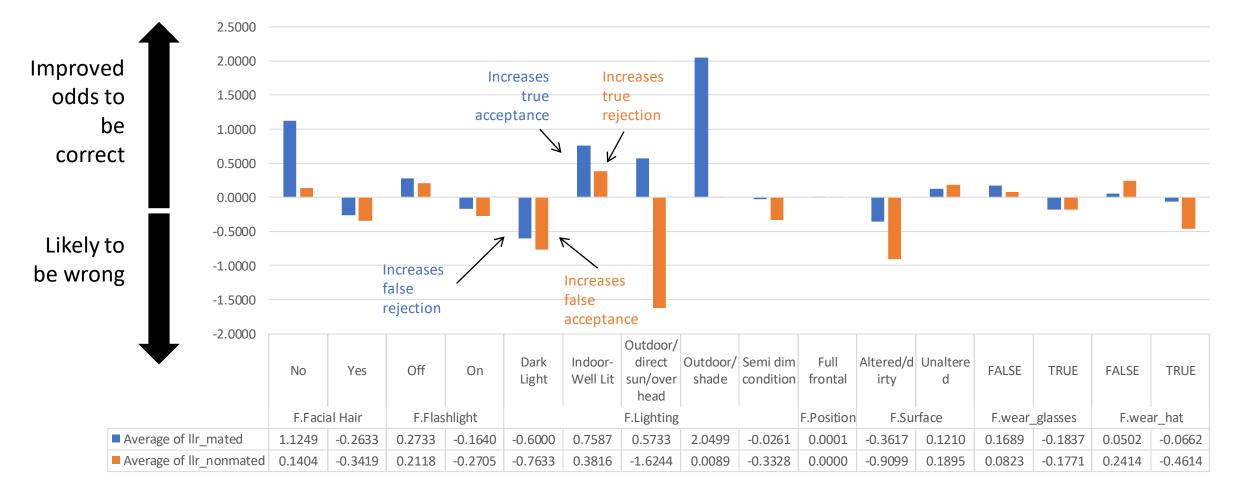
Work in the log-likelihood ratio domain


$$LLR(q|\omega_1) = \log \frac{P(correct|q, \omega_1)}{P(wrong|q, \omega_1)} - CR$$

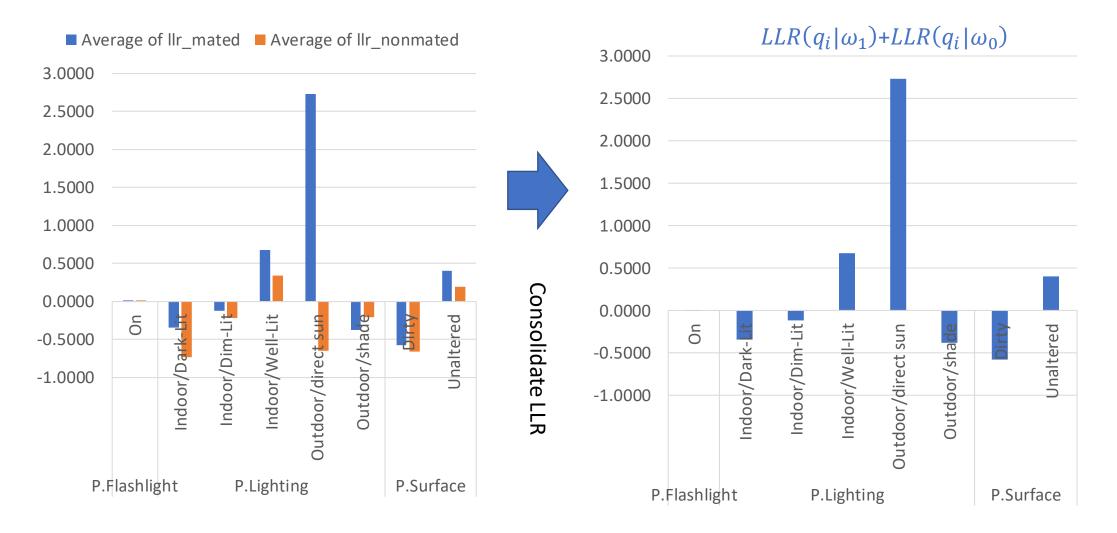
What is the merit of quality condition q to improve the odds of True Acceptance over False Rejection?

$$LLR(q|\omega_0) = \log \frac{P(correct|q,\omega_0)}{P(wrong|q,\omega_0)} - CR$$

What is the merit of quality condition q to improve the odds of True Rejection over False Acceptance?


LR Estimator
$$LLR(q|\omega) = \log \frac{\# \ correct \ \omega|q+1}{\# \ wrong \ \omega|q+1}$$
 $CR = \log \frac{P(correct)}{P(wrong)_8}$

Bottom line: The model fits the data very well, capable of explaining True acceptance and True rejection. So, in the subsequent slides, we are going to interpret the LLR for each individual quality condition (the covariate).


Face covariates

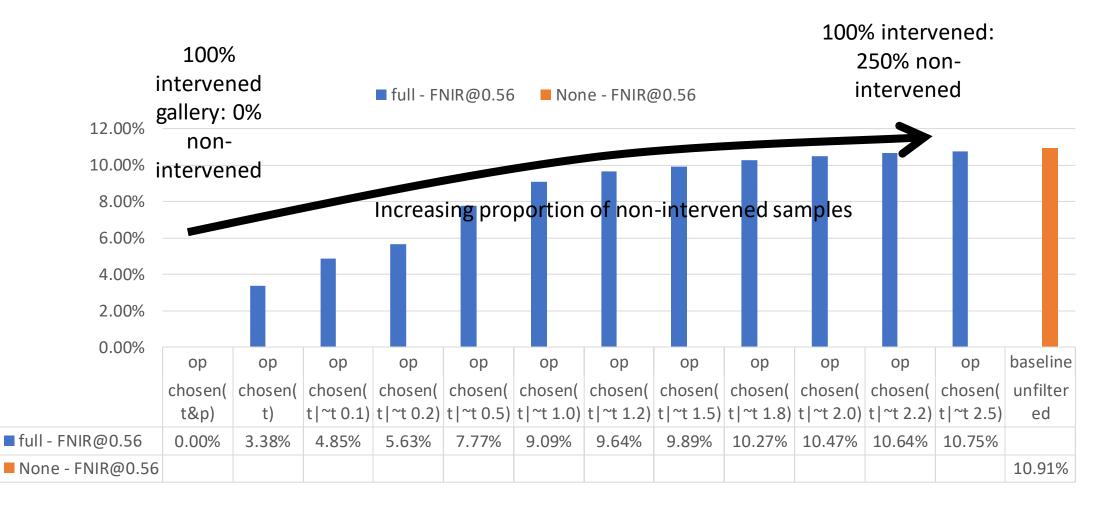
- Flashlight off, indoor well-lit, outdoor shade
- Take off glasses and hat
- Although no facial hair is better, it requires people to shave this may not be culturally acceptable

Palmprint covariates

- Outdoor/direct-sun improves true acceptance but worsens false acceptance
- Indoor well-lit and "unaltered" improve both true acceptance and true rejection

Full vs lighting-based intervention

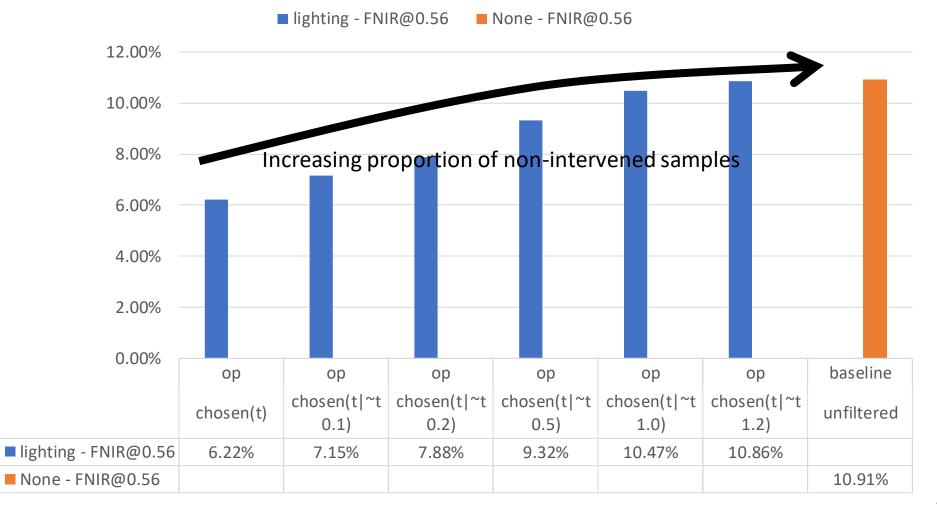
- chosen(t) = apply intervention to the gallery
- chosen(p) = apply intervention to the probe samples


 chosen(t&p) – apply intervention to the gallery and the probes

		full		lighting		
			Average of		Average of	Sum of
	covar	covar_conditions	percentage	Sum of count	percentage	count
• • • •	🗏 chosen(p)	chosen(p)	17.39%	1261964	32.86%	2384496
Conjunction	⊟ chosen(t&p)	chosen(t&p)	4.60%	333627	14.27%	1035396
	🗏 chosen(t)	chosen(t)	26.54%	1926147	43.50%	3156919
	p.F.Flashlight on/off	(p.F.Flashlight on/off==Off)	71.78%	5209384	71.78%	5209384
	p.F.Lighting	(p.F.Lighting==Indoor-Well Lit) (p.F.Lighting==Outdoor/shade)	78.91%	5726147	78.91%	5726147
	p.F.wear_glasses	(p.F.wear_glasses==False)	72.83%	5285290		
	🗏 p.F.wear_hat	(p.F.wear_hat==False)	76.85%	5576930		
Individual	p.L.Lighting	(p.L.Lighting==Indoor/Well-Lit)	65.19%	4730569	65.19%	4730569
	p.L.Surface	(p.L.Surface==Unaltered)	89.55%	6498276		
selected	= p.R.Lighting	(p.R.Lighting==Indoor/Well-Lit)	65.19%	4730569	65.19%	4730569
criterion	🗏 p.R.Surface	(p.R.Surface==Unaltered)	89.55%	6498713		
		(t.F.Flashlight on/off==Off)	58.01%	4210046	58.01%	4210046
		(t.F.Lighting==Indoor-Well Lit) (t.F.Lighting==Outdoor/shade)	64.95%	4713254	64.95%	4713254
	t.F.wear_glasses	(t.F.wear_glasses==False)	67.59%	4904886		
	🗏 t.F.wear_hat	(t.F.wear_hat==False)	68.86%	4997222		
	■ t.L.Lighting	(t.L.Lighting==Indoor/Well-Lit)	55.61%	4035698	55.61%	4035698
	🗏 t.L.Surface	(t.L.Surface==Unaltered) "Either or"	78.45%	5692816		
	■ t.R.Lighting	(t.R.Lighting==Indoor/Well-Lit)	55.61%	4035698	55.61%	4035698
	🗆 t.R.Surface	(t.R.Surface==Unaltered)	80.99%	5877720		

Prefix p means probe, t means template. F means face, L means Left palm, R means Right palm

Full intervention


Face – flashlight off, indoor well-lit, outdoor shade, take off glasses and hat Palmprint – indoor well-lit, unaltered, outdoor direct sun

Note: FPIR has near zero error values at the identification threshold of 0.56 of the fused score

Lighting-based intervention

Face – flashlight off, indoor well-lit, outdoor shade Palmprint – indoor well-lit, outdoor direct sun

Summary

17

- We have developed a statistical method to identify capture conditions that are favourable during registration.
- The method only observes the fused score of a multimodal biometric system in the privacy preserved domain (IT2)
- The covariates found form the basis of a lighting-based or a full intervention
- The interventions were validated in the identification setting
- Future work:
 - Apply the same methodology to biometric sample quality (quality measures)
 - Apply it to analyse performance differentials

