
Accuracy Comparison Across Face 
Recognition Algorithms:  Where Are 
We On Measuring Race Bias?

Jacqueline G. Cavazos1, P.  Jonathon Phillips2, Carlos D. Castillo3,  Alice J. O’Toole1

The University of Texas at Dallas (UTD)1

National Institute of Standards and Technology2

*Johns Hopkins University3

International Face Performance Conference (IFPC) - 2020
*correction: original presentation stated:  The University of Maryland 



OVERVIEW

• Background on the other-race effect and race demographic variation
• Humans and machines

• Measuring human and machine performance

• What factors impact accuracy differences across race groups in algorithms?

• Considerations for measuring these differences?
• A walk through sample data: demographic variation in deep networks (Cavazos, Phillips, Castillo, 

O’Toole, 2020)

• Final thoughts/considerations on race accuracy variation
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MYTHS ABOUT RACE PERFORMANCE VARIATION
• Myth #1: There would be no race performance variation in face identification if we 

eliminated machines.

• Myth #2: Face recognition systems used to be “fair” before 2015 and the emergence 
of deep convolutional neural networks (DCNNs).

• Myth #3: Race is categorical. And we know what these categories are.
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THE OTHER-RACE EFFECT FOR HUMANS
• Greater identification accuracy for own-race faces compared to other-race faces. 

(Malpass & Kravtiz, 1969; Meissner & Brigham, 2001)

• Multiple racial/ethnic groups (Meissner & Brigham, 2001)

• Methodological paradigms (Meissner & Brigham, 2001; Sporer et al., 2001)

• Age groups (Sangrigoli and De Schonen, 2004; Kelly et al., 2005; Pezdek et al., 
2003; Anzures et al., 2014; Tham et al., 2017)
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OTHER - RACE EFFECT VS RACE PERFORMANCE VARIATION

• Other-race effect for humans 

• interaction between the race of  
“subject” and the race of the “face”
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OTHER - RACE EFFECT VS RACE PERFORMANCE VARIATION

• Other-race effect for humans 

• interaction between the race of  
“subject” and the race of the “face”
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•Race performance variation
•machine more accurate for race A 

vs. race B
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Pre-DCNNs
• Asian and Caucasian (Furl et al., 2002)

• East Asian and Caucasian- “Other-race effect”(Phillips et al., 2011)

• Black, White, Hispanic (multiple demographics: gender, race, age)(Klare et al., 2012)
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EVIDENCE OF RACE DEMOGRAPHIC VARIATION

DCNNs
• Black and White (multi-class demographics) (El Khiyari et al., 2016)

• African American and Caucasian (Krishnapriya et al., 2019; 2020)

•NIST report on demographic effects (Grother et al., 2019)
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1: Sure they are the same   
2: Think they are the same   
3: Do not know    
4: Think they are different   
5: Sure they are different

HUMAN TASK
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Response Options

Are these images of the same
person or two different people?



MEASURING HUMAN PERFORMANCE
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MEASURING HUMAN PERFORMANCE
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MEASURING HUMAN PERFORMANCE
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MEASURING HUMAN PERFORMANCE
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RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE
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MEASURING ALGORITHM PERFORMANCE
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•Performance measures  
• threshold independent: characterize “system” as a whole
• Area under the ROC curve (AUC, aROC) 

• threshold dependent: operational measure 



THRESHOLD DEPENDENT MEASURE
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THRESHOLD DEPENDENT MEASURE
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MEASURING ALGORITHM PERFORMANCE
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•Performance measures  
• threshold independent: characterize “system” as a whole
• Area under the ROC curve (AUC, aROC) 

• threshold dependent: operational measure 
•measure true accept rate (TAR) @ a pre-set FAR 
• FAR usually very low FAR: 10-3, 10-4, 10-5 Threshold

True Negative True Accept

False Negative False Accept
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Faces representativeness

DATA-DRIVEN FACTORS
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same- identity and different-identity distributions differ across demographics

Photo credit : IJB-B/IJB-C datasets

Quality of algorithms’ representation



DATA-DRIVEN FACTORS
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same- identity and different-identity distributions differ across demographics

Photo credit : IJB-B/IJB-C datasets

Quality of photographs



OPERATIONAL FACTORS

25(O’Toole et al., 2012; Cavazos et al., 2020) 

True Negative True Accept

False AcceptFalse Negative

Thresholds

(O’Toole et al., 2012; Krishnapriya et al., 2019; NIST; 
Bowyer, 2019; Cavazos et al., 2020)

“Yoking”- different-identity distribution 
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Good Bad Ugly

DATA SET
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•NIST Good, Bad, Ugly Challenge 
(Phillips et al., 2011)
• stimulus difficulty levels stratified with 

previous generation algorithm

• East Asian and Caucasian faces



• Pre-DCNN
• Fused algorithm of 

top three 
algorithms in FRVT 
2006

A2011

• Early DCNN
• Training:  VGG Face, 

982,803 images

A2015

• Recent DCNN
• Training: 993,153 

images
• *Pre-dates A2017b

A2019

• Recent DCNN
• Training: 5,714,444 

images
• Accuracy = forensic 

face examiners
(Phillips et al., 2018)

A2017b
(Phillips et al., 2011) (Parkhi, Vedaldi, & Zisserman, 2015) (Ranjan et al., 2019) (Ranjan, Castillo & Chellappa, 2017)

ALGORITHMS
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RACE RESULTS
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Threshold-independent:
• A2017b & A2019 = no

differences across race
• A2015 & A2011 = minimal

differences across race
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Threshold dependent:
• All four algorithms 

need greater Asian 
threshold when setting 
False Accept Rates.
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IMAGE DIFFICULTY RESULTS

37



38

Good



39

Bad



40

Race accuracy 
differences:
• Most evident as image 

difficulty increases.

Ugly
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FINAL THOUGHTS

42

Threshold

True Negative True- Positive

False NegativeFalse Positive



FINAL THOUGHTS
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FINAL THOUGHTS
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MYTHS ABOUT DEMOGRAPHIC VARIATION
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•Myth #1: There would be no race performance variation in face 
identification if we eliminated machines.



MYTHS ABOUT DEMOGRAPHIC VARIATION

• Myth #2: Face recognition systems used to be fair before 2015 and 
the emergence of deep convolutional neural networks

46



MYTHS ABOUT DEMOGRAPHIC VARIATION

• Myth #3: Race is categorical.  And we know what these categories are.
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