

IFPC 2020

Signal-level fusion for indexing and retrieval of facial biometric data

Pawel Drozdowski

da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt

Online, 2020-10-28

Speaker

Dr. Pawel Drozdowski

Senior researcher: Hochschule Darmstadt

Website:

https://dasec.h-da.de/staff/pawel-drozdowski/

Contact:

pawel.drozdowski@h-da.de

da/sec BIOMETRICS AND INTERNET-SECURITY RESEARCH GROUP

Contents

Motivation

Background

Proposed system

Results

Conclusion

Pawel Drozdowski

IFPC 2020 / Online, 2020-10-28

Biometric operation modes

Verification

- A biometric claim to an identity is made
- ► A 1:1 comparison is performed to reach a decision
- \Rightarrow Computationally trivial

Biometric operation modes

Identification

- There is no biometric claim
- The decision has to be reached using the biometric data alone
- \Rightarrow Computationally expensive (in worst case, exhaustive search)

Biometric identification

Computational workload

 A system from one of market leaders: 35 million comparisons per second (face) on a high-end computer (i7 processor, 16GB RAM)

Table: Transaction times for an example system

	ĸ			•	(3)
Location	Berlin	Germany	EU	India	World
Population (millions)	3.75	83	512	1339	7800
1:N time	107 ms	2.37 s	14.62 s	38.25 s	3.43 m
N:N time	3.5 days	6 years	237 years	1624 years	55121 years

- ► A system for specialised hardware (Multicore Xeon processors, 512 GB RAM): 1.2 billion comparisons per second (face) ~35 times faster
- Infrastructure: more computers/servers to distribute the computations

⇒ **High monetary costs** (hardware itself, maintenance, and software licenses) Pawel Drozdowski IFPC 2020 / Online, 2020-10-28

Biometric identification

Computational workload reduction

 \Rightarrow Software- or Hardware-based acceleration speeds up the transactions, but does not yield computational workload reduction

[1] DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Computational workload in biometric identification systems: An overview. *IET Biometrics 8*, 6 (November 2019), 351–368.

Pawel Drozdowski

IFPC 2020 / Online, 2020-10-28

Signal-level fusion

Morphing

- By using image morphing methods, it is possible to create biometric samples which contain biometric information from multiple distinct *data subjects*. A typical morphing process includes:
 - 1. Facial landmark detection and triangulation in two or more images
 - 2. Landmark averaging to a single set of landmarks
 - 3. Image warping and alpha blending
- Two or more subjects can be morphed together

Subject 1

Subject 2

 \Rightarrow An **attack vector** against automated systems and human experts

Pawel Drozdowski

Background

Morphing

Why does it work?

The idea

Benefiting from properties of morphed images

- Using morphing to facilitate computational workload reduction
 A vulnerability is turned into an asset
- A two-stage biometric identification system
 - 1. Signal-level fusion at the first level
 - \Rightarrow Morphs of 2, 4, or 8 subjects
 - 2. Pre-selection of most promising candidates
 - \Rightarrow Normal comparisons at the second level
- Possible extension to a multi-stage system

\Rightarrow In theory, possibility to reduce computational workload and maintain biometric performance

 \Rightarrow Promising results in a proof-of-concept experimental evaluation

[2] DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Turning a vulnerability into an asset: Accelerating Facial Identification with Morphing, International Conference on Acoustics, Speech, and Signal Processing (ICASSP), (May 2019), 2582–2586.
Pawel Drozdowski IFPC 2020 / Online, 2020-10-28

Proposed system

Indexing and retrieval Overview

Proposed system

Indexing

Pair assignment

- How to decide **who should get morphed with whom**?
- \Rightarrow A combinatorial optimisation problem
- Choose a **global or local optimisation**? ⇒ Assignment problem-based definition ⇒ Hungarian algorithm
- How to define the cost function?
- \Rightarrow Random
- \Rightarrow Soft-biometrics
- \Rightarrow Similarity-score

Evaluation Experimental setup

- ▶ 1024 enrolled subjects (ICAO compliant, FERET + FRGC)
- ▶ 4 face recognition systems (OSS and COTS)
- 4 morphing algorithms (OSS and COTS)
- 3 strategies for selection of subjects to be morphed (random, soft-biometric, similarity-score)
- ▶ 3 numbers of samples contributing to a morph (2, 4, 8)
- A range of sizes of the pre-selected subset

Evaluation

Why is the computational workload reduced?

• For some parameter configurations $W_{\rm proposed} < W_{\rm baseline}$

Pawel Drozdowski

IFPC 2020 / Online, 2020-10-28

Evaluation

Effects of pair assignment strategies

 \Rightarrow Mated-morph score distributions significantly shifted towards the mated score distribution as a result of the intelligent pairing

Results

Evaluation

Evaluation

Biometric performance and computational workload

Recognition system	Computational workload at					
5 ,	95% HR	99% HR	99.5% HR	100% HR		
COTS OSS	18.75% 25.78%	25.78% 26.17%	26.17% 33.59%	33.59% 52.15%		

 \Rightarrow Intelligent pairing methods vastly outperforming random pair assignment. Best results with similarity-score-based pairing method

 \Rightarrow Better results with COTS-based recognition, especially at 100% HR

 \Rightarrow For some configurations, the computational workload is **reduced**, while biometric performance (false-negative errors) is **maintained**

 \Rightarrow Pre-selection causes the false positive errors to remain **unchanged** (worst case) or be reduced (best case)

Pawel Drozdowski

Proposed system

Summary

- Signal-level fusion-based approach
- Computational workload reduced significantly
- Biometric performance not impaired
- Better results with COTS-based face recognition system
- High impact of the selection of subjects to be morphed on the results of the scheme

Conclusion

General take-away points

Biometric identification systems

- Biometric identification is much more challenging than biometric verification
 - Biometric performance
 - Computational workload

Increasing computational requirements of the operational systems

- Growing size, number, and scope of the deployments
- Direct links to monetary costs and usability

\Rightarrow Computational workload reduction methods

Research opportunities

In Germany and Norway (or remotely)

Interested in working with biometrics or information security?

- Visit websites: https://dasec.h-da.de/ and https://www.ntnu.edu/nbl/
 - Ph.D. positions
 - Internships
 - ▶ B.Sc. and M.Sc. theses proposals with the possibility of a stipend
 - Student assistant positions
 - ► Collaborations with academia, industry, and governmental agencies
 - Contact Prof. Dr. Christoph Busch at christoph.busch@h-da.de

Thank you for your attention! Questions?