Reducing
Geographic
Performance
Differentials for
Face Recognition

Martins Bruveris

The Problem

• 1:1 Face Recognition between selfies and photos of documents

- Part of Onfido's remote identity verification solution
- The document proves your identity
- The selfie proves the document belongs to you

The Problem

1:1 Face Recognition between selfies and photos of documents

- Part of Onfido's remote identity verification solution
- The document proves your identity
- The selfie proves the document belongs to you

Challenges of Selfie-Doc Face Recognition

- User-controlled image capture: wide range of devices, light conditions
- Document images are photos of physical documents, not high-res images stored on chip
- Bi-sample data: only 2 images per identity
- Large number of document types

onfido

Previous Work

- Selfie-Doc matching
 - Chinese resident cards, using chip photo (Shi and Jain '18, '19, Zhu et al. '19)
 - Chilean ID cards (Albiero et al. '19)
- Geographic and Racial performance differentials
 - Race-based evaluation (Krishnapriya et al. '19, Cavazos et al. '19)
 - NIST FRVT Report Part 3 (Grother et al. '19)
- Mitigation strategies
 - Racial Faces in the Wild (Wang et al. '19)
- Bi-sample or shallow face learning
 - Semi-siamese networks (Du et al. '20)

Contribution

- Face Recognition model trained on selfie-doc data.
- Evaluation of performance differentials across geographies.
- Evaluate sampling methods to reduce performance differentials.
- Speculation about nature of bias

Selfie-Doc Dataset

- In-house dataset of 6.8M image pairs
- Available metadata
 - Document issuing country
 - Gender
- Test set of 100K image pairs.

	Male	Female	Unknown	All
Europe (EU)	29.0%	16.5%	15.5%	61.0%
America (AM)	9.2%	5.6%	0.3%	15.1%
Africa (AF)	0.3%	0.1%	0.1%	0.5%
Asia (AS)	2.4%	0.7%	1.6%	4.7%
Oceania (OC)	0.1%	0.1%	0.2%	0.3%
Unknown (UN)	0.0%	0.0%	18.3%	18.3%
All	41.0%	23.0%	36.1%	100.0%

Loss Function and Training

- Image x, feature embedding z=f(x)
- Training with triplet loss

$$\mathcal{L} = \max \left(D_{ap}^2 - D_{an}^2 + \alpha, 0 \right)$$

where (x_a, x_p, x_n) are triplets consisting on an anchor a positive and a negative image

$$D_{ap}^2 = ||f(x_a) - f(x_p)||^2$$

• Online semi-hard triplet selection: for each pair x_a, x_p consider candidates x_c that violate the margin

$$||f(x_a) - f(x_p)||^2 + \alpha > ||f(x_a) - f(x_c)||^2$$

Algorithm 1: Training loop

Input : Batch of selfie-doc pairs (X^s, X^d) $X^s = [x_1^s, \dots, x_N^s]$ $X^d = [x_1^d, \dots, x_N^d]$

Output: Updated network $f(\cdot)$

- 1 Compute embeddings for the whole batch
- 2 for i = 1 ... N do
- $z_i^s, z_i^d = f(x_i^s), f(x_i^d)$
- 4 end
- 5 Use the embeddings for triplet selection
- 6 for i = 1 ... N do
- 7 | select j(i) s.t. $(x_i^s, x_i^d, x_{j(i)}^d)$ is a hard triplet
- select k(i) s.t. $(x_i^d, x_i^s, x_{k(i)}^s)$ is a hard triplet
- 9 end
- 10 Train with triplets in minibatches of size N_{train}
- 11 for i = 1 ... N do
- update network weights using triplets $(x_i^s, x_i^d, x_{j(i)}^d)$ and $(x_i^d, x_i^s, x_{k(i)}^s)$
- 13 end

Baseline Model Performance

Baseline

- ResNet-100 model trained on MS-Celeb-1M.
- Performance: 99.77% on LFW,98.47% on MegaFace.

Fine-tuning

- Triplet selection batch size 10,240.
- Optimization batch size 32.
- Learning rate 1e-5, decaying to 1e-7.
- Trained for 2.7M steps.

Fine-tuned Model Performance by Continent

Overall FAR

False Acceptance Rate

Fine-tuned Model Performance by Continent

Mitigation Strategies

Dataset sampling

- Equal Sampling Sampling equally from each continent
- Adjusted Sampling Weighted sampling as follows
 - EU, AM, OC an UN have weight 1
 - AF, AS have weight 3
- Dynamic Sampling Weighted sampling with weights dynamically adjusted during training based on within-class FAR.
 - 10-fold increase in FAR yields 4-fold increase in weights
 - Exponential averaging to avoid too sudden weight changes
- Note: We do not change the size of the dataset, only the frequency with which a sample from each continent is chosen.

Mitigation Strategies

Training

- Training initialized with fine-tuned model weights.
- Triplet loss with batch size 10,240 for triplet selection.
- Optimization batch size 32, learning rate 1e-6, decaying to 1e-7.
- Trained for 256,000 steps.

Fine-tuned Model and Equal Sampling

Fine-tuned Model

Equal Sampling

Adjusted and Dynamic Sampling

Adjusted Sampling

Dynamic Sampling

AM

What Didn't Work - Homogeneous Batches

- Why does adjusted sampling help?
- Having more similar samples in a batch increases chance of selecting a hard triplet.
- If more similar samples help, why not use batches that contain samples from one continent only?
- Homogeneous Batch Sampling
 - Each batch of 10,240 samples is chosen from a single continent
 - All continents are sampled equally

Checkpoint 13 Checkpoint 14 Checkpoint 15 Checkpoint 16 Checkpoint 17

EU AM AF AS OC UN
Continent of Selfie/Document

Sampling Methods Comparison

Baseline Finetuned **Equal Sampling** Adj. Sampling Dyn. Sampling

-5	-4.7	-3.9	-3.8	-4.9	-5
-4.8	-4.8	-3	-3.7	-4.9	-4.9
-4.7	-5	-4.1	-4.1	-5	-4.9
-4.7	-4.6	-4.2	-4.2	-4.7	-4.9
-4.7	-5	-4.3	-4.1	-4.9	-4.9

EU AMAF AS OCUN Continent of Selfie/Document

False Acceptance Rate

EU AF AS OCUN Continent of Selfie/Document

Selfie/Doc FRR at Overall 10^{-5} FAR

False Rejection Rate

งฐ์ง onfido

Open Questions

- Continent-based mitigation improves male and female performance
- Male performance improves more than female
- The gender-differential is larger for the mitigated model

Continents or Countries?

Evaluate Dynamic Sampling model by country

Selfie/Doc FAR (\log_{10}) at Overall 10^{-5} FAR -5 -5.3 -5.2 -5.1 -4.9 Continent of Selfie -5 -5.3 -5.8 -5.1 -4.9 -5.1 -5 -5.2 -5.6 -4.1 -4.3 -5.8 -5.8 -5.3 -5.2 -5.2 -5.1 -5 -5.2 -5.6 -4.9 -4.9 -4.7 AMAF AS OC EU UN Continent of Document

Photo/Doc FAR (log10) -4.2 -4.2 -3.3 China -6 -6 -6 -4.1 -3.8 -4.5 Thailand -6 -5.4 -5.7 -6 -6 -5.5 -3.5 -4.2 -4.4 Indonesia -6 -5.5 -5.7 -6 -5.4 -3.7 -5.1 -5.4 India -5.3 -6 -5.3 -4.3 -4.1 -3.9 -6 -5.7 Africa -5.3 -6 -5.7 -4.5 -3.8 -4.1 -5.7 -6 Nigeria -5.1 -5.7 -5.3 -4.2 -4.4 -4.4 -5.3 -5.7 -6 S. Africa **-4.8 -5.4 -4.8 -5.5 -5.4 -5.2 -6 -5.5 -5.7 -5.2 USA** -5.1 -4.5 -5.3 -5.7 -6 -6 Latvia **-4.4 -5 -5.2 -5.2 -5 -5 -5.3 -5.5 -5.5 -5.5** UK

Latvia
USA
S. Africa
Nigeria
Africa
India
Indonesia
Thailand
China

Country-based Sampling Strategies

Dataset sampling

- Adjusted Sampling Weighted sampling as follows
 - Countries from Africa, Asia and America (except USA and Canada) have weight 4
 - All other countries have weight 1
- Dynamic Sampling Weighted sampling with weights dynamically adjusted during training based on within-class FAR.

Training

- Training initialized with finetuned model weights.
- Triplet loss with batch size 10,240 for triplet selection.
- Optimization batch size 32, learning rate 1e-6, decaying to 1e-7.
- Trained for 256,000 steps.

Adjusted and Dynamic Sampling

onfido

The Ideal Scenario?

Uniform FAR across groups

Uniform FAR within groups

Thought Experiment

- Consider a perfectly unbiased model with
 - \circ FAR = 10^{-5}
 - \circ FRR = 10^{-2}
- Assume that we have a gender classifier with
 - Accuracy = 0.999
 - \circ Error rate, ε = 10^{-3}
- Combine this into a new model as follows
 - Given two images, we determine the gender via classifier
 - o If the genders are equal, we use original model for similarity
 - If the genders are different, the images don't match
- What is the performance of the new model?

Thought Experiment

FAR	Male	Female
Male	10 ⁻⁵	10 ⁻⁵
Female	10 ⁻⁵	10 ⁻⁵
FRR	0.01	0.01

FAR	Male	Female
Male	5•10 ⁻⁶	2•10-8
Female	2·10 ⁻⁸	5•10 ⁻⁶
FRR	0.012	0.012

Original model

Model with gender classifier

- New model overall performance
 - o FAR = 5 10⁻⁶
 - \circ FRR = 1.2•10⁻²

Algorithmic Grouping via Clustering

- Cluster a dataset of 1M face embeddings into 10, 30 or 100 clusters
- Compute the FAR between clusters at a fixed threshold
- Blue ... lower FAR; Red ... higher FAR

Visualization of Embedding Space

Continent-based dynamic sampling

onfido

The Ideal Scenario?

Uniform FAR across groups

Uniform FAR within groups

Discussion Points

- Performance differentials can be reduced without balanced data
 - Only 0.5% of images are from African documents
- Having fine-grained labels for the training set is an advantage
 - Future work to explore unsupervised clustering methods
- Dynamic sampling strategies require a clean validation set
 - Noise in the validation set will amplify errors in sampling weights
- Removing performance differentials is a multi-objective optimization problem.
 - Reducing FAR differential can lead to increased FRR differentials.
- What is the end-state of bias reduction?