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Motivation and State of the Art

e Motivation

- Malicious agents can create
morphed faces that confuse both
FR systems and human agents

e State of the Art

- Attack: We propose a novel
strategy for morphed face attacks
using an additional network on
the latent space of the GAN
model

- Detense: We propose an
adversarial-based method for the
detection of morphed faces

Example of morphed face
(featured 1n the center column)




Objective and Approach
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Accomplishments

e GAN model

- Created cyclic GAN with

encoder, decoder, latent critic,
and face critic

 (Combinator for morphed
faces

- Created combinator model for
morphed faces using the two
encoded latent codes as input




Updated GAN Approach
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Updated Combinator Approach

Old Approach

Combinator Generator Discriminator
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Updated Approach
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e New Combinator Training Technique




Next Steps

e Attack-wise: Use feature layer of tace critic as additional
input into the combinator model to increase strength of
morphed attack

 Detense-wise: Develop face morphing detection model by
using transter learning from face critic ot detector

 Validate pertormance of complete system (attack and
defense)
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Differential Morphing Face Attack Detection

Motivation: Face morphing techniques allow any attacker to combine
two different images from two subjects to get a single (composite)

. Person 1 Morphing

* We are developing a novel universal
differential morphing attack detection
algorithm to distinguish between a
morphed photo and one from an
individual traveler with government 1D

Challenges in Morphed Face Detection:

Person 2

* There are many face morphing techniques, mainly based | orginaiimages | Compiete moron

on landmarks+trangulation+warping or MorGAN
architectures, and each one introduces a different facial
morphing artitactMorphing artifact:
* Ghosting, transition between facial regions,
hair+eyelash shadows, detormed facial regions,
blurriness 1n forehead, color and etc.

| Ghosting artifacts
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Splicing marph
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| visually perceptible
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i Combined marph

What features to use? How to compare two similar fdces?




Objectives and Approach

 Design a Siamese network distinguishing between genuine (non-
morphed) and imposter (morphed) pairs.

1. Use Contrastive Loss Function to

jointly optimize a set ot dedicated Siamese Detector
DNNSs, each operating on ditferent PEAR T
feature descriptors, as well as the input | e

image, followed by a number of Fusion
Layers and a Euclidean distance
measure to make the final decision
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2. Our detector will be evaluated using the
NIST report evaluation procedure,

which 1s based on morph miss rate and | contasive M
false detection rates K -
* What is Innovative and New?? J—
. A Siamese-based differential face SRR 1 o O
morphing detector L8 — - e |
2. A universal detector: Our proposed o

detector uses a large number of feature
descriptors dedicated for ditferent
morphing artifacts




Progress

* Preprocessing differential morph datasets

» VISAPPI17_selected morph samples (900x1200) are generated by geometrically warping the
landmarks of the source 1image to the target image

» MorGAN morph samples (64x64) are generated using a ALIGAN generative model
» The faces are detected and aligned using MTCNN framework

 Training a Siamese network using a twins’ face dataset

» Our Siamese network is an Inception ResNet v1 initialized with weights pre-trained on
VGGFace?2

» The network is re-trained by enforcing contrastive loss on the embedding space representation of
the genuine and imposter twin pairs

» The trained Siamese network is then fine-tuned using the training portion of each morph dataset

» The representations of the face image and its horizonal flipping are concatenated to provide a more
distinguishable embedding

Embedding
Representation
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Next Steps

 Employ ditferent architectures to study the ettectiveness
of the proposed tframework

 Compare the performance with state-of-the-art methods
to demonstrate the ettectiveness ot our proposed
framework

e Study multi-scale filters and their application 1n morph
detection

 Fusion of hand-crafted and deep fteatures tor morphed
face detection

e Attention maps to improve the discrimination between
morphed and non-morphed 1mages

Center for Identification Technology Research

©CITeR



Detecting Face Morphing: Dataset
Construction and Benchmark Evaluation

Jacob Dameron, Guodong Guo, and Xin Li

(West Virginia University)
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Problem

Motivation
* Face morphing attacks on facial recognition systems

National Concern: https://pages.nist.gov/frvt/html/frvt morph.html

* There 1s a lack of publicly available face morph datasets

Currently, 1t’s difficult to test algorithms without creating a whole new
dataset. This makes training and comparing new algorithms more time
consuming.

Value

» Provide our new dataset to the BIOM community®

[ 1] StyleGAN based morph.
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Accelerate the work of other researchers with our dataset

* Benchmark cases to compare w/ new models.

[1] R. Abdal, Y. Qin, and P. Wonka, “Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?”

Center for Identification Technology Research — Fall 2020 Progress Report



https://pages.nist.gov/frvt/html/frvt_morph.html

Landmark Morphing Attacks

o State of the Art

2] Standard ““pipeline” for Landmark based Morphing Attacks (LMA)
adopted as a framework. Some variants add steps before and after.

* (General Pipeline

Preprocessing
Get Landmarks
Blend Landmarks
Triangulation
Warping

Alpha Blending

Postprocessing
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[2] Morphing Pipeline

editing

Final Morph2

[2] T. Neubert, et al. “Extended StirTrace benchmarking of biometric and forensic qualities of morphed face images.”
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Generative Adversarial Networks

o State of the Art

[ 1] Outlined an embedding algorithm and approach used to generate
morphs using StyleGAN.

e StyleGAN Morphs

1. Embed source images nto
StyleGAN latent space.

2. Morph the two 1mages 1n
the latent space (average).

3. Generate morphed 1image
from latent space
representation.

[1] GAN morph examples

[1] R. Abdal, Y. Qin, and P. Wonka, “Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?”
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Objective and Approach

Our Face Morph Dataset

* (Objective

Produce a dataset of face morphs.

* Approach

- -
_____________

Use 1mage pairs belonging to publicly available datasets as sources.

Use different algorithms to produce morphs of varying quality.

Our Benchmark Survey

* (Objective
Benchmark the state of the art in morphing attack detection (MAD).
* Approach

Test popular morphing attack detection models against our dataset.
Report performance in APCER and BPCER (ISO/IEC 30107-3).

Center for Identification Technology Research — Fall 2020 Progress Report




Progress

 Morph Comparison w/ Other Datasets
Using AMSL-Morph [3,4] source images as mputs to our morph attacks.

Compare resulting morphs from our attacks against their morphs.

Landmark Based Morphs GAN Based Morphs

[3] AMSL Research Group. [n. d.]. 2019 AMSL Face Morph Image Data Set. ([n. d.]).
https://omen.cs.uni-magdeburg.de/disclaimer/index.php
[4] https://figshare.com/articles/Face Research Lab London Set/5047666

Center for Identification Technology Research — Fall 2020 Progress Report




Next Steps

e Phase 1: Dataset Construction

1. Filter public datasets by pose and background to collect source
1mages for face morphs.

2. Test more LMA methods for inclusion in our dataset including [5].

3. Large scale morph production using compiled methods and images.

* Phase 2: Benchmark Study

1. Collect and verify software implementations of existing face
morphing detection methods 1n the literature.

2. Modify algorithms, such as [6], to detect morphed images.

3. Test MAD methods against our dataset and report their
performance 1n terms of APCER at specific BPCER values.

[5] M. Ferrara, et al. “Decoupling texture blending and shape warping in face morphing,” in BIOSIG, 2019.
[6] L1, Yuezun, and Siwei Lyu. "Exposing deepfake videos by detecting face warping artifacts."(2018).

Center for Identification Technology Research — Fall 2020 Progress Report




FMONET: FAce MOrphing with
adversarial NETworks and Challenge

David Doermann, Srirangaraj Setlur
(University at Butfalo)

Motivation

* The need to stimulate face-specitfic manipulation detection research through a
challenge seeded with combinations evolving GAN based tace-to-face
manipulations to counter security risks posed by documents presented to
human and automated systems

Objectives

* Incorporate a range ot quality and source 1image similarity measure quantitatively

* Provide enhanced generation and morph capabilities based on GANs

Center for Identification Technology Research — Fall 2020 Progress Report




Accomplishments

e Dataset Collection Muliple Atibuts

Reverse Attributes

Higher Resolut%)n

~10K 1mages generated

e GAN Implementation
 Face Image Selection

e Morph Generation
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