Developer Name: Mobai | Algorithm Name: mobai_001 | Algorithm Type: 1:1 Verification

Date of Algorithm Submission: 2021_02_17 | Date of Report Card Generation: 2024-03-27

Full FRVT Results Tables



DEVELOPER GAINS



SepOctNovDecJanFeb0.0080.0100.0200.0300.0400.0500.0600.0800.100
DatasetBorder-BorderMugshot-MugshotVisa-BorderVisa-Visa MOBAI: Evolution of accuracy on three datasets 2017 - present Date algorithm submitted to FRVTFalse non-match rate (FNMR) at false match rate (FMR) = 0.000001

The report shows accuracy improvements over time for this developer. The traces correspond to the datasets named in the legend. The FMR is fixed independently for each dataset to the value given in the y-axis label.




COMPARATIVE ACCURACY



0.0020.0050.0100.0203e-071e-063e-061e-053e-051e-043e-041e-033e-031e-023e-021e-011e-042e-045e-041e-032e-035e-031e-022e-023e-071e-063e-061e-053e-051e-043e-041e-033e-031e-023e-021e-010.0010.0020.0050.0100.0010.0020.0050.0103e-071e-063e-061e-053e-051e-043e-041e-033e-031e-023e-021e-010.010.020.050.10
Algorithmclearviewai_000cloudwalk_mt_007ercacat_001mobai_001psl_011qazsmartvisionai_000recognito_000recognito_001sensetime_007viante_000 MOBAI_001: Error tradeoff characteristics vs. more accurate algorithms by dataset False match rate (FMR)False non-match rate (FNMR)BORDERKIOSK-BORDERMUGSHOTVISAVISA-BORDERWILD

For each dataset, the panels show false non-match rates vs. false match rates for mobai_001 and several of the most accurate algorithms listed in the caption. The most accurate algorithms vary by dataset. When negative values appear on the vertical axis, they are logarithms of FNMR. Use mouseover to see FNMR, FMR and threshold values.



1e-063e-061e-053e-051e-043e-041e-033e-031e-023e-021e-013e-018e-051e-042e-044e-048e-041e-032e-034e-038e-031e-022e-024e-028e-021e-01
DomainBORDERMUGSHOTVISAVISA-BORDERWILD MOBAI_001: Error tradeoff characteristics by dataset False match rate (FMR)False non-match rate (FNMR)

Dataset comparison: false non-match rates vs. false match rates for each dataset. Use mouseover to see FNMR, FMR and threshold values.



1e-072e-075e-071e-062e-065e-061e-052e-055e-051e-042e-045e-041e-032e-035e-031e-022e-025e-021e-012e-015e-010.00.20.40.60.85e-041e-032e-035e-031e-022e-025e-021e-01
DomainBORDERMUGSHOTVISAVISA-BORDERWILD MOBAI_001: Error rate dependence on threshold Threshold (T)FNMR(T) Matching Error Rate FMR(T)fmrfnmr

To inform threshold setting, the two panels show, respectively, FMR and FNMR as a function of threshold. Many applications will use the threshold to target a specific FMR, established by policy. For a given threshold, FNMR variation is expected across datasets due, primarily, to quality and agageing differences. FMR differences may be due to different demographic composition - see figure below - or other factors.



For non-frontal visa-like photos compared with border crossing images, FNMR(T) and FMR(T) for various binned head yaw angles.



DT=02DT=04DT=06DT=08DT=10DT=12DT=14DT=161e-043e-046e-041e-033e-036e-031e-02DT=02DT=04DT=06DT=08DT=10DT=12DT=14DT=16DT=02DT=04DT=06DT=08DT=10DT=12DT=14DT=16DT=02DT=04DT=06DT=08DT=10DT=12DT=14DT=16DT=02DT=04DT=06DT=08DT=10DT=12DT=14DT=16
DemographicB_FB_MW_FW_M MOBAI_001: Dataset = mugshot - FNMR increase with timelapse (ageing) Time lapse between first and second photo (Years)False non-match rate (FNMR)sensetime_007paravision_010psl_010mobai_001imperial_002

For mugshot images, FNMR as a function of elapsed time between initial enrollment and second verification images. The panels are for some more and less accurate algorithms, and the target of this report. The four traces correspond to images annotated with codes for black female, black male, white female, white male. The threshold is fixed for each algorithm to give FMR = 0.00001 over all approximately 10^8 impostor comparisons. For short time-lapses, the most accurate algorithms give very few errors (FNMR < 0.001) so that the bootstrap uncertainty estimates given by the blue ribbon are high. The dashed line gives the mean of the four demographic values.




FACE MASK EFFECTS



2020202020202020202120210.0020.0030.0040.0050.0060.0080.0100.0200.0300.0400.0500.0600.0800.1000.2000.3000.4000.5000.6000.800
DatasetVisa-Border (not masked)Visa-Visa (not masked) MOBAI: Evolution of accuracy with face masks Date algorithm submitted to FRVTFalse non-match rate (FNMR) at false match rate (FMR) = 0.000001



1e-061e-051e-041e-031e-021e-010.0010.0020.0050.0100.0200.0500.1000.2000.500
topcoveragecolorno mask MOBAI_001: DETs by mask coverage False match rate (FMR)False non-match rate (FNMR)Results are for wide-shaped masks.



1e-061e-051e-041e-031e-021e-010.0010.0020.0050.0100.0200.0500.1000.2000.500
topcoveragecolorno mask MOBAI_001: DETs by mask color False match rate (FMR)False non-match rate (FNMR)Results are for wide-shaped masks.



1e-061e-051e-041e-031e-021e-010.0010.0020.0050.0100.0200.0500.1000.2000.500
topcoveragefactor(shape)color(no mask,1)no mask MOBAI_001: DETs by mask shape False match rate (FMR)False non-match rate (FNMR)




OPEN SOURCE IMAGES



Gen 01Gen 02Gen 03Gen 04Gen 05Gen 06Gen 07Gen 08Gen 09Gen 10Gen 11Gen 12Imp 01Imp 02Imp 03Imp 04Imp 05Imp 06Imp 07Imp 080.40.60.81.0
(prediction correct,face detected)Pair NameNative Similarity Score

The figure shows similarity scores for 12 genuine and 8 impostor image pairs used in the May 2018 paper https://doi.org/10.1073/pnas.1721355115 Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms (Phillips et al.). The threshold (red horizontal line) is a value calibrated to give FMR = 0.0001 on mugshot images. Points above the threshold correspond to pairs determined to be genuine, and points below the threshold correspond to pairs determined to be impostors. If the determined class (genuine or impostor) matches the real class, points will be blue; if not, red. An X represents face detection failure in either of the images in the pair. Note that the sample size (n=20) is small, and the figure may change substantially if larger or different sets are used. The images can be viewed at https://www.pnas.org/doi/suppl/10.1073/pnas.1721355115/suppl_file/pnas.1721355115.sapp.pdf, where Gen 01 corresponds to Same-Identity Pair 1, Gen 02 corresponds to Same-Identity Pair 2, and so on.




FALSE NEGATIVE DEMOGRAPHIC EFFECTS



2_El_Salvador7_China7_Thailand7_Korea2_Nicaragua7_Phillippines7_Vietnam7_Japan1_Ukraine1_Poland6_Iran2_Mexico1_Russia6_Iraq6_Pakistan6_India4_Jamaica3_Nigeria3_Ghana5_Kenya3_Liberia4_Haiti0.000.010.020.032_El_Salvador7_China7_Thailand7_Korea2_Nicaragua7_Phillippines7_Vietnam7_Japan1_Ukraine1_Poland6_Iran2_Mexico1_Russia6_Iraq6_Pakistan6_India4_Jamaica3_Nigeria3_Ghana5_Kenya3_Liberia4_Haiti
Age bin<=45>45 MOBAI_001: FNMR @ FMR = 0.000010, T = 0.636055, Dataset = Visa-Border Country of birthFalse non-match rate (FNMR)FemaleMale

For women, left, and men, the panels show false non-match rates when mediocre border cross photos are compared against high quality reference application portraits collected from individuals born in the country identified on the horizontal axis and aged either above or below 45 years of age at the time of the application photo. The square dots give the empirical FNMR point estimate. The vertical lines give bootstrap 95-percent confidence intervals around the point estimate. The intervals are wider when the country and age group is less-represented in this dataset. Overlapping intervals is an indication of no significant difference. Low FNMR values are synonymous with high accuracy.




FALSE POSITIVE DEMOGRAPHIC EFFECTS



0.00110.00010.00070.00020.00010.00050.00020.0010FBFWMBMW0.00010.00000.00010.00000.00000.00000.00000.0001FBFWMBMWFBFWMBMW0.00080.00010.00120.00030.00010.00040.00030.00100.00020.00000.00020.00000.00000.00010.00000.0001FBFWMBMW0.01110.00070.00260.00020.00060.00280.00020.00100.00190.00010.00030.00000.00000.00030.00000.0001FBFWMBMW0.01380.00020.00530.00020.00020.00210.00020.00100.00220.00000.00070.00000.00000.00020.00000.0001FBFWMBMW0.01400.00070.00340.00020.00060.00390.00020.00100.00230.00010.00040.00000.00010.00050.00000.0001FBFWMBMW
-5-4-3-2-1log10 FMR MOBAI_001: Dataset = mugshot - FMR for demographically paired impostors Enrollment sample demographic groupProbe sample demographic groupcorsight_003idemia_008mobai_001pixelall_008megvii_0050.0011e-04

For non-mate comparisons of mugshots of black and white (B-W) males and females (M-F), the panels show false match rates for five algorithms: two for which on-diagonal demographic differentials are low, two for which they're high, and the target algorithm in this report. In the top row of panels the threshold is set for each algorithm to give FMR = 0.001 for white males which is the demographic that usually gives the lowest FMR. In the second row the white-male FMR = 0.0001. This means the top right box is the same color in all panels of a row.




The following seven figures are aggregations or extracts of the full matrix of all cross-demographic FMR estimates. The 1:1 results here will be relevant to search applications if 1:N is implemented by just using the algorithm to execute N 1:1 comparisons, as explained here .

-5.82-5.68-5.65-5.51-4.70-4.54-4.52-4.36-4.08-4.08-3.79-3.54-3.25-3.26-2.96-3.04-5.59-5.49-5.48-5.39-4.29-4.18-4.18-4.08-3.90-3.79-3.60-3.15-3.01-2.86-2.72-2.90-5.74-5.64-5.58-5.48-4.48-4.36-4.33-4.21-3.97-3.92-3.68-3.45-3.19-3.16-2.91-2.95-6.00-6.00-5.91-5.76-4.99-4.82-4.70-4.54-4.26-4.25-3.97-3.58-3.31-3.30-3.03-3.18-6.00-6.00-6.00-6.00-5.01-4.85-4.80-4.64-4.38-4.35-4.08-3.66-3.41-3.37-3.11-3.37-6.00-6.00-6.00-6.00-5.15-4.99-4.96-4.80-4.51-4.51-4.22-3.87-3.57-3.57-3.27-3.48-6.00-5.90-5.98-5.85-4.74-4.58-4.60-4.44-4.18-4.16-3.89-3.56-3.32-3.35-3.13-3.07-5.85-5.75-5.77-5.66-4.63-4.50-4.54-4.41-4.17-4.12-3.88-3.82-3.56-3.53-3.27-3.17-5.78-5.69-5.62-5.53-4.65-4.54-4.53-4.41-4.21-4.13-3.92-3.31-3.14-3.03-2.86-3.24-5.83-5.69-5.60-5.43-4.73-4.57-4.52-4.35-4.05-4.06-3.77-3.46-3.14-3.18-2.86-2.86-5.60-5.50-5.55-5.45-4.27-4.16-4.22-4.11-3.91-3.82-3.62-3.23-3.06-2.94-2.77-3.02-5.89-5.77-5.63-5.50-4.77-4.61-4.57-4.41-4.12-4.12-3.84-3.55-3.24-3.27-2.96-3.25-5.67-5.58-5.53-5.43-4.41-4.29-4.25-4.14-3.94-3.85-3.65-3.31-3.15-3.02-2.86-2.91-5.92-5.80-5.88-5.75-4.70-4.56-4.64-4.50-4.24-4.21-3.96-3.76-3.51-3.47-3.22-3.31-5.65-5.51-5.41-5.27-4.50-4.35-4.28-4.13-3.86-3.84-3.58-3.26-2.97-2.97-2.68-2.69-6.00-6.00-6.00-5.87-4.88-4.73-4.70-4.54-4.28-4.25-4.00-3.68-3.45-3.38-3.16-3.21-6.00-6.00-6.00-6.00-5.80-5.59-5.62-5.40-5.09-5.11-4.80-4.51-4.20-4.22-3.92-4.07-6.00-6.00-6.00-6.00-5.52-5.33-5.46-5.26-4.97-4.98-4.69-4.54-4.26-4.29-4.02-3.92-5.56-5.42-5.39-5.24-4.51-4.36-4.35-4.19-3.92-3.91-3.63-3.40-3.10-3.12-2.82-2.72-5.50-5.36-5.30-5.15-4.35-4.20-4.13-3.98-3.72-3.69-3.43-3.10-2.82-2.81-2.54-2.50-5.50-5.38-5.43-5.31-4.31-4.19-4.21-4.09-3.87-3.81-3.60-3.25-3.07-3.02-2.85-2.74-6.00-6.00-6.00-6.00-5.67-5.48-5.56-5.36-5.06-5.07-4.77-4.56-4.26-4.28-3.99-3.981_Poland1_Ukraine1_Russia6_Iran6_Iraq6_Pakistan6_India2_Nicaragua7_Japan4_Jamaica2_Mexico2_El_Salvador5_Kenya7_Korea4_Haiti3_Nigeria7_China3_Liberia7_Phillippines7_Thailand3_Ghana7_Vietnam-7. Diff country,sex, and age-6. Diff countryand sex-5. Diff sexand age-4. Diff sex-3. Diff countryand age-2. Diff country-1. Diff age+0. Zero effort+1. Same age+2. Same sex+3. Same sexand age+4. Same country+5. Same countryand age+6. Same countryand sex+8. Same country,female, old+7. Same country,sex, and age
-6-5-4-3-2-10fmr MOBAI_001: Dataset = Application, T = 0.620759, Nominal FMR = 0.000030 - FMR for demographically paired impostors Country of origin of enrolleeHow impostor is paired with enrollee

For comparison of high quality application portraits, the panels show false match rates for the target algorithm operating at one fixed threshold (value in the legend). The upper row of planels corresponds to comparison of different sex individuals, the second row for men compared with men, the final row for women. Each column corresponds to individuals born in the identified country, with higher FMR placed to the right. The country of birth is used as a proxy for race. Within each panel, the 5x5 array corresponds to full cross comparison of people across 5 age groups. The color and text in a cell indicate log10 FMR, a low (blue) value indicating low chance of false match. Red values tend to occur when subjects are of the same age, and same sex. It is common for women to give higher FMR than men. The oldeest and youngest also tend to give elevated FMR.



-4.55-5.11-5.78-6.00-6.00-5.11-5.81-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-5.89-5.36-6.00-6.00-6.00-6.00-5.69(12-20](20-35](35-50](50-65](65-99]-3.84-4.39-5.40-6.00-6.00-4.34-4.42-4.82-5.86-6.00-6.00-4.83-4.62-5.03-5.27-6.00-6.00-5.00-4.46-4.63-6.00-6.00-5.32-4.64-4.31(12-20](20-35](35-50](50-65](65-99]-3.61-3.97-4.69-5.50-6.00-3.99-3.87-4.16-5.18-6.00-4.74-4.20-3.94-4.16-4.87-5.51-5.15-4.19-3.58-3.59-5.52-6.00-4.65-3.63-3.22(12-20](20-35](35-50](50-65](65-99](12-20](20-35](35-50](50-65](65-99]-3.58-3.87-4.50-4.99-5.53-4.19-4.33-4.64-5.02-5.94-5.19-5.00-4.65-4.89-5.11-6.00-5.74-4.92-4.79-4.80-6.00-5.89-5.45-4.66-4.24-2.79-3.27-4.19-5.38-6.00-3.24-3.17-3.61-4.43-5.42-4.24-3.63-3.30-3.60-4.22-5.31-4.44-3.55-3.36-3.53-5.66-5.42-4.16-3.50-3.17-2.47-2.81-3.59-4.31-5.15-2.83-2.82-3.19-3.75-4.71-3.52-3.16-2.91-3.05-3.70-4.28-3.81-3.11-2.84-3.02-5.21-4.79-3.81-3.04-2.58(12-20](20-35](35-50](50-65](65-99]-3.44-4.14-4.65-5.42-6.00-4.65-4.67-4.79-5.52-6.00-5.24-4.95-4.94-5.31-6.00-6.00-5.53-5.24-4.93-5.07-6.00-6.00-5.57-4.67-4.36-2.71-3.74-4.49-5.43-6.00-3.74-3.52-3.70-4.73-5.29-4.54-3.73-3.61-4.11-4.71-5.91-4.73-4.17-3.64-3.65-6.00-5.28-4.68-3.66-3.19-2.55-3.07-3.50-4.33-4.77-3.07-2.89-3.03-3.69-4.36-3.46-3.07-2.96-3.23-3.74-4.29-3.70-3.20-2.55-2.61-5.11-4.34-3.74-2.59-2.30(12-20](20-35](35-50](50-65](65-99]-3.15-3.69-4.10-4.68-6.00-4.14-4.28-4.45-5.33-5.41-4.74-4.57-4.45-4.75-4.53-5.32-5.17-4.45-4.02-3.90-6.00-6.00-4.93-4.05-3.37-2.64-3.58-4.11-4.51-4.71-3.52-3.44-3.58-4.46-5.28-4.06-3.62-3.49-3.81-4.57-5.02-4.15-3.83-3.55-3.47-6.00-6.00-4.12-3.70-3.13-2.11-2.72-3.22-4.00-4.23-2.72-2.71-2.82-3.37-3.83-3.19-2.87-2.75-2.88-3.27-3.94-3.30-2.85-2.37-2.44-4.07-3.70-3.25-2.38-2.16(12-20](20-35](35-50](50-65](65-99]-3.51-4.09-4.78-4.86-5.48-4.23-4.31-4.66-5.02-5.49-5.11-4.78-4.47-4.38-4.73-5.66-5.32-4.61-3.95-3.93-6.00-5.85-5.09-3.85-3.49-2.62-3.23-4.12-5.00-5.51-3.22-3.23-3.66-4.40-4.96-4.10-3.63-3.45-3.66-4.11-4.97-4.32-3.61-3.24-3.33-6.00-5.06-4.21-3.36-2.97-2.51-2.95-3.60-4.25-4.60-2.97-2.92-3.13-3.56-4.18-3.61-3.13-2.80-2.81-3.32-4.18-3.67-2.85-2.22-2.28-4.90-4.37-3.37-2.30-1.93(12-20](20-35](35-50](50-65](65-99]-3.80-4.22-4.66-5.27-6.00-4.41-4.53-4.61-5.00-5.49-5.05-4.67-4.57-4.66-4.83-5.48-5.08-4.65-4.25-4.04-6.00-4.90-4.48-3.87-3.29-3.34-3.90-4.39-4.83-6.00-3.93-3.50-3.62-4.12-4.85-4.45-3.62-3.41-3.64-4.13-4.79-4.15-3.60-3.32-3.36-6.00-4.88-4.20-3.40-2.94-2.51-2.81-3.17-3.88-4.42-2.81-2.63-2.73-3.17-3.69-3.19-2.75-2.60-2.73-3.06-3.74-3.17-2.71-2.35-2.29-4.06-3.81-3.14-2.32-1.90(12-20](20-35](35-50](50-65](65-99]
-6-5-4-3-2-10fmr MOBAI_001: Dataset = Application, T = 0.620759, Nominal FMR = 0.000030 - FMR across age groups Age group of enrolleeAge group of impostor1_Poland2_Mexico6_India5_Kenya7_China3_NigeriaMale-FemaleMale-MaleFemale-Female

For comparison of high quality application portraits, the panels show how FMR in women exceeds that in men for the target algorithm operating at one fixed threshold (value in legend). The color encodes log10 FMR(F)/FMR(M), and the text is a simple multiplier. The horizontal axis gives country of birth and these appear in order of maximum multiplier. The country of birth is used as a proxy for race.



x2.4x6.0x4.7x1.5x2.8x2.1x0.9x5.4x3.4x1.5x7.4x2.1x6.7x2.9x1.2x2.0x1.7x1.3x1.3x1.4x1.7x2.1x2.8x7.0x11.1x4.3x7.7x4.4x3.2x9.6x5.4x1.2x9.7x2.3x7.3x2.7x3.0x5.0x3.6x3.1x2.1x2.9x2.4x3.2x4.9x7.3x11.1x4.5x11.0x6.2x4.3x9.0x5.5x2.8x7.9x2.5x6.4x4.3x6.3x6.8x4.7x6.2x4.5x8.2x6.6x5.2x6.0x9.1x10.8x12.2x14.3x8.2x5.9x7.8x15.1x6.4x6.3x3.3x9.3x7.2x10.3x12.7x7.6x7.5x10.3x11.1x9.8x9.9x8.8x13.4x7.5x7.9x10.7x9.8x8.9x6.3x9.3x9.2x10.6x3.9x11.0x6.8x11.2x9.9x12.3x16.1x11.1x8.4x9.5x12.02_Mexico2_Nicaragua2_El_Salvador7_Japan7_Korea4_Jamaica6_Iran7_Thailand3_Liberia3_Nigeria7_Vietnam7_China4_Haiti7_Phillippines1_Ukraine6_India1_Poland6_Pakistan3_Ghana6_Iraq5_Kenya1_Russia(12-20](20-35](35-50](50-65](65-99]
-1012Impostors have same sex,age and country of birthFMR(Female) / FMR(Male)expressed on log10 scale MOBAI_001: Dataset = Application, T = 0.620759, Nominal FMR = 0.000030 - Female/Male FMR ratio by age and country of birth Country of birth of impostor and enrolleeAge group

For comparison of high quality application portraits, the panels show how FMR increases with increasing levels of demographic pairing shown on the y-axis. The the target algorithm is operating at one fixed threshold (value in legend). The color and text encode log10 FMR. FMR values below 0.000001 are shown as that value. The horizontal axis gives country of birth and these appear in order of maximum multiplier.



-3.51-6.00-6.00-5.03-4.94-5.29-5.68-6.00-6.00-5.92-6.00-3.57-6.00-3.73-4.71-4.91-5.87-5.49-5.40-4.98-4.83-5.62-6.00-3.26-3.79-6.00-6.00-6.00-6.00-4.05-3.98-6.00-3.52-6.00-3.45-5.83-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-3.75-3.79-6.00-6.00-6.00-6.00-4.08-4.14-6.00-3.83-6.00-3.82-5.89-6.00-6.00-6.00-6.00-6.00-5.97-6.00-6.00-5.11-6.00-6.00-3.61-4.83-4.79-5.80-5.66-5.00-6.00-6.00-5.24-6.00-4.96-5.36-3.97-6.00-5.92-5.89-5.91-5.73-6.00-5.01-6.00-6.00-4.91-3.86-4.26-6.00-6.00-5.99-6.00-5.74-4.85-6.00-5.05-6.00-4.46-5.63-5.07-6.00-6.00-6.00-5.43-5.16-6.00-6.00-4.81-4.23-4.04-6.00-6.00-5.77-6.00-5.80-5.08-6.00-5.31-6.00-4.41-5.84-5.18-6.00-6.00-6.00-5.53-5.82-6.00-6.00-6.00-6.00-6.00-3.78-6.00-6.00-3.84-6.00-5.98-5.99-6.00-4.66-6.00-6.00-6.00-4.05-4.43-4.42-6.00-6.00-4.05-4.06-5.42-6.00-6.00-6.00-4.10-4.26-6.00-4.10-6.00-4.08-5.56-6.00-6.00-6.00-6.00-6.00-5.78-5.98-6.00-6.00-3.99-4.10-5.05-5.66-5.88-6.00-4.32-3.49-6.00-4.01-6.00-3.93-5.84-6.00-5.29-6.00-6.00-6.00-5.84-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-3.90-6.00-6.00-3.39-6.00-5.91-6.00-6.00-4.69-6.00-6.00-5.43-3.71-4.26-4.28-6.00-6.00-3.50-3.83-5.81-6.00-6.00-6.00-4.17-4.11-6.00-3.50-6.00-3.57-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-6.00-3.60-6.00-6.00-5.21-4.97-5.27-5.65-6.00-6.00-5.96-6.00-3.30-6.00-3.76-4.88-5.05-5.87-5.51-5.44-5.22-5.19-5.61-6.00-3.45-3.88-6.00-6.00-6.00-6.00-4.09-3.95-6.00-3.60-6.00-3.41-5.95-6.00-6.00-6.00-6.00-6.00-5.88-5.78-6.00-3.74-5.89-5.84-5.02-4.96-5.24-5.88-5.55-5.80-6.00-6.00-3.79-6.00-3.77-4.78-4.98-5.85-5.63-5.58-5.09-5.01-5.85-4.66-6.00-5.96-5.60-6.00-6.00-4.69-5.76-6.00-4.65-6.00-4.81-6.00-4.78-3.32-5.82-6.00-5.88-4.17-3.67-3.74-6.00-4.91-6.00-6.00-3.93-4.43-4.39-6.00-6.00-5.22-6.00-6.00-4.99-6.00-4.92-5.87-3.82-5.99-5.65-6.00-6.00-6.00-5.87-5.99-6.00-6.00-6.00-5.63-5.68-6.00-6.00-6.00-6.00-6.00-5.82-6.00-6.00-6.00-6.00-4.62-4.85-6.00-6.00-6.00-4.78-5.65-6.00-6.00-6.00-5.34-5.60-5.50-6.00-6.00-5.60-6.00-5.66-6.00-5.72-5.94-5.74-4.91-4.85-5.91-5.88-6.00-4.77-5.46-6.00-6.00-5.90-6.00-6.00-4.12-6.00-6.00-3.76-6.00-5.42-6.00-5.55-4.16-6.00-6.00-5.29-3.45-3.69-3.88-6.00-4.92-6.00-5.78-6.00-6.00-6.00-4.43-5.86-6.00-4.28-6.00-5.13-6.00-4.99-3.67-6.00-6.00-5.51-3.69-3.29-3.60-6.00-4.91-6.00-5.89-5.36-5.96-5.93-4.38-5.78-5.81-4.17-6.00-5.10-6.00-4.90-3.69-5.50-6.00-5.34-3.86-3.57-3.57-6.00-5.58-6.00-6.00-6.00-5.38-5.38-6.00-6.00-6.00-6.00-6.00-5.74-6.00-5.56-6.00-5.69-4.77-4.86-6.00-6.00-5.75-4.671_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam1_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam
-6-5-4-3-2-10fmr MOBAI_001: Dataset = Application, T = 0.620759, Nominal FMR = 0.000030, Age: (35-50], Sex: M - FMR across country of birth Country of birth of enrolleeCountry of birth of impostor

For comparison of high quality application portraits using the target algorithm configured with a fixed threshold (given in the legend), the heatmap shows FMR when comparing photos of men, aged 30-50, who are born in the countries identified on the two axes. The country of birth is used as a proxy for race. The color and the text encode log10 FMR, such that a +1 difference indicates 10 times the FMR. The countries are grouped by geographic region. The block (diagonal) structure shows FMR tends to be elevated within region. FMR is often lowest in E. Europe.



-2.82-5.26-4.92-3.98-3.86-4.26-4.91-4.80-5.36-5.13-5.29-3.00-5.10-3.03-3.79-3.82-5.06-4.79-4.66-3.89-4.00-4.84-5.51-2.39-2.74-5.43-5.89-6.00-5.47-3.01-3.14-5.79-2.64-5.53-2.55-5.16-4.88-5.49-6.00-6.00-5.21-5.00-5.06-5.39-4.86-2.73-2.74-5.05-5.63-6.00-5.43-3.05-3.16-5.59-2.85-5.21-2.82-4.74-4.55-5.32-6.00-6.00-4.91-4.65-4.64-5.56-4.00-5.56-4.96-2.96-3.91-4.27-5.45-4.79-4.53-5.64-5.36-4.24-5.13-4.03-4.60-3.18-5.70-5.47-5.20-4.88-4.83-5.35-3.89-6.00-5.75-3.96-2.82-3.33-6.00-5.60-4.96-6.00-4.99-3.87-5.96-3.99-5.37-3.40-4.72-4.53-6.00-5.29-5.75-4.52-4.21-6.00-6.00-4.27-3.29-3.24-5.73-5.95-5.42-6.00-5.07-4.13-6.00-4.32-5.44-3.83-5.03-4.62-5.97-5.42-5.37-4.73-4.83-5.56-5.50-5.67-5.81-6.00-3.15-5.49-5.58-3.28-5.59-4.88-5.48-5.08-3.99-5.60-5.99-5.22-3.44-3.64-3.76-5.91-4.88-2.99-3.05-4.81-5.67-6.00-5.47-3.14-3.39-6.00-3.09-5.06-3.07-4.60-4.66-5.09-6.00-6.00-5.27-4.85-4.87-5.62-5.24-3.20-3.21-4.56-4.99-5.32-5.88-3.38-2.75-5.73-3.17-5.35-3.17-4.99-5.20-4.68-5.92-5.54-5.47-5.01-5.08-5.94-5.13-5.46-5.87-5.69-6.00-6.00-3.28-5.61-6.00-2.94-5.67-5.16-5.72-5.36-4.03-5.97-5.78-5.07-3.18-3.44-3.62-6.00-5.23-2.61-2.82-5.26-5.07-5.37-5.54-3.04-3.16-5.67-2.60-5.49-2.69-5.05-4.98-5.39-6.00-6.00-5.31-4.98-4.96-5.50-2.96-5.20-5.19-4.17-3.88-4.19-4.92-4.94-5.35-5.13-5.40-2.91-5.27-3.11-4.00-3.98-5.06-4.76-4.76-4.15-4.29-4.82-5.22-2.58-2.85-5.33-6.00-6.00-5.47-3.09-3.19-5.68-2.75-5.55-2.60-4.95-4.88-5.61-6.00-6.00-5.19-4.88-4.90-5.70-3.06-5.00-4.68-4.05-4.00-4.38-5.18-4.59-5.04-5.45-4.93-3.20-4.94-3.14-3.95-3.93-5.16-4.84-5.09-4.12-4.28-4.86-3.81-4.75-4.58-4.66-5.47-5.41-4.01-4.65-5.07-4.04-4.79-4.11-4.81-3.91-2.52-4.82-5.92-5.59-3.36-2.80-2.87-5.67-3.84-5.89-5.40-3.19-3.38-3.87-5.89-4.99-4.75-5.87-5.10-3.99-5.60-3.92-4.79-2.99-5.43-4.92-5.78-5.12-5.09-4.91-5.13-5.94-6.00-5.65-4.75-4.96-6.00-6.00-6.00-6.00-6.00-5.01-6.00-5.17-5.57-5.36-3.94-4.20-5.72-5.30-5.51-4.11-4.75-6.00-6.00-5.48-4.49-4.67-4.92-5.91-6.00-4.84-5.84-4.91-6.00-4.96-5.11-5.16-4.19-4.06-4.87-4.82-4.93-4.08-4.66-5.06-4.97-5.23-6.00-6.00-3.42-5.21-5.42-3.17-5.00-4.86-5.23-4.76-3.32-5.70-5.91-5.14-2.80-2.92-3.19-5.80-3.88-4.92-4.62-4.97-5.31-5.57-3.61-4.75-5.07-3.46-4.98-4.23-4.79-4.00-2.77-4.97-5.49-5.36-2.92-2.37-2.69-5.62-4.00-4.96-4.74-4.77-5.43-5.58-3.75-4.95-5.13-3.66-4.99-4.29-5.03-4.14-2.86-4.98-5.81-5.48-3.21-2.73-2.75-5.89-4.85-5.60-5.92-5.25-4.55-4.72-6.00-5.91-5.93-6.00-5.95-4.86-5.82-4.99-5.84-5.04-4.15-4.07-6.00-5.63-5.86-3.961_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam1_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam
-6-5-4-3-2-10fmr MOBAI_001: Dataset = Application, T = 0.620759, Nominal FMR = 0.000030, Age: (35-50], Sex: F - FMR across country of birth Country of birth of enrolleeCountry of birth of impostor

For comparison of high quality application portraits using the target algorithm configured with a fixed threshold (given in the legend), the heatmap shows FMR when comparing photos of women, aged 30-50, who are born in the countries identified on the two axes. The country of birth is used as a proxy for race. The color and the text encode log10 FMR, such that a +1 difference indicates 10 times the FMR. The countries are grouped by geographic region. The block (diagonal) structure shows FMR tends to be elevated within region. FMR is often lowest in E. Europe.



1_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam1_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam
0.310.320.330.340.35meanscore MOBAI_001: Dataset = Application, Age: (35-50], Sex: M - Mean impostor score across country of birth Country of birth of enrolleeCountry of birth of impostor

For comparison of high quality application portraits using the target algorithm, the heatmap shows mean non-mate score when comparing photos of men, aged 30-50, who are born in the countries identified on the two axes. The country of birth is used as a proxy for race. The color encodes score. The countries are grouped by geographic region.



1_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam1_Poland1_Russia1_Ukraine2_El_Salvador2_Mexico2_Nicaragua3_Ghana3_Liberia3_Nigeria4_Haiti4_Jamaica5_Kenya6_India6_Iran6_Iraq6_Pakistan7_China7_Japan7_Korea7_Phillippines7_Thailand7_Vietnam
0.320.340.36meanscore MOBAI_001: Dataset = Application, Age: (35-50], Sex: F - Mean impostor score across country of birth Country of birth of enrolleeCountry of birth of impostor

For comparison of high quality application portraits using the target algorithm, the heatmap shows mean non-mate score when comparing photos of women, aged 30-50, who are born in the countries identified on the two axes. The country of birth is used as a proxy for race. The color encodes score. The countries are grouped by geographic region.



-1.9-3.5-4.5-4.8-5.0-5.2-5.5-5.5-2.7-5.9-6.0-6.0-6.0-6.0-3.5-2.9-3.5-4.0-4.3-4.4-4.7-4.8-2.9-5.0-5.2-5.4-5.8-6.0-4.5-3.6-3.6-3.8-4.0-4.1-4.3-4.4-3.9-4.7-5.0-5.4-5.6-6.0-4.8-3.9-3.8-3.8-3.9-4.0-4.2-4.4-4.3-4.6-4.8-5.2-5.5-5.9-5.0-4.1-4.0-3.9-3.8-3.9-4.0-4.2-4.5-4.4-4.7-5.1-5.4-5.8-5.2-4.3-4.1-4.0-3.9-3.9-4.0-4.0-4.8-4.2-4.4-4.8-5.2-5.3-5.3-4.5-4.3-4.1-4.0-4.0-4.0-4.0-5.0-4.1-4.2-4.6-4.9-5.3-5.4-4.6-4.4-4.3-4.2-4.1-4.0-3.9-5.1-4.0-4.1-4.3-4.6-4.9-2.6-3.0-3.9-4.3-4.6-4.8-5.1-5.2-2.5-5.6-5.9-6.0-6.0-6.0-5.7-4.9-4.7-4.5-4.4-4.2-4.1-3.9-5.4-3.9-3.8-4.0-4.3-4.6-5.9-5.1-5.0-4.8-4.6-4.4-4.2-4.1-5.6-3.9-3.6-3.6-3.8-4.1-5.6-5.5-5.3-5.1-5.0-4.7-4.5-4.3-5.8-4.1-3.6-3.4-3.5-3.7-6.0-5.5-5.7-5.4-5.2-5.1-4.9-4.6-5.7-4.3-3.6-3.3-3.3-3.3-6.0-5.9-5.7-5.8-5.7-5.4-5.3-4.9-5.9-4.6-3.9-3.5-3.3-3.1(0,4](04,10)(10,16](16,20](20,24](24,28](28,32](32,36](36,40](40,48](48,56](56,64](64,72](72,120](0,4](04,10)(10,16](16,20](20,24](24,28](28,32](32,36](36,40](40,48](48,56](56,64](64,72](72,120]-1.6-3.1-3.9-4.3-4.4-4.5-4.9-5.0-2.2-5.6-5.6-5.7-5.6-6.0-3.0-2.3-2.8-3.3-3.5-3.6-3.9-4.1-2.3-4.3-4.6-4.8-5.3-5.3-3.8-2.9-2.8-3.0-3.1-3.2-3.5-3.6-3.3-3.9-4.1-4.6-5.0-6.0-4.2-3.1-3.0-3.0-3.0-3.0-3.2-3.5-3.6-3.7-3.9-4.3-4.7-5.0-4.4-3.3-3.1-3.0-2.9-2.9-3.1-3.3-3.8-3.5-3.7-4.1-4.6-4.8-4.7-3.5-3.2-3.1-3.0-3.0-3.0-3.1-4.1-3.3-3.5-4.0-4.4-4.3-4.8-3.7-3.4-3.3-3.1-3.0-3.0-3.1-4.3-3.2-3.3-3.7-4.1-4.4-5.2-3.9-3.6-3.4-3.3-3.1-3.0-3.0-4.4-3.1-3.2-3.5-3.8-4.1-2.1-2.4-3.2-3.7-3.8-4.1-4.4-4.5-2.0-4.9-5.2-5.3-5.3-6.0-5.4-4.2-3.8-3.7-3.4-3.3-3.1-3.1-4.8-3.0-2.9-3.1-3.4-3.7-5.6-4.4-4.2-3.9-3.7-3.5-3.3-3.2-4.9-3.0-2.7-2.7-2.9-3.1-5.8-4.9-4.5-4.3-4.1-3.8-3.6-3.4-5.4-3.2-2.7-2.5-2.6-2.8-5.5-4.8-4.9-4.6-4.4-4.2-3.9-3.7-5.6-3.4-2.8-2.5-2.4-2.4-6.0-5.3-5.0-4.9-4.9-4.5-4.4-4.0-5.1-3.7-3.0-2.6-2.5-2.3(0,4](04,10)(10,16](16,20](20,24](24,28](28,32](32,36](36,40](40,48](48,56](56,64](64,72](72,120]
-6-5-4-3-2-1log10 FMR MOBAI_001: Dataset = Visa; T = 0.593 giving FMR(T) = 0.0001 globally; FMR across age groups Age of enrolleeAge of impostorAll impostor pairsSame sex and same region impostor pairs

Operating on visa images, the heatmap shows false match observed over impostor comparisons of faces from different individuals who have the given age pair. False matches are counted against a recognition threshold fixed globally to give FMR = 0.0001 over all on the order of 10^10 impostor comparisons. The text in each box gives the same quantity as that coded by the color. Light colors present a security vulnerability to, for example, a passport gate.



-3.4-5.1-4.3-5.2-4.9-4.6-4.5-4.5-4.3-3.6-5.3-3.6-4.5-4.1-4.6-4.5-4.4-4.6-4.8-6.0-4.5-4.7-3.5-4.9-4.5-4.1-4.2-4.3-4.2-5.2-5.3-4.2-4.9-3.3-5.6-5.5-5.7-3.7-5.0-5.5-4.8-4.5-4.5-5.4-4.5-4.7-4.8-5.3-4.9-5.0-4.8-4.4-4.3-5.7-4.7-3.9-4.1-5.3-4.2-5.2-4.6-4.5-4.1-5.6-4.8-3.9-3.7-5.0-4.2-5.2-4.7-4.8-4.3-3.7-5.4-5.1-5.1-2.9-4.5-5.2-4.6-5.0-4.3-5.0-5.0-4.1-4.3-4.4-3.2-4.9-3.5-5.8-4.9-5.4-5.2-5.1-5.0-5.0-4.7-3.1CARIBCASIACSAMERICEASIAEUROMEASTNAFRICAPOLYSASIASSAFRICA-3.2-4.8-4.1-5.0-4.7-4.4-4.2-4.2-4.1-3.3-5.0-3.3-4.3-3.8-4.3-4.3-4.1-4.4-4.6-6.0-4.2-4.4-3.2-4.7-4.3-3.9-4.0-4.0-4.1-4.9-5.0-3.9-4.7-3.0-5.4-5.3-5.4-3.4-4.7-5.3-4.6-4.3-4.3-5.2-4.2-4.4-4.5-5.0-4.8-4.8-4.6-4.1-4.1-5.6-4.5-3.6-3.9-5.0-4.1-4.9-4.3-4.2-3.9-5.4-4.5-3.7-3.4-4.8-4.0-4.9-4.4-4.5-4.1-3.5-5.2-4.8-4.8-2.6-4.2-4.9-4.3-4.7-4.1-4.8-4.8-3.9-4.0-4.1-3.0-4.6-3.2-5.5-4.7-5.2-5.0-4.9-4.7-4.7-4.5-2.9CARIBCASIACSAMERICEASIAEUROMEASTNAFRICAPOLYSASIASSAFRICACARIBCASIACSAMERICEASIAEUROMEASTNAFRICAPOLYSASIASSAFRICA-2.8-4.5-3.7-4.6-4.3-3.7-4.0-4.1-3.7-3.2-5.0-3.2-3.9-3.6-4.1-4.0-3.6-4.2-4.2-6.0-4.0-4.0-2.8-4.2-3.9-3.3-3.7-3.6-3.4-4.8-4.8-3.8-4.3-2.8-5.1-4.7-5.1-3.3-4.4-5.1-4.3-4.0-3.9-4.8-4.0-3.9-4.6-4.7-4.3-4.6-4.2-3.9-3.5-5.0-4.1-3.1-3.6-4.6-3.6-5.0-4.0-4.4-3.5-5.1-4.3-3.2-3.3-4.7-3.7-5.3-4.3-4.4-3.8-3.3-4.7-4.5-4.6-2.5-4.1-5.2-4.2-4.4-3.7-4.6-4.3-3.4-3.8-4.0-2.8-4.4-3.0-5.2-4.4-4.9-4.7-4.5-4.9-4.8-4.3-2.8-2.7-4.1-3.5-4.4-4.1-3.6-3.7-3.8-3.5-2.9-5.0-3.0-3.7-3.3-3.9-3.9-3.3-4.1-3.9-6.0-3.7-3.8-2.7-4.0-3.7-3.1-3.4-3.5-3.3-4.5-4.6-3.5-4.1-2.6-4.8-4.6-4.8-3.0-4.2-4.9-4.1-3.8-3.7-4.6-3.7-3.8-4.3-4.5-4.2-4.4-4.0-3.7-3.4-4.9-3.9-3.0-3.4-4.3-3.5-4.7-3.8-4.1-3.3-4.9-4.1-3.0-3.1-4.5-3.5-5.0-4.0-4.2-3.6-3.1-4.5-4.2-4.3-2.3-3.9-5.0-3.9-4.2-3.5-4.3-4.2-3.3-3.5-3.7-2.6-4.2-2.8-4.9-4.2-4.7-4.5-4.4-4.6-4.5-4.1-2.6CARIBCASIACSAMERICEASIAEUROMEASTNAFRICAPOLYSASIASSAFRICA
-6-5-4-3-2-1log10 FMR MOBAI_001: Dataset = Visa; T = 0.593 giving FMR(T) = 0.0001 globally; FMR across region of birth Region of birth of enrolleeRegion of birth of impostorAny impostor pairing (i.e. zero effort)Same age impostorSame sex impostorSame sex, same age impostor

Operating on visa images, the heatmap shows false match rates observed over impostor comparisons of faces from different individuals who were born in the given region pair. False matches are counted against a recognition threshold fixed globally to give the target FMR in the plot title, computed over all on the order of 10^10 impostor comparisons. If text appears in each box it gives the same quantity as that coded by the color. Grey indicates FMR is at the intended FMR target level. Light red colors present a security vulnerability to, for example, a passport gate. Each +1 increase in log10 FMR corresponds to a factor of 10 increase in FMR. The matrix is not quite symmetric because images in the enrollment and verification sets are different.



CARIB_CUBACARIB_DOMRCARIB_HATCARIB_JAMCARIB_TRINCSAMERIC_ARGCSAMERIC_BRZLCSAMERIC_CHILCSAMERIC_CSTRCSAMERIC_ECUACSAMERIC_ELSLCSAMERIC_GUATCSAMERIC_HONDCSAMERIC_MEXCSAMERIC_PERUCSAMERIC_VENZEASIA_CHINEASIA_HNKEASIA_IDSAEASIA_JPNEASIA_KOREASIA_MLASEASIA_THAIEASIA_TWANEASIA_VTNMEURO_ASTLEURO_CZECEURO_GEREURO_GRBREURO_GRCEURO_POLEURO_ROMEURO_RUSEURO_SAFREURO_UKRMEAST_ISRLMEAST_LEBNMEAST_SARBMEAST_TRKYNAFRICA_EGYPPOLY_PHILSASIA_INDSASIA_NEPSASIA_PKSTSSAFRICA_GHANSSAFRICA_KENYSSAFRICA_NRACARIB_CUBACARIB_DOMRCARIB_HATCARIB_JAMCARIB_TRINCSAMERIC_ARGCSAMERIC_BRZLCSAMERIC_CHILCSAMERIC_CSTRCSAMERIC_ECUACSAMERIC_ELSLCSAMERIC_GUATCSAMERIC_HONDCSAMERIC_MEXCSAMERIC_PERUCSAMERIC_VENZEASIA_CHINEASIA_HNKEASIA_IDSAEASIA_JPNEASIA_KOREASIA_MLASEASIA_THAIEASIA_TWANEASIA_VTNMEURO_ASTLEURO_CZECEURO_GEREURO_GRBREURO_GRCEURO_POLEURO_ROMEURO_RUSEURO_SAFREURO_UKRMEAST_ISRLMEAST_LEBNMEAST_SARBMEAST_TRKYNAFRICA_EGYPPOLY_PHILSASIA_INDSASIA_NEPSASIA_PKSTSSAFRICA_GHANSSAFRICA_KENYSSAFRICA_NRACARIB_CUBACARIB_DOMRCARIB_HATCARIB_JAMCARIB_TRINCSAMERIC_ARGCSAMERIC_BRZLCSAMERIC_CHILCSAMERIC_CSTRCSAMERIC_ECUACSAMERIC_ELSLCSAMERIC_GUATCSAMERIC_HONDCSAMERIC_MEXCSAMERIC_PERUCSAMERIC_VENZEASIA_CHINEASIA_HNKEASIA_IDSAEASIA_JPNEASIA_KOREASIA_MLASEASIA_THAIEASIA_TWANEASIA_VTNMEURO_ASTLEURO_CZECEURO_GEREURO_GRBREURO_GRCEURO_POLEURO_ROMEURO_RUSEURO_SAFREURO_UKRMEAST_ISRLMEAST_LEBNMEAST_SARBMEAST_TRKYNAFRICA_EGYPPOLY_PHILSASIA_INDSASIA_NEPSASIA_PKSTSSAFRICA_GHANSSAFRICA_KENYSSAFRICA_NRA
-6-5-4-3-2-1log10 FMR MOBAI_001: Dataset = Visa; T = 0.520 giving FMR(T) = 0.001 globally; FMR across country of birth Country of birth of enrolleeCountry of birth of impostorAny impostor pairingSame sex but any age impostor

Operating on visa images, the heatmap shows false match rates observed over impostor comparisons of faces from different individuals who were born in the given country pair. False matches are counted against a recognition threshold fixed globally to give the target FMR in the plot title, computed over all on the order of 10^10 impostor comparisons. If text appears in each box it gives the same quantity as that coded by the color. Grey indicates FMR is at the intended FMR target level. Light red colors present a security vulnerability to, for example, a passport gate. Each +1 increase in log10 FMR corresponds to a factor of 10 increase in FMR. The matrix is not quite symmetric because images in the enrollment and verification sets are different.



GHANHATINDJPNKENYKORNRAPKSTPOLRUSGHANHATINDJPNKENYKORNRAPKSTPOLRUS
-2-1012z-score MOBAI_001: Impostor score distribution shift across country-of-birth Region of birth of enrolleeRegion of birth of impostor

Operating on visa images, the heatmap shows how the mean of the impostor distribution for the country pair (a,b) is shifted relative to the mean of the global impostor distribution, expressed as a number of standard deviations of the global impostor distribution. This statistic is designed to show shifts in the entire impostor distribution, not just tail effects that manifest as the anomalously high (or low) false match rates that appear in the previous figures. The countries are chosen to show that skin tone alone does not explain impostor distribution shifts. The figure is computed from same-sex and same-age impostor pairs.




Distinguishing Twins



0.5104812
Scores by Match TypesThreshold Value(1-Non-Mated_Fraternal_Diff-Sex,1)(2-Non-Mated_Fraternal_Same-Sex,1)(3-Non-Mated_Identical_Twins,1)(4-Mated_Mugshot,1)(5-Mated_Twins,1)(6-Non-Mated_Non-Twins,1)(Mated MugshotFMR = 0.0001,1)MOBAI_001: Twins Days Data similarity scores distribution by twin types.Similarity ScoresDensity



0.250.50.7511.25
Scores by Twin TypesThreshold Value(1-Non-Mated_Fraternal_Diff-Sex,1)(1-Non-Mated_Fraternal_Diff-Sex,2)(1-Non-Mated_Fraternal_Diff-Sex,3)(1-Non-Mated_Fraternal_Diff-Sex,4)(2-Non-Mated_Fraternal_Same-Sex,1)(2-Non-Mated_Fraternal_Same-Sex,2)(2-Non-Mated_Fraternal_Same-Sex,3)(2-Non-Mated_Fraternal_Same-Sex,4)(3-Non-Mated_Identical_Twins,1)(3-Non-Mated_Identical_Twins,2)(3-Non-Mated_Identical_Twins,3)(3-Non-Mated_Identical_Twins,4)(5-Mated_Twins,1)(5-Mated_Twins,2)(5-Mated_Twins,3)(5-Mated_Twins,4)(Mated MugshotFMR = 0.0001,1)(Mated MugshotFMR = 0.0001,2)(Mated MugshotFMR = 0.0001,3)(Mated MugshotFMR = 0.0001,4)MOBAI_001: Twins Days Data similarity scores distribution by age groups.Match By Twin TypesSimilarity ScoresAge 0-19Age 20-39Age 40-59Age 60-up



-1e+00-5e-0100.5102468
Threshold ValueScores by Match Types(1-Non-Mated_Twins,1)(2-Mated_Visa-Border,1)(3-Mated_Twins,1)(4-Non-Mated_Non-Twins,1)(Mated Border-VisaFMR = 0.0001,1)MOBAI_001: Immigration-related data similarity scores distribution by twin types.Similarity ScoresDensity



-1e+00-5e-0100.51
Scores by Twin TypesThreshold Value(1-Non-Mated_Twins,1)(1-Non-Mated_Twins,2)(1-Non-Mated_Twins,3)(3-Mated_Twins,1)(3-Mated_Twins,2)(3-Mated_Twins,3)(Mated Border-VisaFMR = 0.0001,1)(Mated Border-VisaFMR = 0.0001,2)(Mated Border-VisaFMR = 0.0001,3)MOBAI_001: Immigration-related data similarity scores distribution by age groups.Match By Twin TypesSimilarity ScoresAge 0-19Age 20-39Age 40-59