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The Problem

e 1.1 Face Recognition between selfies and photos of documents
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e Part of Onfido’s remote identity verification solution
e The document proves your identity
e The selfie proves the document belongs to you
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Challenges of Selfie-Doc Face Recognition

e User-controlled image capture: wide range of
devices, light conditions

e Document images are photos of physical
documents, not high-res images stored on chip

e Bi-sample data: only 2 images per identity

e Large number of document types
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Previous Work

e Selfie-Doc matching
o Chinese resident cards, using chip photo (Shi and Jain "18, "9,
Zhu et al. "19)
o Chilean ID cards (Albiero et al. "19)

e Geographic and Racial performance differentials
o Race-based evaluation (Krishnapriya et al. 19, Cavazos et al. '"19)
o NIST FRVT Report Part 3 (Grother et al. "19)

e Mitigation strategies
o Racial Faces in the Wild (Wang et al. '"19)

e Bi-sample or shallow face learning
o Semi-siamese networks (Du et al. '20)
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e Face Recognition model trained on selfie-doc data.
e Evaluation of performance differentials across geographies.
e Evaluate sampling methods to reduce performance differentials.

e Speculation about nature of bias




Selfie-Doc Dataset

e In-house dataset of 6.8M image pairs
e Available metadata

o Document issuing country

o Gender
e Test set of 100K image pairs.

Male Female Unknown All

Europe (EU) 29.0% 165% 155%  61.0%
America (AM) 92% 5.6% 0.3% 15.1%
Africa (AF) 0.3% 0.1% 0.1% 0.5%
Asia (AS) 24%  0.7% 1.6% 4.7%
Oceania (OC) 0.1% 0.1% 0.2% 0.3%
Unknown (UN) 0.0% 0.0% 18.3% 18.3%
All 41.0% 23.0% 36.1% 100.0%




Loss Function and Training

Image x, feature embedding z=f(x)
Training with triplet loss

Negative f \

Anchor g LEARNING @
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Positive Positive
£ =max (D2, — D2, + ,0)
where (Tq,Tp, Ty)are triplets consisting on
an anchor a positive and a negative image
I1£(za) = f(,)I
Online semi-hard triplet selection: for each
pair Zq,Zp consider candidates z. that
violate the margin

If(@a) — f(@p)|I* + 0 > | f(za) — fla)|?

Algorithm 1: Training loop

Input : Batch of selfie-doc pairs (X ¢, X¢)
Xe = [:131, vy T3]
X% = [5%... a%l
Output: Updated network f(-)
1 Compute embeddings for the whole batch
2fori=1...Ndo
3 | 2, 2 = f(x3), (=)
4 end
5 Use the embeddings for triplet selection
6fori=1...Ndo
7 select 5() s.t. (z3, z§

¢, 25 ) is a hard triplet

8 select k(i) s.t. (z¢, z2, i»Th(i)) is a hard triplet
9 end

10 Train with triplets in minibatches of size N¢yqin
1m fori=1...N do

12 update network weights using triplets
(zf, z, xj(z)) and (x,,a:l,:ck(z))

13 end




Baseline Model Performance

e Baseline
o ResNet-100 model trained on
MS-Celeb-1M.
o Performance: 99.77% on LFW, &
98.47% on MegaFace. Qg
e Fine-tuning g
o Triplet selection batch size %
10,240. =
o Optimization batch size 32.

Learning rate 1e-5, decaying to
Te-7.
Trained for 2.7M steps.
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Fine-tuned Model Performance by Continent

False Rejection Rate False Acceptance Rate
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Fine-tuned Model Performance by Continent

Selfie/Doc FAR (log; ) at Overall 10~° FAR
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Mitigation Strategies

e Dataset sampling
o Equal Sampling - Sampling equally from each continent
o Adjusted Sampling - Weighted sampling as follows
m EU, AM, OC an UN have weight 1
m AF, AS have weight 3
o Dynamic Sampling - Weighted sampling with weights
dynamically adjusted during training based on within-class FAR.
m 10-fold increase in FAR yields 4-fold increase in weights
m Exponential averaging to avoid too sudden weight changes
e Note: We do not change the size of the dataset, only the frequency
with which a sample from each continent is chosen.




Mitigation Strategies

e Training
o Training initialized with fine-tuned model weights.
o Triplet loss with batch size 10,240 for triplet selection.
o Optimization batch size 32, learning rate 1e-6, decaying to 1e-7.
o Trained for 256,000 steps.




Fine-tuned Model and Equal Sampling

Selfie/Doc FAR (log; ) at Overall 10~° FAR Selfie/Doc FAR (log; ) at Overall 10~° FAR
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Adjusted and Dynamic Sampling

Selfie/Doc FAR (log; ) at Overall 10~° FAR
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What Didn’t Work - Homogeneous Batches

e Why does adjusted sampling help?

e Having more similar samples in a batch
increases chance of selecting a hard
triplet.

e If more similar samples help, why not
use batches that contain samples from
one continent only?

e Homogeneous Batch Sampling

o Each batch of 10,240 samples is
chosen from a single continent
o All continents are sampled equally

Checkpoint 13
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Sampling Methods Comparison

Selfie/Doc FAR (log;) at Overall 10~° FAR
Selfie/Doc FRR at Overall 10~5 FAR
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Open Questions
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e Continent-based mitigation improves male and female performance
e Male performance improves more than female
e The gender-differential is larger for the mitigated model



Continents or Countries?

e Evaluate Dynamic Sampling model by country
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Country-based Sampling Strategies

e Dataset sampling
o Adjusted Sampling - Weighted sampling as follows
m Countries from Africa, Asia and America (except USA and
Canada) have weight 4
m All other countries have weight 1
o Dynamic Sampling - Weighted sampling with weights
dynamically adjusted during training based on within-class FAR.
e Training
o Training initialized with finetuned model weights.
o Triplet loss with batch size 10,240 for triplet selection.
o Optimization batch size 32, learning rate 1e-6, decaying to 1e-7.
o Trained for 256,000 steps.




Adjusted and Dynamic Sampling

Photo/Doc FAR (log10) Photo/Doc FAR (log10)

China China -4.6 -4.6 -3.9
Thailand Thailand -42 -39 4.7
Indonesia Indonesia

India India

Africa Africa

Nigeria Nigeria -45 -39 4.1
S. Africa S. Africa -39 -44 42
USA USA -4.9 48 -5 52 -5
Latvia Latvia
UK UK 44 -5 5.1
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The Ideal Scenario?
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—4.00

Thought Experiment o
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e Consider a perfectly unbiased model with ..
o FAR =10 o
o FRR =107
e Assume that we have a gender classifier with
o Accuracy = 0.999
o Error rate, € =103
e Combine this into a new model as follows
o Given two images, we determine the gender via classifier
o If the genders are equal, we use original model for similarity
o If the genders are different, the images don’t match
e \What is the performance of the new model?




Thought Experiment

FAR Male Female
Male 10° 10°
Female 10° 10°
FRR 0.01 0.01

Original model

e New model overall performance
o FAR=5-10°
o FRR=1.2:107?

FAR Male Female
Male

Female

FRR 0.012 0.012

Model with gender classifier




Algorithmic Grouping via Clustering

| |

10 30

e Cluster a dataset of 1M face embeddings into 10, 30 or 100 clusters
e Compute the FAR between clusters at a fixed threshold
e Blue ... lower FAR; Red ... higher FAR



Visualization of Embedding Space
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Continent-based dynamic sampling




The Ideal Scenario?
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Discussion Points

e Performance differentials can be reduced without balanced data

o Only 0.5% of images are from African documents
e Having fine-grained labels for the training set is an advantage

o Future work to explore unsupervised clustering methods
e Dynamic sampling strategies require a clean validation set

o Noise in the validation set will amplify errors in sampling weights
e Removing performance differentials is a multi-objective optimization

problem.

o Reducing FAR differential can lead to increased FRR differentials.

e What is the end-state of bias reduction?




