

Quantifying Race and Gender Effects in Face versus Iris Algorithms

The International Face Performance Conference 2020

John Howard, Yevgeniy Sirotin, & Jerry Tipton

The Maryland Test Facility

Arun Vemury

Director
Biometric and Identity Technology Center
Science and Technology Directorate

Disclaimer

- This research was funded by the U.S. Department of Homeland Security, Science and Technology Directorate on contract number 70RSAT18CB0000034.
- This work was performed by a team of researchers at the Maryland Test Facility.
- The views presented here are those of the authors and do not represent those of the Department of Homeland Security, the U.S. Government, or their employers.
- The data used in this research was acquired under IRB protocol.

Background

- Recent reports have shown that biometric performance can vary for people based on demographic group membership
- This has been most notable in commercial face recognition algorithms
 - NIST's FRVT showed some face algorithms can have 100fold difference in FMR across groups
 - However, there are also "broad homogeneity" effects in face algorithms whereby comparisons between individuals similar in race, age, and gender produce higher scores
 - This does not appear to occur in iris recognition

A

Unknown Person:

C

В

Images taken from public sources, posted under fair use doctrine per 17 U.S. Code § 107

- In face recognition, you are more likely to match to someone who shares your demographic characteristics
- We showed this was true in one commercial face recognition algorithm in 2019 [1]

[1]: Howard, Sirotin, Vemury. The Effect of Broad and Specific Demographic Homogeneity on the Imposter Distributions and False Match Rates in Face Recognition Algorithm Performance. BTAS 2019. Copy available: https://mdtf.org/publications/broad-and-specific-homogeneity.pdf

- Evaluated five other commercial face algorithms in 2019/2020. The "broad homogeneity" effect was observed in each algorithm [1].
- We observe broad homogeneity is a general property of current commercial face recognition systems.
- While intuitive, this property of face algorithms can create undesirable behavior in many identification scenarios.
- If an identification gallery, such as a most wanted list, skews predominantly male, then men who are not in the gallery are more likely to be mis-identified when searched against that gallery than women, solely on the basis of their male facial features.

Why are broad homogeneity effects problematic?

- Suppose two algorithms are evaluated separately on two groups (group 1 and group 2)
 - With equal FPIR against their peers
- However, members of the two groups can still have different FPIR against homogeneous galleries
 - Differential performance even if algorithm performs equally well for each group
- This may lead to differential impact in a law enforcement context reflecting pre-existing gallery demographic composition

- This was discussed in the Georgetown Perpetual Lineup paper in 2016 [1]
- As a scientific community, we don't have a metric to measure this
- FMR's per specific group (i.e. white females vs. black females) are measures of "specific homogeneity"
 - NIST FRVT revealed 100x difference in FMR across demographic groups
 - Measure of how often the event (false match) occurs, per group
- Currently little formal reporting on the effect of cross group "sameness"
- Here we will present an approach to understanding and quantifying broad homogeneity effects so that they can be compared across algorithms
 - We will discuss implications of these results for face and iris recognition

[1]:Garvie, Clare; Bedoya, Alvaro M.; Frankle, Jonathan (2016): The Perpetual Line-Up. Unregulated Police Face Recognition In America. Georgetown Law Center on Privacy & Technology. Available online at www.perpetuallineup.org

Dataset

- All images were acquired under IRB protection and used here with explicit subject consent
- A total of 333 volunteers were used in this analysis
 - 1,205 face images and 1,083 left iris images were gathered from the same volunteers over a five year period from 2012-2018
- Unstaffed high-throughput acquisition environment
- All acquisition and matching systems were commercial biometric technologies

Sample Images

DIVERSE PERSPECTIVES + SHARED GOALS = POWERFUL SOLUTIONS

- All 5 commercial face algorithms show broad homogeneity effects
 - Non-mated similarity scores increased with increasing demographic similarity
 - Figure plots 99th percentile non-mated score for each of 333 subjects
 - DD: different gender and race
 - DS: different gender, same race
 - SD: same gender, different race
 - SS: same gender and race
- The reference commercial iris recognition algorithm does not show broad homogeneity effects
 - This is a classic "Daugman" algorithm

Group

face2

1.0

face3

1.00

face1

1.0

0.8

Visualizing Broad Homogeneity

- We measured average cross-subject similarity scores and arranged these into score matrices
- These matrices were sorted by demographic group
- Face algorithms showed clear block structure with respect to demographic group membership
- The iris algorithm did not show obvious patterns

Score Matrix PCA

- Principal components analysis (PCA) is a linear matrix decomposition technique
 - It can be used to transform high dimensional data into a series of principal components
 - Each component explains a portion of the total variance in the data
 - The highest level of variance is found on the first component, Comp 1
 - Each subsequent component is orthogonal to the preceding and explains less variance
- Each component corresponds to a pattern across subjects
 - We can examine how subjects are arranged along each component

Score Matrix PCA

- Principal components analysis (PCA) is a linear matrix decomposition technique
 - It can be used to transform high dimensional data into a series of principal components
 - Each component explains a portion of the total variance in the data
 - The highest level of variance is found on the first component, Comp 1
 - Each subsequent component is orthogonal to the preceding and explains less variance
- Each component corresponds to a pattern across subjects
 - We can examine how subjects are arranged along each component

Demographic Clustering in PC Space

- The figure shows two example components for one representative face algorithm and the iris algorithm
- Face algorithm component 1 shows strong demographic clustering
- Face algorithm component 4 does not show clustering
- No iris algorithm components show clustering

Quantifying Demographic Clustering

- Each PCA component explains a certain proportion of score variance
- We quantified demographic clustering across demographic groups (D) within each component as:

$$C_k = 1 - \frac{\sum_D \sum_{i \in D} (x_i - \bar{x_D})^2}{\sum_i (x_i - \bar{x})^2} \\ \text{Component's total variance} \\ \text{Sum of component variance}$$

• And total clustering for the algorithm as the sum of clustering for each component weighted by the amount of variance it explains:

$$C_{tot} = \frac{1}{\sigma_{tot}^2} \sum_k \sigma_k^2 C_k$$
 Component's total variance Total score variance

Demographic Clustering in Each Component

- Many, but not all, of the top 10 face algorithm components showed high levels clustering
- Statistical significance of clustering was assessed using bootstrap resampling with randomized demographic labels
- No significant clustering for the iris algorithm

Comparing Clustering across Algorithm

- On average ~10 components showed significant demographic clustering for face algorithms
- Clustering accounted for 10% of total score variance in face algorithm scores
- The iris algorithm had no clustering in excess of what would be expected by chance
- This quantification is independent of match threshold and can be computed even in the absence of any overlap between the mated and non-mated distributions (ROC = 1)

Face Algorithms Do Not Need Race/Gender Features To Be Viable

- PCA can be used to reconstruct data using select components
- Removed components with significant clustering and reconstructed the score matrices
 - 1. Better overlap for non-mated distributions for comparisons between volunteers of the same gender and race (SS) and those between volunteers of different gender and race (DD)
 - 2. Reduced separation between the mated (M) and non-mated distributions (DD, SS)
- The reduction in separation was not "catastrophic" to performance:
 - d' for the best face algorithm after reconstruction was better than all other face algorithms before reconstruction

Why is this Important?

- "Broad homogeneity" is an undesirable characteristic, particularly if you want to do large identifications
- Exists in (likely all) currently available commercial FR systems
- Being talked about in civil liberties / privacy law circles
 - They are aware of this because its intuitive that face recognition algorithms behave in this way
- We are working to develop a scientific measure for this effect
 - Few researchers have formulated this as a problem
 - Not clear commercial vendors are aware this is a problem

Why is this Important?

- Broad homogeneity based on race and gender doesn't currently exist in commercial iris recognition algorithms (we think)
 - Many current commercial iris algorithms use the "Daugman" algorithm
 - Demonstrated to provide unique iris codes with independent features generally not linked to demographics
- However, race/gender-linked information is plainly available in periocular images
 - E.g. makeup and eye shape
 - Research documenting gender prediction results from iris images
- Face algorithms have experienced significant performance improvements from the use of DCNNs
- Use of DCNNs for iris recognition may inadvertently introduce race and gender features into iris performance

Where do we go from here?

- Methods to ensure iris recognition remains independent of demographics should be considered.
- Methods to remove face recognition reliance on features that are consistent within demographic categories should be considered.
- We quantified this effect in the score space because we were working with black box commercial algorithms (no insight into the template)
- To remove this effect, we need to identify and discard components in the **feature space** that are consistent within demographic group (currently working on this)

Questions?

- This work was performed by a team of researchers at the Maryland Test Facility.
 - Detailed paper at: https://arxiv.org/ftp/arxiv/papers/2010/2010.07979.pdf
- Find out more at https://mdtf.org/
- john@mdtf.org
- yevgeniy@mdtf.org
- jerry@mdtf.org
- arun.vemury@hq.dhs.gov

