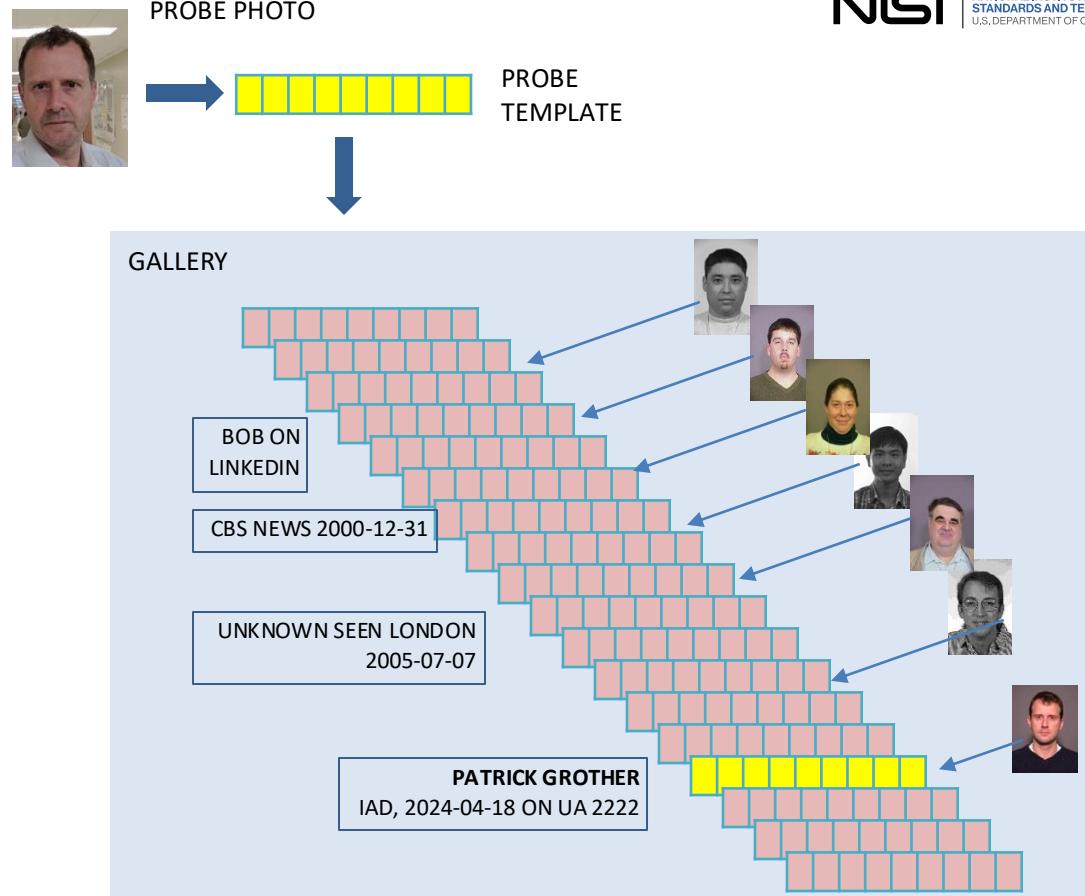


FRTE 1:N

CONTEXT AND
EXPLANATION OF THE
DEMOGRAPHICS
LEADERBOARD

LAST UPDATE 2025-12-22



A GALLERY, OR ENROLLMENT DATABASE, CONSISTS OF 1. BIOMETRIC TEMPLATES EXTRACTED FROM A COLLECTION OF PHOTOS, and 2. ASSOCIATED METADATA WHICH MAY INCLUDE IDENTITY INFORMATION OR OTHER CONTEXT ABOUT THE GALLERY PHOTO. 1

BACKGROUND ON BIOMETRIC ERRORS - PART 1: FALSE NEGATIVES

WHAT IS A FALSE NEGATIVE?

- FAILURE TO ASSOCIATE TWO PHOTOS OF A PERSON

WHEN COMPARING TWO IMAGES OF ONE PERSON, WHAT SHOULD AN AUTOMATED FACE RECOGNITION ALGORITHM (AFR) PRODUCE?

- A HIGH SIMILARITY SCORE

WHAT'S THE STANDARD METRIC?

- IN ONE-TO-ONE COMPARISONS: FALSE NON-MATCH RATE (FNMR)
- IN ONE-TO-MANY SEARCH: FALSE NEGATIVE IDENTIFICATION RATE (FNIR)

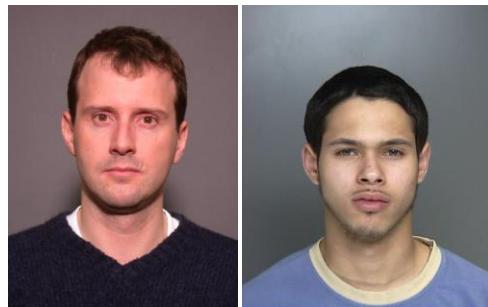
1:1 - SO HOW IS FNMR MEASURED?

- CURATE A SET OF N PAIRS OF PHOTOS. EACH PAIR SHOULD BE OF THE SAME PERSON.
- RUN AFR ON THE PAIRS TO PRODUCE N SIMILARITY SCORES
- COMPUTE NUMBER OF SCORES BELOW THRESHOLD AND DIVIDE BY N

1:N - SO HOW IS FNIR MEASURED?

- CURATE A GALLERY OF N PHOTOS.
- CURATE A SET OF P PROBES WHICH HAVE MATED ENTRIES IN THE GALLERY
- RUN AFR SEARCHES TO PRODUCE P CANDIDATE LISTS
- COMPUTE NUMBER OF LISTS WHERE THE MATE DOES NOT APPEAR WITH SCORE AT OR ABOVE THRESHOLD, THEN DIVIDE BY P

BACKGROUND ON BIOMETRIC ERRORS - PART 2: FALSE POSITIVES



WHAT IS A FALSE POSITIVE?

- INCORRECT ASSOCIATION OF PHOTOS OF TWO PEOPLE

WHEN COMPARING TWO IMAGES OF DIFFERENT PEOPLE, WHAT SHOULD AN AUTOMATED FACE RECOGNITION ALGORITHM (AFR) PRODUCE?

- A LOW SIMILARITY SCORE

WHAT'S THE STANDARD METRIC?

- IN ONE-TO-ONE COMPARISONS: FALSE MATCH RATE (FMR)
- IN ONE-TO-MANY SEARCH: FALSE POSITIVE IDENTIFICATION RATE (FPIR)

1:1 - SO HOW IS FMR MEASURED?

- CURATE A SET OF N PAIRS OF PHOTOS OF DIFFERENT PEOPLE - SAME SEX, AGE, ETHNICITY
- RUN AFR ON THE PAIRS TO PRODUCE N SIMILARITY SCORES
- COMPUTE NUMBER OF SCORES AT OR ABOVE THRESHOLD AND DIVIDE BY N

1:N - SO HOW IS FPIR MEASURED?

- CURATE A GALLERY OF N PHOTOS.
- CURATE A SET OF P PROBES WHICH DO NOT HAVE A MATE IN THE GALLERY
- RUN AFR SEARCHES TO PRODUCE P CANDIDATE LISTS
- COMPUTE NUMBER OF LISTS WHERE ANY CANDIDATE APPEARS WITH SCORE AT OR ABOVE THRESHOLD, THEN DIVIDE BY P

BACKGROUND: REVIEW OF ACCURACY METRICS

1:1 COMPARISON

- » **FALSE MATCH RATE (FMR)** QUANTIFIES HOW OFTEN COMPARISON OF IMAGES OF TWO PEOPLE PRODUCES A SIMILARITY SCORE AT OR ABOVE A FIXED THRESHOLD T .
- » FMR IS ESTIMATED BY EXECUTING MANY COMPARISONS OF IMAGES OF DIFFERENT PEOPLE.
 - IN ANY GIVEN COMPARISON, THE IMAGE PAIR SHOULD BE OF SIMILAR AGE, SEX, ETHNICITY.

- » **FALSE NON-MATCH RATE (FNMR)** QUANTIFIES HOW OFTEN COMPARISON OF TWO IMAGES OF ONE PERSON PRODUCES A SIMILARITY SCORE BELOW THE FIXED THRESHOLD T .
- » FNMR IS ESTIMATED BY EXECUTING MANY COMPARISONS OF IMAGES OF THE SAME PERSON.

- » FALSE REJECT RATE (FFR) AND FALSE ACCEPT RATE (FAR) ARE ANALOGOUS TO FNMR AND FMR BUT ARE RESERVED BY ISO/IEC 19795-1 FOR TRANSACTIONS WHERE SEVERAL MATCH ATTEMPTS MAY BE MADE.

1:N SEARCH

- » **FALSE POSITIVE IDENTIFICATION RATE (FPIR)** QUANTIFIES HOW OFTEN SEARCHES OF PERSONS NOT PRESENT IN AN ENROLLED DATABASE YIELD INCORRECT IDENTITIES AT OR ABOVE SOME THRESHOLD T .
- » FPIR IS ESTIMATED BY EXECUTING MANY NON-MATED SEARCHES OF A GALLERY OF SIZE N .
- » FPIR IS ALSO KNOWN AS “FALSE ALARM RATE”

- » **FALSE NEGATIVE IDENTIFICATION RATE (FNIR)** QUANTIFIES HOW OFTEN SEARCHES OF PERSONS PRESENT IN AN ENROLLED DATABASE FAIL TO RETURN THE CORRECT MATED IDENTITY AT OR ABOVE SOME THRESHOLD T .
- » FNIR IS ESTIMATED BY EXECUTING MANY MATED SEARCHES OF A GALLERY OF SIZE N .
- » FNIR IS ALSO KNOWN AS “MISS RATE”, and $1-FNIR$ IS “HIT RATE”

- » **WHY 1:N IS A MORE DIFFICULT TASK THAN 1:1**
 - FOR SEARCHES WHERE THERE IS NO MATE, THE ALGORITHM MUST ASSIGN LOW SIMILARITY SCORES TO **ALL N** ENROLLED IDENTITIES.
 - FOR SEARCHES WHERE THERE IS A MATE, THE ALGORITHM MUST ASSIGN LOW SIMILARITY SCORES TO **ALL EXCEPT THE MATED ENTRY**

ERROR RATE TRADEOFF THRESHOLD SETTING

- ERROR RATES ARE DEFINED IN TERMS OF A SCORE THRESHOLD, T .
 - AT HIGH T : FPIR IS LOW, FNIR IS HIGH
 - AT LOW T : FPIR IS HIGH, FNIR IS LOW
- THE THRESHOLD IS USUALLY SET TO TARGET SOME PARTICULAR FPIR POLICY, WHICH WILL DEPEND ON THE APPLICATION
 - POLICY CAN BE SET TO MEET A SECURITY OBJECTIVE SAY
 - OR MAY BE SET TO LIMIT HOW MANY CANDIDATES ARE REFERRED TO A POOL OF HUMAN REVIEWERS
- THE THRESHOLD VALUE HAS A DEVELOPER-DEFINED RANGE OF VALUES: SOME USE SIMILARITY SCORES ON RANGE $[0,1]$, OTHERS ON $[0,100]$, OR $[300,10000]$.
 - THIS MEANS THRESHOLD VALUES ARE DEVELOPER, ALGORITHM AND (OFTEN) VERSION DEPENDENT
 - SIMILARITY SCORES CANNOT BE UNDERSTOOD AS PROBABILITIES OF MATCH, OR NON-MATCH

- FNIR AND FPIR CAN BE LARGER IN ONE DEMOGRAPHIC GROUP THAN ANOTHER - NEXT SLIDE
 - THIS IS THE HEART OF THE BIAS ISSUE
 - THE TERM DEMOGRAPHIC DIFFERENTIAL IS MORE PRECISE THAN “BIAS” WHICH HAS OVERLOADED MEANINGS IN STATISTICS, SOCIOLOGY, ELECTRICAL ENGINEERING, AI, AND ELSEWHERE

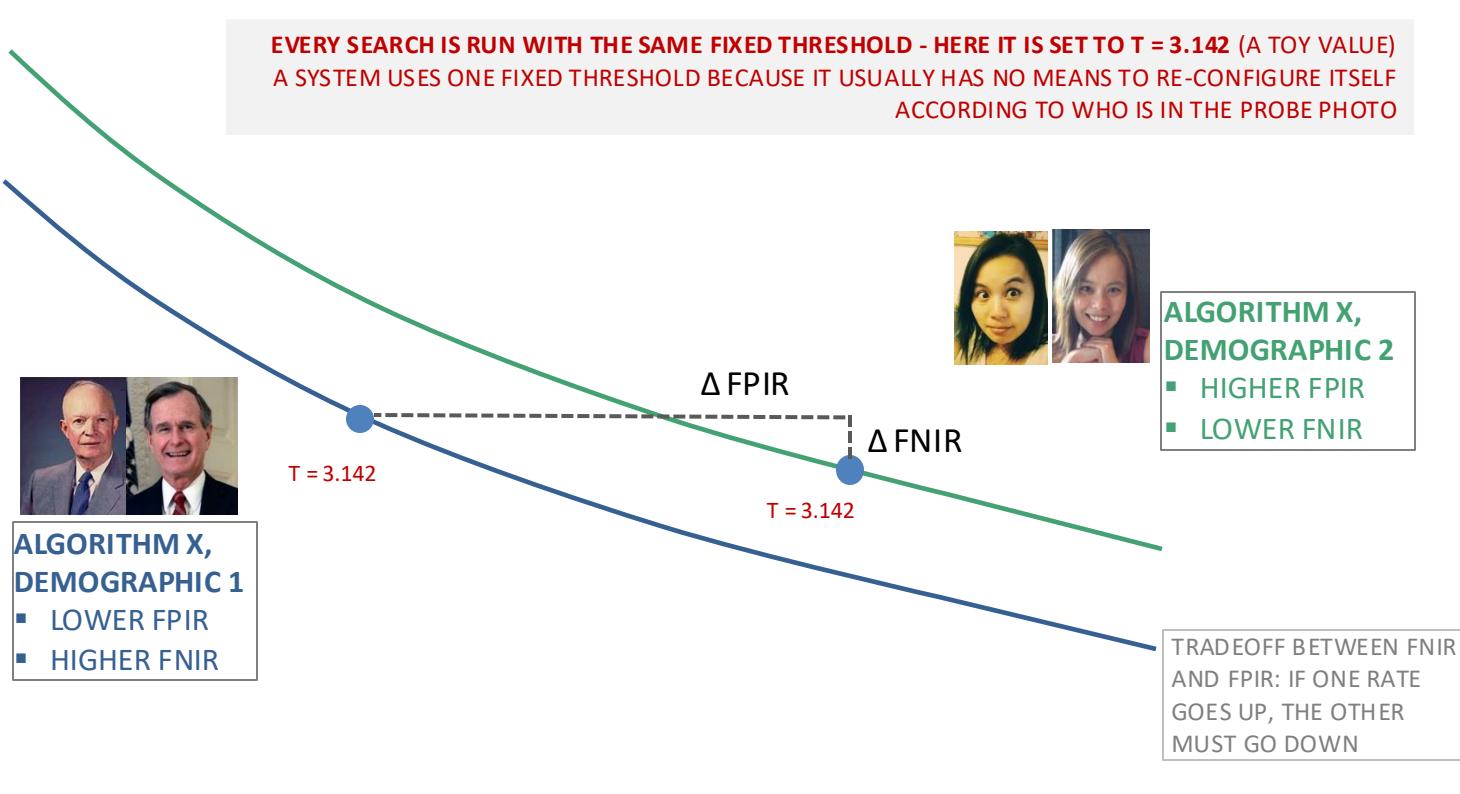
ONE ALGORITHM, TWO DEMOGRAPHIC GROUPS, TWO ERROR RATES

FNIR
FALSE NEGATIVE
IDENTIFICATION
RATE

PROPORTION OF
MATED SEARCHES
FAILING TO RETURN
MATE WITH SCORE
AT OR ABOVE
THRESHOLD, T .

SEE ISO/IEC 19795-1

EVERY SEARCH IS RUN WITH THE SAME FIXED THRESHOLD - HERE IT IS SET TO $T = 3.142$ (A TOY VALUE)
A SYSTEM USES ONE FIXED THRESHOLD BECAUSE IT USUALLY HAS NO MEANS TO RE-CONFIGURE ITSELF
ACCORDING TO WHO IS IN THE PROBE PHOTO



LOW FPIR VALUES ACHIEVED WITH
HIGHER, I.E. MORE STRINGENT,
THRESHOLDS.

LOG-SCALE IS OFTEN REQUIRED
BECAUSE LOW FPIR VALUES ARE
OPERATIONALLY RELEVANT.

FPIR FALSE POSITIVE IDENTIFICATION RATE
PROPORTION OF NON-MATE SEARCHES YIELDING
ANY CANDIDATES AT OR ABOVE THRESHOLD, T .

NAVIGATING THE 1:N LEADERBOARD

PERFORMANCE DATA APPEARS IN SEVEN TABS, EACH OF WHICH INCLUDES A RESULTS TABLE AND SOME NARRATIVE

▼ Performance

[last updated: 2024-09-17]

Identification (T>0)
by Developer

Investigation (R=1, T=0)
by Developer

Identification (T>0)
by Algorithm

Investigation (R=1, T=0)
by Algorithm

Demographics: False
Positive Dependence

Demographics: False
Negative Dependence

Resources
by Algorithm

1: The default tab lists the most accurate algorithm from each developer affording quick comparison of supplier capability.

2: Rank-based accuracy for the most accurate algorithm from each developer.

3: High threshold accuracy for all algorithms from all developers.

4: Rank-based accuracy for all algorithms from all developers.

5: Variations in “false alarm” rates across sex and region of birth. A false alarm is the mismatch of a probe with a gallery person

6: Variations in “miss” rates across sex and region of birth. A miss is the failure to match the probe with its mated gallery entry

7: Various measures of how fast algorithms are and how much storage and memory they use.

Non-zero threshold accuracy is appropriate to automated use-cases where false positives must be rare and human intervention is seldom required. Example: Aircraft boarding, or access-control.

No-threshold, rank-based accuracy is appropriate to investigational use-cases where human reviewers adjudicate most similar gallery candidates. Example: Post-event police investigation.

DEMOGRAPHICS IN 1:N EXPERIMENTAL SETUP

- WHICH IMAGES
- HOW MANY IMAGES, PEOPLE
- WHICH DEMOGRAPHIC GROUPS
- GALLERY COMPOSITION
- PROBE SET COMPOSITION

CONSIDER SEX AND ETNICITY

SEX: IS PRESENT IN THE AVAILABLE METADATA
ETHNICITY: IS APPROXIMATED BY COUNTRY OF BIRTH (NEXT SLIDE)
AGE: HAS AN EFFECT TOO BUT THIS IS NOT CONSIDERED HERE

COUNTRIES SELECTED (NEXT SLIDE)

- THAT HAVE LOW LEVELS OF RECENT TRANSCONTINENTAL MIGRATION (UNLIKE FOR EXAMPLE, FRANCE, UK, USA)
- THREE CONTINENTS: AFRICA, EUROPE, AND SOUTH AND EAST ASIA SEPARATED BY THE HIMALAYAS
- THAT HAVE LARGE NUMBERS OF IMAGES IN PARENT DATABASE

WHICH DEMOGRAPHIC GROUPS: COUNTRY OF BIRTH AS PROXY FOR ETHNICITY

Very High
Resolution

High Resolution

Medium
Resolution

Low
Resolution

NOTIONAL POWER
OF SINGLE-WORD
REGION LABELS TO
DESCRIBE PEOPLE
OF ETHNIC ORIGINS

Nigeria 2018
Hausa 30%
Yoruba 15.5%
Igbo 15.2%
Ijaw/Izon 1.8%
Ibibio 1.8%
Tiv 2.4%
Fulani 6%
Kanuri 2.4%
Others 24.7%

Source: <https://www.cia.gov/the-world-factbook/countries/nigeria/>

Poland
Russia
Ukraine
Hungary
Romania
Czechia

Benin
Ghana
Liberia
Nigeria
Togo
Male
Sierra Leone
Senegal

Korea
China
Japan
Taiwan

Afghanistan
India
Myanmar
Nepal
Pakistan
Bangladesh

1. E. EUROPE

2. W. AFRICA

3. E. ASIA

4. S. ASIA

ASIA

NIST DOES NOT HAVE SUCH FINE-
GRAINED ETHNICITY METADATA

NIST HAS COUNTRY
OF BIRTH METADATA

NIST GROUPS IMAGES FROM
SEVERAL COUNTRIES TO
INCREASE SAMPLE SIZE, AND
TO EASE INTERPRETATION

SUCH GROUPING IS NOT DONE
BECAUSE IT WOULD TOO COARSELY
COMBINE PEOPLE EXHIBITING
DIFFERENT PHENOTYPES

FRTE 1:N :: GALLERY USED IN DEMOGRAPHICS

GALLERY PROPERTIES

- 727975 IMAGES
- 349746 PEOPLE
- ADULTS 18+
- BORDER-CROSSING IMAGES
- VARIABLE NUMBER OF IMAGES PER PERSON
 - UNCONSOLIDATED: THE IMAGES OF A PERSON ARE ENROLLED UNDER DIFFERENT RANDOM IDENTIFIERS - ALGORITHM IS NOT TOLD THAT IMAGES X AND Y ARE FROM THE SAME PERSON.
 - DETAIL: SEE [NIST IR 8272 SEC 2.3](#).
- EIGHT DEMOGRAPHIC GROUPS
 - 2 SEXES
 - 4 REGIONS OF BIRTH: EAST ASIA, SOUTH ASIA, WEST AFRICA, EAST EUROPE.
 - IMBALANCED: UNEQUAL NUMBERS OF EACH GROUP, AS IS TYPICAL IN OPERATIONS.
 - NUMBERS OF GALLERY ENTRIES CAN AFFECT FPIR
 - “MORE CHANCES” TO MAKE A FALSE MATCH

NUMBERS OF PEOPLE IN 8 GALLERY GROUPS = 2 SEXES x 4 REGIONS OF BIRTH

27994 F EAST EUROPE
 17188 M EAST EUROPE
 63412 F SOUTH ASIA
 64094 M SOUTH ASIA
 10675 F WEST AFRICA
 12163 M WEST AFRICA
 94115 F EAST ASIA
 61147 M EAST ASIA

 350788: TOTAL

LARGEST GROUP IS
NEARLY 9 TIMES
MORE PEOPLE
THAN SMALLEST

BORDER IMAGES:

- EXAMPLES HERE FROM [MEDS DATASET](#)
- MEDIUM QUALITY
 - HEAD POSE
 - CROPPING
 - EXPOSURE
- ARE USED IN FRTE 1:N ACCURACY
[LEADERBOARD](#) AS THE WEBCAM PART OF THE MUGSHOT-WEBCAM DATASET

FRTE 1:N :: PROBE SET USED IN DEMOGRAPHICS

PROBE SET PROPERTIES

- 858098 IMAGES
- 654431 PEOPLE, SOME WITH GALLERY MATE, SOME WITHOUT
- ADULTS 18+
- APPLICATION OFFICE IMAGES
- RANDOMLY SEQUENCED SEARCHES
 - MATED SEARCHES → FNIR ESTIMATES
 - NON-MATED SEARCHES → FPIR ESTIMATES
- SAME EIGHT DEMOGRAPHIC GROUPS AS GALLERY
 - IMBALANCED - NOTE THAT, UNLIKE THE GALLERY, IMBALANCE ONLY MATTERS TO UNCERTAINTY IN FNIR AND FPIR ESTIMATES.

APPLICATION IMAGES:

- EXAMPLES ARE FROM NIST STAFF
- HIGH QUALITY
 - "VISA-LIKE"
 - DEDICATED CAMERA
 - ATTENDED CAPTURE
 - UNIFORM POSE
 - NO GLASSES
 - GOOD EXPOSURE
- ARE USED IN FRTE 1:N ACCURACY LEADERBOARD AS THE VISA PART OF THE VISA-BORDER DATASET

DEMOGRAPHICS #1 THE FALSE NEGATIVE ASPECT

WHO	SEARCHES OF PERSON WITH A MATE IN THE DATABASE
ERROR	THEY ARE NOT RETURNED IN A SEARCH
METRIC	FALSE NEGATIVE IDENTIFICATION RATE (FNIR)
DIFFERENTIAL	FNIR FOR GROUP 1 > FNIR FOR GROUP 2

IMPACT OF A FALSE NEGATIVE IS APPLICATION DEPENDENT:

- **EXAMPLE 1:** ACCESS CONTROL TO A FACILITY: IF A PERSON IS NOT MATCHED TO A GALLERY ENTRY, THEY ARE INCONVENIENCED BY HAVING TO RETRY OR SEEK AN ALTERNATIVE WAY TO AUTHENTICATE.
- **EXAMPLE 2:** A PERSON APPLIES FOR A VISA UNDER A DIFFERENT NAME, HAVING BEEN DENIED PREVIOUSLY. IF A 1:N SEARCH FAILS, THE PERSON BENEFITS FROM GETTING THE VISA; THE COUNTRY IS DISADVANTAGED DEPENDING ON SUBJECT'S INTENT.
- **EXAMPLE 3:** CRIMINAL INVESTIGATION: IF A PHOTO TAKEN AT A CRIME SCENE IS NOT-MATCHED, THE PERSON (WHETHER INVOLVED IN THE CRIME OR NOT) IS ADVANTAGED BY POSSIBLY NOT BEING FURTHER INVESTIGATED. SOCIETY, ON THE OTHER HAND, IS DISADVANTAGED BY A FAILURE TO MATCH IF THAT PERSON WAS INDEED GUILTY OF THE CRIME.

DEMOGRAPHICS: THE FALSE NEGATIVE TAB

The tab shows false negative identification rates (FNIR), the proportion of searches of given demographic group for which the correct mated identity is not returned by the algorithm above a threshold. The threshold is set for each algorithm to give FPIR = 0.002 on women born in E. Europe. The threshold is used across all demographic groups - this is an operational necessity.

SHOW MORE HERE

CLICK ARROWS TO SORT

Search: ex. 2023|eyematic

Identification (T>0) by Developer	Investigation (R=1, T=0) by Developer	Identification (T>0) by Algorithm	Investigation (R=1, T=0) by Algorithm	Demographics: False Positive Dependence	Demographics: False Negative Dependence	Resources by Algorithm
The tab shows false negative identification rates (FNIR), the proportion of searches of given demographic group for which the correct mated identity is not returned by the algorithm above a threshold. The threshold is set for each algorithm to give FPIR = 0.002 on women born in E. Europe. The threshold is used across all demographic groups - this is an operational necessity.						
Show 8 entries						
Algorithm	Date	GINI	MXOG	E-Asia F	E-Europe F	S-Asia F
qnap-006	2024_08_09	0.32	2.32	0.0096 ⁽⁷⁰⁾	0.0077 ⁽⁷²⁾	0.0106 ⁽⁷¹⁾
hisign-001	2024_08_09	0.23	1.87	0.0049 ⁽⁶¹⁾	0.0059 ⁽⁶⁷⁾	0.0068 ⁽⁶¹⁾
psl-002	2024_07_26	0.21	1.67	0.0010 ⁽¹⁾	0.0008 ⁽²⁾	0.0013 ⁽²⁾
optiexacta-000	2024_07_23	0.31	2.07	0.0012 ⁽⁶⁾	0.0009 ⁽⁵⁾	0.0021 ⁽¹⁴⁾
omnigarde-001	2024_06_25	0.21	1.64	0.0016 ⁽¹⁸⁾	0.0017 ⁽²⁷⁾	0.0020 ⁽¹¹⁾
roc-017	2024_06_24	0.26	1.77	0.0021 ⁽³⁰⁾	0.0020 ⁽³⁶⁾	0.0034 ⁽⁴⁴⁾
clearviewai-002	2024_06_18	0.26	1.91	0.0020 ⁽²⁵⁾	0.0016 ⁽²⁵⁾	0.0029 ⁽³²⁾

1: THE NAME OF THE PROTOTYPE ALGORITHM SUBMITTED TO NIST.

2: THE DATE OF SUBMISSION TO NIST

3: SUMMARY INDICATORS OF INEQUITY, QUANTIFYING VARIATION ACROSS NEXT EIGHT COLUMNS.

- SMALLER VALUES ARE BETTER
- **MXOG** EXPRESSES THE HIGHEST FNIR AS A MULTIPLE OF THE GEOMETRIC MEAN
- **GINI** MEASURES SPREAD.
- SEE NEXT SLIDE, NIST INTERAGENCY REPORT 8429, AND ISO/IEC 19795-10:2024 [[ANSI](#), [ISO](#)]

4: FALSE NEGATIVE MISS RATES BY DEMOGRAPHIC GROUP

- HIGHER VALUES ARE WORSE, IDEAL VALUE IS 0.
- VARIATION ACROSS ROWS INDICATES POTENTIAL DIFFERENTIAL IMPACT

TWO DEMOGRAPHIC SUMMARY MEASURES

GINI COEFFICIENT

- » Given n demographic groups d_i and estimates of an error rate for that group such as FMR_i

$$GINI(\tau) = \frac{\sum_i \sum_j |FMR_{d_i}(\tau) - FMR_{d_j}(\tau)|}{2n(n-1) FMR^\diamond} \quad (1)$$

- » GINI is on the range $[0,1]$ with smaller values indicating more uniform error rates across demographic groups.
- » GINI has been used in economics for a century to quantify wealth or income disparity.

MAXIMUM OVER GEOMETRIC MEAN

- » Given n demographic groups d_i and estimates of an error rate for that group such as FMR_i

$$MXOG(\tau) = \frac{\max_{d_i} FMR_{d_i}(\tau)}{FMR^\dagger} \quad (2)$$

- » MXOG simply states how many times larger the worst-case error rate is above the geometric mean of all error rates.
- » Lower values imply more uniform error rates

BOTH SUMMARY MEASURES ARE:

1. MANDATED IN
2. DETAILED IN

[ISO/IEC 19795-10:2024](#)

[NIST Interagency Report 8429](#)

DEMOGRAPHICS #2 THE FALSE POSITIVE ASPECT

WHO: PEOPLE NOT IN THE DATABASE
HAZARD: THEY MATCH SOMEONE WHO IS
IMPACT: EITHER OR BOTH PEOPLE

IMPACT OF A FALSE POSITIVE IS APPLICATION DEPENDENT:

- **EXAMPLE 1:** CASINO USE TO DETECT “HIGH-ROLLERS”: IF A PERSON WAS INCORRECTLY MATCHED TO A GALLERY ENTRY, THEY COULD BE ADVANTAGED BY, SAY, THE CASINO OFFERING FREE HOSPITALITY. THE CASINO COULD BE DISADVANTAGED BY LESS-THAN-EXPECTED REVENUE.
- **EXAMPLE 2:** AIRCRAFT BOARDING:
 - 1. IF A STOWAWAY INCORRECTLY MATCHES ANY GALLERY ENTRY, THEY COULD BE ADVANTAGED BY TRAVELING WITHOUT A TICKET.
 - 2. IF A TRAVELER GOES TO THE WRONG GATE, MATCHES A GALLERY ENTRY, THEY COULD GO TO THE WRONG DESTINATION.
 - THE AIRLINE COULD BE DISADVANTAGED IN TERMS OF, SAY, DELAYED BOARDING, OR A FINANCIAL PENALTY FOR SENDING PERSON TO A COUNTRY FOR WHICH THEY ARE INADMISSIBLE
- **EXAMPLE 3:** LIVE SURVEILLANCE: IF A FACE IN REAL TIME VIDEO IS MATCHED TO A GALLERY ENTRY, AND THAT PERSON COULD BE EVICTED FROM SAY A SPORTS ARENA VENUE, PHARMACY (NEXT SLIDE), OR EVEN DETAINED INCORRECTLY. THE OPERATOR COULD, FOR EXAMPLE, BE DISADVANTAGED BY SUBSEQUENT LITIGATION OVER LIABILITIES.

1:N SEARCH :: ONE EXAMPLE OF FALSE POSITIVES IN OPERATIONS

Rite Aid's A.I. Facial Recognition Wrongly Tagged People of Color as Shoplifters

Under the terms of a settlement with the Federal Trade Commission, the pharmacy chain will be barred from using the technology as a surveillance tool for five years.

<https://www.nytimes.com/2023/12/21/business/rite-aid-ai-facial-recognition.html>
By Eduardo Medina, Dec. 21, 2023

FTC REPORTS THAT “THE SYSTEM GENERATED THOUSANDS OF FALSE-POSITIVE MATCHES”

<https://www.engadget.com/ftc-bans-rite-aid-from-using-facial-surveillance-systems-for-five-years-053134856.html>

DEMOGRAPHICS: THE FALSE POSITIVE TAB

Identification (T>0)
by Developer

Investigation (R=1, T=0)
by Developer

Identification (T>0)
by Algorithm

Investigation (R=1, T=0)
by Algorithm

Demographics: False
Positive Dependence

Demographics: False
Negative Dependence

Resources
by Algorithm

- False positive dependence on demographics is shown in below. It is derived from searches of high quality visa-like application photo searches into a gallery of medium quality border crossing photos. The gallery is unconsolidated and imbalanced.
- The **FPIR** values are direct measurements of false positive identification rate. These rates depend, in part, on:
 - The number of people of each demographic group in the gallery – see prior slide.
 - The ability of the algorithm to distinguish two individuals from the particular demographic group.
- Point (1) above means that the FPIR table does not provide generalizable insight into the many other galleries that face recognition would be used with. The table is useful for comparing algorithms on *this specific gallery*. It is useful also for revealing how any one algorithm does not produce equal FPIR values.

⚠ Technical: Later slides show how FPIR can depend on the gallery composition and the underlying one-to-one false match rates.

They also show how – for some algorithms – one might infer those underlying false match rates. A more immediate way to find false match rates is to look at the [FRTE one-to-one](#) demographic results which apply if the same underlying model was submitted to this 1:N test

The table shows false positive identification rates (FPIR), the fraction of searches of a given demographic that incorrectly return any non-mated gallery entry above a threshold. The threshold is set for each algorithm to give a FPIR of 0.002 (1 in 500) or less on searches of women born in Eastern Europe. In columns three and four are inequity summaries required by ISO/IEC 19795-10:2024: The [Gini coefficient](#) is on the range [0,1]; MXOG is the maximum of eight FPIR values divided by their geometric mean. For both measures lower values are better.

Show 8 entries

Search: ex. 2023|eyematic

Algorithm	Date	GINI	MXOG	E-Asia F	E-Europe F	S-Asia F	W-Africa F	E-Asia M	E-Europe M	S-Asia M	W-Africa M
optiexacta-000	2024_07_23	0.60	9.68	0.4336 ⁽⁷⁴⁾	0.0020 ⁽⁴²⁾	0.2727 ⁽⁷⁴⁾	0.1038 ⁽⁷⁴⁾	0.2200 ⁽⁷²⁾	0.0007 ⁽⁶⁴⁾	0.0749 ⁽⁷⁴⁾	0.0592 ⁽⁷⁴⁾
visionbox-001	2024_03_19	0.68	12.70	0.1992 ⁽⁷¹⁾	0.0020 ⁽⁴²⁾	0.0828 ⁽⁶⁰⁾	0.0787 ⁽⁷²⁾	0.0366 ⁽⁷¹⁾	0.0003 ⁽¹⁾	0.0157 ⁽⁶¹⁾	0.0088 ⁽⁶³⁾
s1-005	2023_07_03	0.65	8.84	0.1471 ⁽⁷⁰⁾	0.0020 ⁽⁴²⁾	0.1340 ⁽⁷²⁾	0.0779 ⁽⁷¹⁾	0.0187 ⁽⁶³⁾	0.0004 ⁽²⁶⁾	0.0216 ⁽⁷⁰⁾	0.0108 ⁽⁶⁸⁾
clearviewai-001	2024_02_16	0.59	6.87	0.0860 ⁽³⁹⁾	0.0019 ⁽⁴⁾	0.0648 ⁽³⁶⁾	0.0564 ⁽⁶⁸⁾	0.0144 ⁽⁴⁴⁾	0.0004 ⁽⁷⁾	0.0143 ⁽⁵²⁾	0.0132 ⁽⁷¹⁾
psl-002	2024_07_26	0.74	12.65	0.0861 ⁽⁴⁰⁾	0.0020 ⁽⁴²⁾	0.0221 ⁽²⁰⁾	0.0372 ⁽³⁹⁾	0.0098 ⁽³¹⁾	0.0004 ⁽²⁶⁾	0.0043 ⁽¹²⁾	0.0018 ⁽¹²⁾
nec-3	2018_10_30	0.47	4.08	0.0093 ⁽¹¹⁾	0.0020 ⁽⁴²⁾	0.0192 ⁽¹⁸⁾	0.0268 ⁽²¹⁾	0.0066 ⁽²⁵⁾	0.0005 ⁽⁴²⁾	0.0105 ⁽²⁶⁾	0.0102 ⁽⁶⁷⁾
cognitec-007	2023_12_01	0.53	4.50	0.0034 ⁽⁷⁾	0.0020 ⁽⁴²⁾	0.0077 ⁽⁷⁾	0.0184 ⁽¹⁹⁾	0.0019 ⁽⁶⁾	0.0005 ⁽⁴²⁾	0.0116 ⁽³²⁾	0.0071 ⁽⁵⁷⁾
idemia-011	2024_03_05	0.33	2.75	0.0026 ⁽⁶⁾	0.0020 ⁽⁴²⁾	0.0024 ⁽³⁾	0.0060 ⁽¹⁰⁾	0.0017 ⁽⁵⁾	0.0006 ⁽⁶⁰⁾	0.0033 ⁽⁶⁾	0.0020 ⁽¹⁶⁾

FPIR in E. Asian women is about 200 times higher than in European women.

FPIR in W. African women is about 19 times higher than in European women.

FPIR no more than 3 times E. Euro women

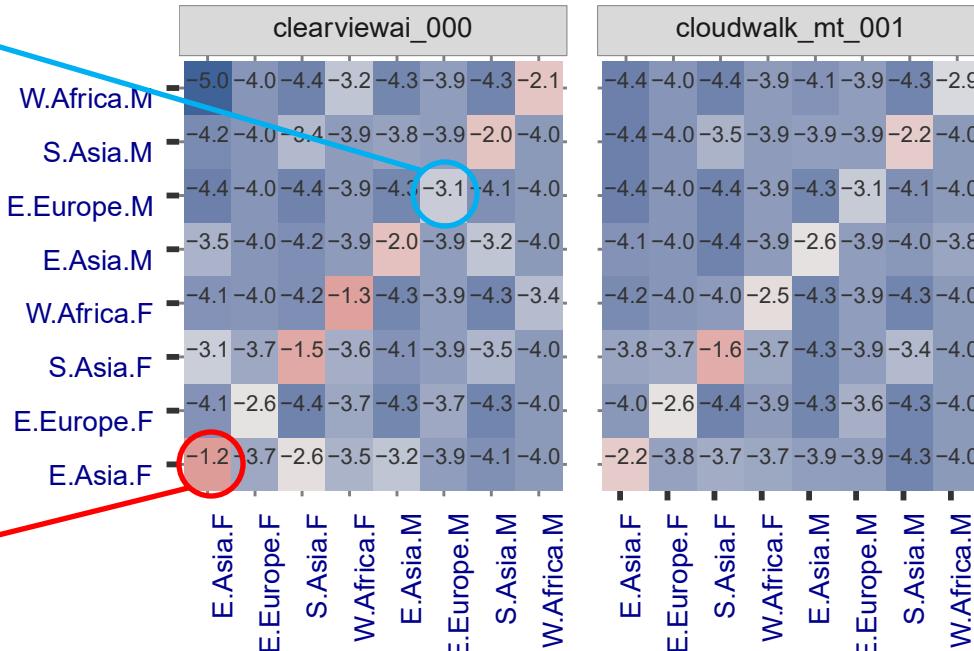
THE FALSE MATCHES :: WHICH DEMOGRAPHIC GROUPS?

Cross Demographic FPIR, for T at FPIR 0.002000

FPIR ~ 1 in 1300 on E.
European Men

REGION OF
BIRTH + SEX
OF TOP
NON-MATE

FPIR = 1 in 16
East Asian Women



REGION OF BIRTH + SEX OF PROBE

THE FIGURE SHOWS HOW OFTEN A
SEARCH OF A PERSON OF
DEMOGRAPHIC GROUP X RETURNS A
PERSON OF GROUP Y ABOVE THE
THRESHOLD FOR THAT ALGORITHM

- THE VALUES ARE BASE-10 LOGS SO A
VALUE OF -2.0 MEANS $10^{-2} = 0.01$,
ONE IN ONE HUNDRED

KEY POINTS:

- THE ON-DIAGONAL VALUES VARY
BY 1.9 ($3.1 - 1.2$) AND 1.5 ($3.1 - 1.6$)
ORDERS OF MAGNITUDE i.e.,
FACTORS OF 80 and 30.
- THE OFF-DIAGONAL ELEMENTS
ARE GENERALLY A FACTOR OF
TEN OR MORE SMALLER.
 - SO GROUPS X and Y ARE PERHAPS
10-100 TIMES LESS LIKELY TO
PRODUCE A FALSE POSITIVE THAN
GROUPS X and X.

THE REMAINING SLIDES ARE BACKGROUND MATERIAL NOT
REQUIRED FOR INTERPRETATION OF THE 1:N WEB PAGE

BACKGROUND: WHAT'S THE CONNECTION BETWEEN 1:1 FALSE MATCH RATES and 1:N FALSE POSITIVE IDENTIFICATION OUTCOMES

1. MANY 1:N ALGORITHMS IMPLEMENT 1:N SEARCH
 - A. BY COMPARING THE PROBE TEMPLATE WITH N ENROLLED ENTRIES
 - B. THEN SORTING THE N SIMILARITIES TO RANK THE MOST SIMILAR
2. CAUTION: SOME SYSTEMS DON'T DO JUST THAT
3. CAUTION: SOME SYSTEMS DON'T DO THAT AT ALL
4. FOR THOSE THAT DO, WHAT'S THE RELATIONSHIP BETWEEN FPIR AND FMR?
5. CAN WE RUN 1:1 TESTS AND PREDICT 1:N OUTCOMES?

BIOMETRICS 101: NON-MATED ONE-TO-MANY SEARCHES

$$FPIR = \frac{1 - (1 - FMR)^N}{\text{NONE OF THE } N \text{ COMPARISONS
MUST GIVE A FALSE POSITIVE}}$$

ESTIMATED PROBABILITY THAT A SEARCH
YIELDS ANY FALSE POSITIVES, FPIR

GALLERY SIZE, N

FALSE MATCH RATE FOR A 1:1
COMPARISON, FMR

i.e. ALL N COMPARISONS MUST
NOT MATCH

APPROXIMATION
WHEN $N \cdot FMR \ll 1$

$$FPIR = N FMR$$

THIS SAYS FPIR SCALES ABOUT LINEARLY WITH NUMBER OF PEOPLE IN GALLERY, SO 10x MORE PEOPLE → 10x INCREASE IN LIKELIHOOD OF FALSE MATCH. TYPICALLY REMEDY: INCREASE THE THRESHOLD TO MAINTAIN FPIR.

BUT.. SOME ALGORITHMS DON'T BEHAVE LIKE THIS: INSTEAD, FPIR STAYS ROUGHLY CONSTANT WITH CHANGE IN N.

FALSE POSITIVE :: CASINO EXAMPLE

- $N = 500$ PEOPLE (PEOPLE WHO CHEATED IN CASINOS)
- ALGORITHM CONFIGURED FOR FMR = 1 IN 1 MILLION

$$FPIR = N \cdot FMR$$

$$FPIR = 500 \times 10^{-6} = 5 \times 10^{-4} = 1 \text{ in 2000}$$

FALSE MATCH RATE EXPECTED
FROM A 1:1 COMPARISON, FMR

MODELED PROBABILITY THAT A
SEARCH YIELDS ANY FALSE POSITIVES

BUT SUPPOSE ALSO $P = 10000$ PEOPLE VISIT THE CASINO
EACH DAY

$$\text{EXPECTED NUMBER OF FALSE POSITIVES PER DAY} = \\ P \cdot FPIR = 10000 \times 5 \times 10^{-4} = 5$$

TO DETERMINE IF A CANDIDATE MATCH IS AN ACTUAL
TRUE POSITIVE (A CHEAT) OR A FALSE POSITIVE, THE
CASINO STAFF WOULD INVESTIGATE: POSSIBLY BY TAKING
FURTHER PHOTOS, PERFORMING HUMAN FACE
COMPARISON, LOOKING AT CARS, COMPANIONS, CONTEXT
etc.

BUT ... FMR IS NOT A
SINGLE FIXED VALUE
FOR ALL SUBJECTS ...

NIST INTERAGENCY REPORT 8280 (2019) REPORTED

- HIGHER FMR IN WOMEN
- HIGHER FMR IN E. ASIANS and AFRICANS
- HIGHER FMR IN THE OLD AND VERY YOUNG
- EXCEPTIONS FOR SOME ALGORITHMS FROM ASIA
- EXCEPTIONS FOR SOME ONE-TO-MANY ALGORITHMS

WITH SUBSTANTIAL VARIATIONS ACROSS ALGORITHMS PROMPTING THE
NISTIR 8280 RECOMMENDATION TO “KNOW YOUR ALGORITHM”

EXAMPLES ON NEXT TWO SLIDES

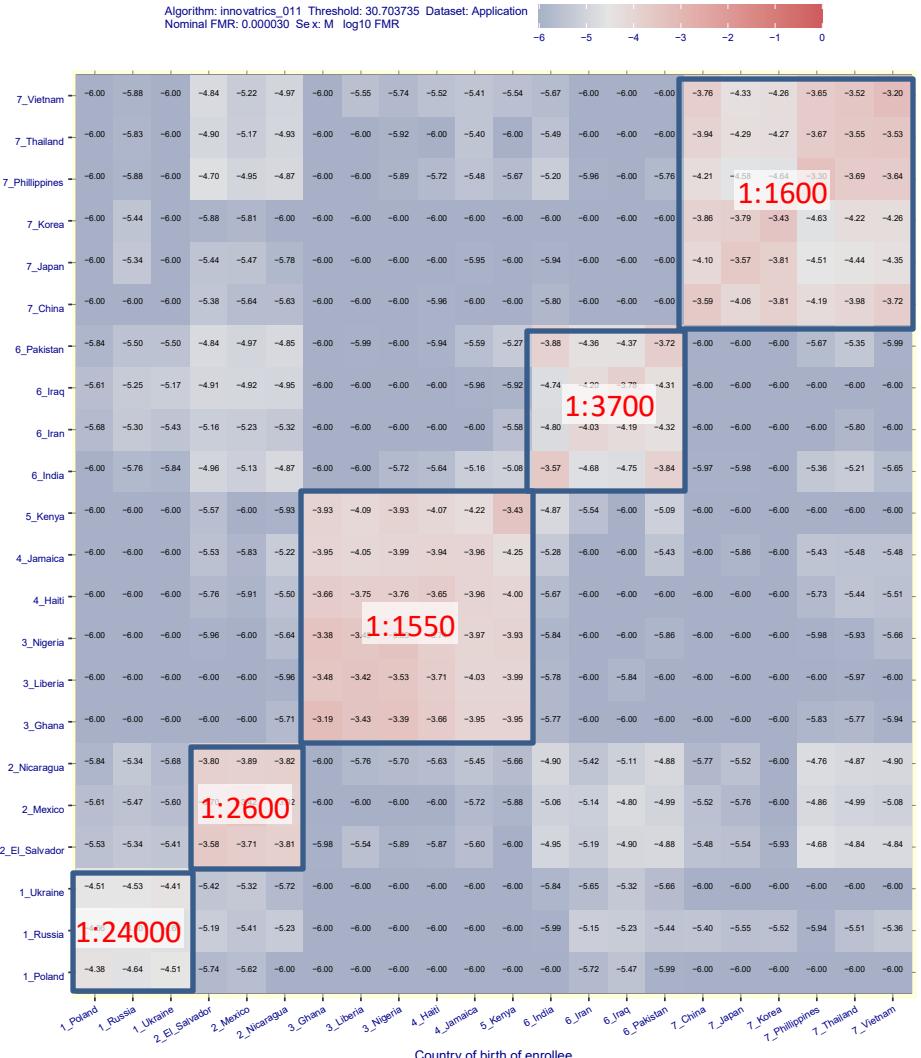
NIST ONGOING 1:1 FRTE (SINCE 2019) GIVES DEMOGRAPHIC DEPENDENCE
OF FMR FOR MANY MORE RECENTLY SUBMITTED ALGORITHMS

GLOBAL CROSS-COUNTRY FMR MEN 20-35 ONLY

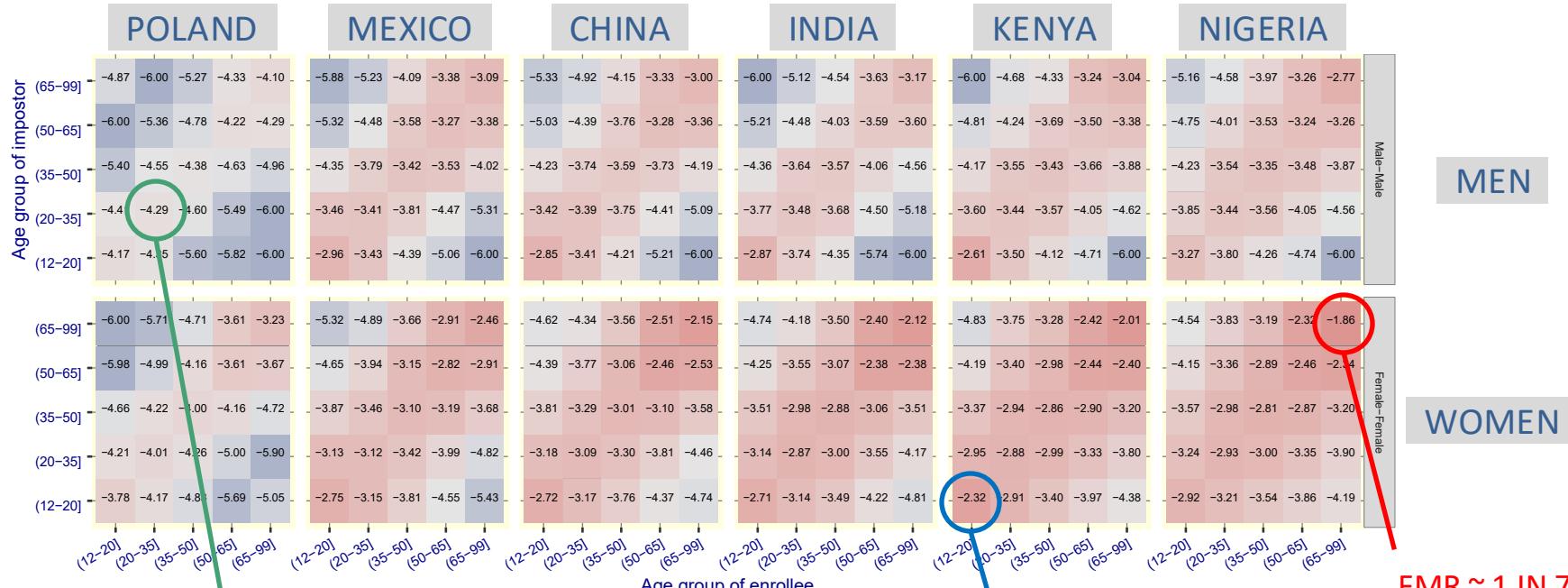
THIS FIGURE SHOWS
FMR VARIATIONS FOR MEN
20-35 FOR ONE 1:1
COMPARISON ALGORITHM
AT A GLOBALLY FIXED
THRESHOLD

FOR ALL AGE GROUPS, BOTH
SEXES, SEE FIGURES
HYPERLINKED FROM
LEADERBOARD E.G.:

[\[PDF\]](#)[\[PDF\]](#)[\[PDF\]](#)[\[PDF\]](#)



NOW ALSO CONSIDER WOMEN AND AGE



FMR ~ 1 IN 16000 ON
POLISH MEN 20-35

FMR ~ 1 IN 200 ON
KENYAN WOMEN <= 20

FMR ~ 1 IN 72
ON NIGERIA
WOMEN > 65

SO HOW TO HANDLE VARIABLE FALSE MATCH RATES IN PREDICTION?

TERMS:

FPIR = False Positive Identification Rate

FMR = False Match Rate

τ = Threshold

i = index of probe demographic group

j = index of gallery demographic group

n_j = number of gallery entries for group j

p_i = number of probes for group i

N = total number of gallery entries

FMR_{ij} = rate at which groups i and j false match

WITH HOMOGENOUS FALSE MATCH RATES:

$$FPIR(\tau) = 1 - (1 - FMR(\tau))^N \approx N FMR(\tau)$$

BUT WITH HETEROGENOUS FALSE MATCH RATES, THE FPIR FOR GROUP i IS:

$$FPIR_i(\tau) = 1 - \prod_j (1 - FMR_{ij}(\tau))^{n_j} \approx \sum_j FMR_{ij}(\tau) n_j$$

WHICH HAS A CONCISE MATRIX FORM:

$$FPIR(\tau) = FMR(\tau) \mathbf{n}$$

TO PREDICT NUMBERS OF FALSE POSITIVES, INCLUDE WHO GETS SEARCHED

$$NFP(\tau) = \mathbf{p}^T FMR(\tau) \mathbf{n}$$

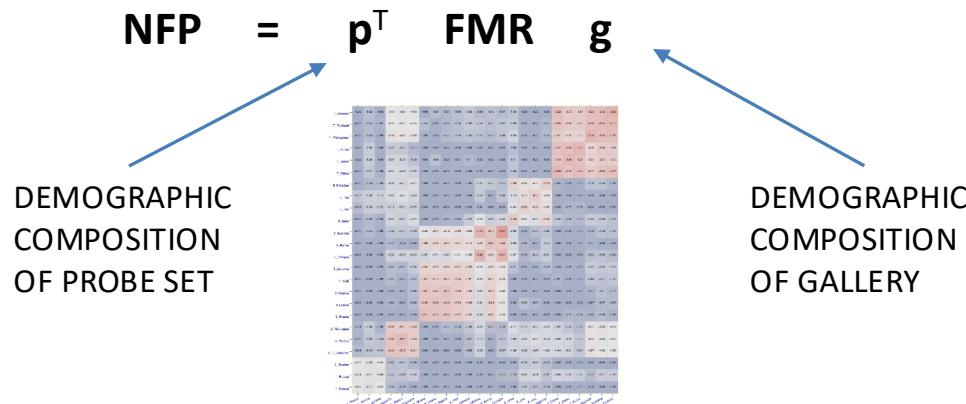
NEXT SLIDE EXPLAINS THIS EQUATION

CAUTION: AGAIN THIS IS BINOMIAL THEORY WHICH ASSUMES INDEPENDENT COMPARISONS:
WE KNOW SOME ALGORITHMS DON'T DO THAT, SO THIS MODEL IS WRONG FOR THEM

PREDICTING 1:N FALSE POSITIVES FROM 1:1 RESULTS

SOCIO-TECHNICAL CONTEXT

$$\text{NUMBER OF FALSE POSITIVES} = \text{WHO GETS SEARCHED} \times \text{CROSS-DEMOGRAPHIC FALSE MATCH RATES} \times \text{WHO GETS PUT IN GALLERY}$$



WHO FALSE MATCHES WHO: HOW FREQUENTLY
CROSS-DEMOGRAPHIC FALSE MATCH RATE MATRIX

FALSE POSITIVE IDENTIFICATION RATE (FPIR) WHEN GALLERY HAS MIXED DEMOGRAPHICS: A TOY EXAMPLE

FALSE POSITIVE IDENTIFICATION RATE (FPIR) IS THE PROPORTION OF NON-MATED SEARCHES YIELDING ONE OR MORE CANDIDATES ABOVE THRESHOLD

$$\begin{array}{ccc}
 \text{WHO FALSE MATCHES} & & \text{WHO GETS PUT IN GALLERY, E.G.,} \\
 \text{WHO: HOW FREQUENTLY} & \times & 20000 \text{ WOMEN and } 80000 \text{ MEN} \\
 \text{FPIR} & = & \text{FMR} \\
 \begin{array}{c} 0.2 \\ = \\ 0.008 \end{array} & = & \begin{array}{c|c} 1 \times 10^{-5} & 0 \\ \hline 0 & 1 \times 10^{-7} \end{array} \\
 & & \begin{array}{c} 20000 \\ = \\ 80000 \end{array} \\
 & & \text{CROSS-DEMOGRAPHIC FALSE MATCH RATES (WHICH ARE A PROPERTY OF THE ALGORITHM)} \\
 & & \text{DEMOGRAPHIC COMPOSITION OF GALLERY}
 \end{array}$$

NOTE 1: Even though women are a minority in the gallery, they have highest false positive outcomes

NOTE 2: The error inherent in the N.FMR approximation to the binomial is relatively small FPIR = 0.18 vs. 0.20.

FP RATE
(FPIR)**FPIR** =

0.2
0.008

=

FMR

1×10^{-5}	0
0	1×10^{-7}

g

20000
80000

NUMBER OF FALSE
POSITIVESWHO GETS
SEARCHEDx WHO FALSE MATCHES WHO: x
HOW FREQUENTLYWHO GETS PUT
IN GALLERYFP NUMBER
(NFP)**NFP** =

200+8

 p^T

1000	1000
------	------

FMR

1×10^{-5}	0
0	1×10^{-7}

g

20000
80000

DEMOGRAPHIC COMPOSITION
OF PROBE SETCROSS-DEMOGRAPHIC
FALSE MATCH RATESDEMOGRAPHIC
COMPOSITION OF GALLERY

BUT GIVEN EMPIRICAL
ESTIMATES OF FPIR CAN
WE RECOVER FMR ?

TERMS:

τ = Threshold

i = index of probe demographic group

j = index of gallery demographic group

n_j = number of gallery entries (group j)

N = total number of gallery entries

FMR_{ij} = rate at which groups i and j false match

$FPIR_{ij}$ = rate at which group i search produced group j non-mate

CAN WE INVERT THE PREDICTION FORMULA

$$FPIR_i(\tau) = 1 - \prod_j (1 - FMR_{ij}(\tau))^{n_j}$$

REWRITE FPIR IN TERMS OF FPIR, USING APPROXIMATION

$$FPIR_i(\tau) = 1 - \prod_j (1 - FPIR_{ij}(\tau))$$

RE-ARRANGE AND INCLUDE FMR AGAIN

$$FPIR_{ij}(\tau) = (1 - FMR_{ij}(\tau))^{n_j}$$

APPROXIMATE AGAIN AND ASSUME FMR_{ij} is ZERO WHEN $i \neq j$
INVERT TO PRODUCE *IMPLIED* FMR

$$IFMR_i(\tau) = n_i^{-1} FPIR_i$$

THE TERM *IMPLIED* IS NECESSARY BECAUSE SOME
ALGORITHMS DO NOT IMPLEMENT 1:N BY EXECUTING N 1:1
COMPARISONS - SEE LATER SLIDE

THE 1:N FPIR VALUES BY DEMOGRAPHICS GROUP CAN BE USED TO PRODUCE AN “IMPLIED FMR”

$$\text{IFMR}_i(\tau) = n_i^{-1} \text{FPIR}_i$$

THIS IS THE FALSE MATCH RATE IMPLIED BY AN EMPIRICAL MEASUREMENT OF FALSE POSITIVE IDENTIFICATION RATE FROM A SET OF 1:N SEARCHES.

- FPIR_i = FRACTION OF GROUP i SEARCHES THAT YIELD ANY NON-MATED GALLERY ENTRIES ABOVE THRESHOLD τ
- IFMR_i = IMPLIED FALSE MATCH RATE FOR COMPARING PHOTOS OF TWO GROUP i PEOPLE.
- n_i IS THE NUMBER OF GROUP i PEOPLE IN THE GALLERY.

THIS EQUATION IS A MODEL THAT IS LIKELY TO BE WRONG FOR THOSE ALGORITHMS THAT DO OBEY BINOMIAL ASSUMPTIONS – SEE SLIDE 36.

DEMOGRAPHICS: THE FALSE POSITIVE TAB 2/2

 Identification (T>0)
by Developer

 Investigation (R=1, T=0)
by Developer

 Identification (T>0)
by Algorithm

 Investigation (R=1, T=0)
by Algorithm

 Demographics: False
Positive Dependence

 Demographics: False
Negative Dependence

 Resources
by Algorithm

1. Searches of non-mated probe images of persons in group X gives an empirical measurement $FPIR_X$.
2. If there are N_X gallery entries for that group then the false match rate implied by that measurement is: $ImpliedFMR_X = FPIR_X / N_X$
3. This formula is an approximation because it ignores that some of the false positives may be against gallery elements of demographic groups Y, Z etc.
4. The incidence of cross-group false positives is empirically much lower than within-group false positives. This is true because the experimental design only includes persons from geographically separate regions.
5. The tabulated values are $-\log_{10}(ImpliedFMR_X)$ so that a value of 5 means $ImpliedFMR = 0.00001$.
6. High values in the table are inferior.
7. The threshold is set for $PFIR = 0.002$ in East. European women. Implied FMR for this group is $6.3 \cdot 10^8$ so the tabulated value is **7.2**.
8. Tabulated values higher than 7.2 indicate higher FMR. A value of 5.2 indicates FMR is 100 times higher.

		FPIR		Implied FMR							
Algorithm	Date	GINI	MXOG	E-Asia F	E-Europe F	S-Asia F	W-Africa F	E-Asia M	E-Europe M	S-Asia M	W-Africa M
megvii-004	2023_10_18	0.52	4.07	7.6 ⁽⁴⁾	7.2 ⁽⁴²⁾	7.4 ⁽²⁾	6.6 ⁽⁴⁾	7.5 ⁽⁶⁾	7.0 ⁽⁷³⁾	7.4 ⁽³⁾	6.7 ⁽¹⁸⁾
canon-003	2023_09_05	0.7	9.76	7.6 ⁽⁵⁾	7.2 ⁽⁴²⁾	7.3 ⁽⁵⁾	6.1 ⁽¹²⁾	7.4 ⁽¹⁰⁾	7.2 ⁽⁷¹⁾	7.3 ⁽⁵⁾	6.5 ⁽²⁰⁾
veridas-004	2023_02_03	0.69	10.17	5.9 ⁽⁵⁵⁾	7.2 ⁽⁴²⁾	5.9 ⁽⁵⁹⁾	5.4 ⁽⁵³⁾	6.5 ⁽⁶¹⁾	7.4 ⁽⁶⁰⁾	6.6 ⁽⁶⁵⁾	6.3 ⁽⁴⁹⁾
idemia-011	2024_03_05	0.66	8.52	7.6 ⁽⁶⁾	7.2 ⁽⁴²⁾	7.4 ⁽³⁾	6.2 ⁽¹⁰⁾	7.6 ⁽⁵⁾	7.4 ⁽⁶⁰⁾	7.3 ⁽⁶⁾	6.8 ⁽¹⁶⁾
hyperverge-002	2022_04_13	0.78	15.55	6.1 ⁽³³⁾	7.2 ⁽⁴²⁾	6.6 ⁽¹³⁾	5.4 ⁽⁴⁸⁾	6.7 ⁽³⁹⁾	7.5 ⁽⁴²⁾	7.0 ⁽¹⁷⁾	6.3 ⁽⁵⁰⁾
corsight-000	2023_07_13	0.72	11.8	6.0 ⁽³⁸⁾	7.2 ⁽⁴²⁾	6.0 ⁽⁴²⁾	5.4 ⁽⁴⁹⁾	6.7 ⁽³⁶⁾	7.6 ⁽²⁶⁾	6.7 ⁽³⁴⁾	6.2 ⁽⁵⁶⁾
clearviewai-002	2024_06_18	0.72	14.22	6.0 ⁽⁴¹⁾	7.2 ⁽⁴²⁾	6.0 ⁽³⁸⁾	5.3 ⁽⁶⁹⁾	6.6 ⁽⁴⁷⁾	7.7 ⁽³⁾	6.6 ⁽⁵⁶⁾	6.0 ⁽⁷⁰⁾

Implied FMR in W. African women is about 4 times higher than in European women.

Implied FMR in W. African women is about 60 times higher than in European women, and 125 times higher than in European men.

SO WHAT? CONSEQUENCES OF UNKNOWN FALSE POSITIVE RATE VARIATIONS

1. THRESHOLDS ARE OFTEN SET BASED ON A DEVELOPER OR SUPPLIER RECOMMENDATION.
 - THE INTENT OF THE THRESHOLD CALIBRATION PROCEDURE IS TO TABULATE THE EXPECTED FPIR FOR EACH THRESHOLD T AND DATABASE SIZE N .
1. THE DEVELOPER WILL OFTEN CALIBRATE FMR BASED ON INTERNAL TRIALS THAT COULD, IN PRINCIPLE, HAVE DIFFERENT DEMOGRAPHIC REPRESENTATION RELATIVE TO SOME FUTURE OPERATIONAL USES.
2. HOWEVER, IF
 - A: FPIR IN A NEW DEMOGRAPHIC GROUP Y IS HIGHER, AND
 - B: PEOPLE OF GROUP Y ARE ENROLLED AND SEARCHEDTHEN FALSE POSITIVES WILL BE MORE COMMON THAN EXPECTED
3. MITIGATION:
 1. CONSIDER EXTERNAL (PRE-DEPLOYMENT) TESTS
 2. RUN TESTS OF THE OPERATIONAL SYSTEM INCLUDING IN AN OFFLINE BULK-SEARCH MODE TO GENERATE SUFFICIENT TRANSACTIONS
 3. SET THRESHOLD BASED ON A NEW CALIBRATION FOR WHICHEVER GROUP GIVES THE HIGHEST FPIR.

BUT ONE REACTION TO NIST IR
8280 WAS “SO WHAT?”

**Q1: ALL THOSE FMR VALUES ARE SO TINY -- 1 IN 10000
OR 1 IN 100, SAY. SO WHY CARE?**

**A1: BECAUSE IF THE 1:1 ALGORITHM IS USED TO
IMPLEMENT 1:N SEARCH THEN THESE FMR VALUES ARE
EXPECTED TO SCALE UP WITH THE GALLERY SIZE N.**

- **THAT IS A 1:N ALGORITHM MUST CORRECTLY
REJECT ALL N NON-MATES**

THESE FMR VARIATIONS ARE OBSERVED WITH HIGH QUALITY IMAGES

IN THE PRECEDING FIGURES THE IMAGES ARE ALL WELL CONTROLLED FRONTAL PORTRAITS.

CANMETIN ET AL. HAVE FAULTED NIST'S TESTS FOR USING "*BENCHMARK IMAGES [THAT] ARE OVERLY IDEAL COMPARED TO REAL WORLD CONDITIONS*" WITHOUT THE "*COMPLEXITY OF IMAGES CAPTURED IN REAL-WORLD DEPLOYMENTS*". WHILE THAT IS INEVITABLY TRUE – NIST DOES NOT HOLD IMAGES EXHIBITING ALL POSSIBLE QUALITY DEGRADATIONS – THE CRITICISM ASSUMES THAT POOR QUALITY IS NEEDED TO ELICIT THE HIGH ERROR RATES - IT IS NOT - THE CLAIM DEPENDS ON THE PARTICULAR KIND OF ERROR:

- **FALSE POSITIVES:** THIS SLIDE DECK SHOWS ADVSESE FALSE MATCHES OCCUR EVEN WITH GOOD QUALITY - FALSE POSITIVES VARIATIONS OCCUR BECAUSE ALGORITHMS ARE a) NOT TRAINED ON DIVERSE DATA AND b) NOT TRAINED TO EQUALIZE FALSE POSITIVE RATES ACROSS DEMOGRAPHICS.
 - POOR QUALITY PHOTOS MAY EXACERBATE THE EFFECT, OR MAY REDUCE THE EFFECT, DEPENDING ON THE ALGORITHM - THIS REMAINS TO BE FULLY CHARACTERIZED
- **FALSE NEGATIVES:** POOR QUALITY PHOTOS DO ELEVATE FALSE NEGATIVE RATES, AND THIS CAN BE COUPLED TO DEMOGRAPHICS, FOR EXAMPLE:
 - PHOTOGRAPHY OF SKIN THAT REFLECTS LESS LIGHT CAN GIVE UNDEREXPOSURE → POTENTIALLY INCREASING FNIR
 - PHOTOGRAPHY OF TALL PEOPLE CAN GIVE NON-ZERO HEAD PITCH ANGLE → POTENTIALLY INCREASING FNIRBUT, DEPENDING ON THE APPLICATION, HIGH FALSE NEGATIVE RATES CAN BE ADVANTAGEOUS OR NOT
 - IN COOPERATIVE ACCESS CONTROL, HIGHER FALSE NEGATIVE RATES IMPLY INCONVENIENCE FOR THE USER.
 - IN CRIMINAL LAW ENFORCMENT, HIGHER FALSE NEGATIVE RATES ARE ADVANTAGEOUS TO THE CRIMINAL, DISADVANTAGEOUS TO THE INVESTIGATOR

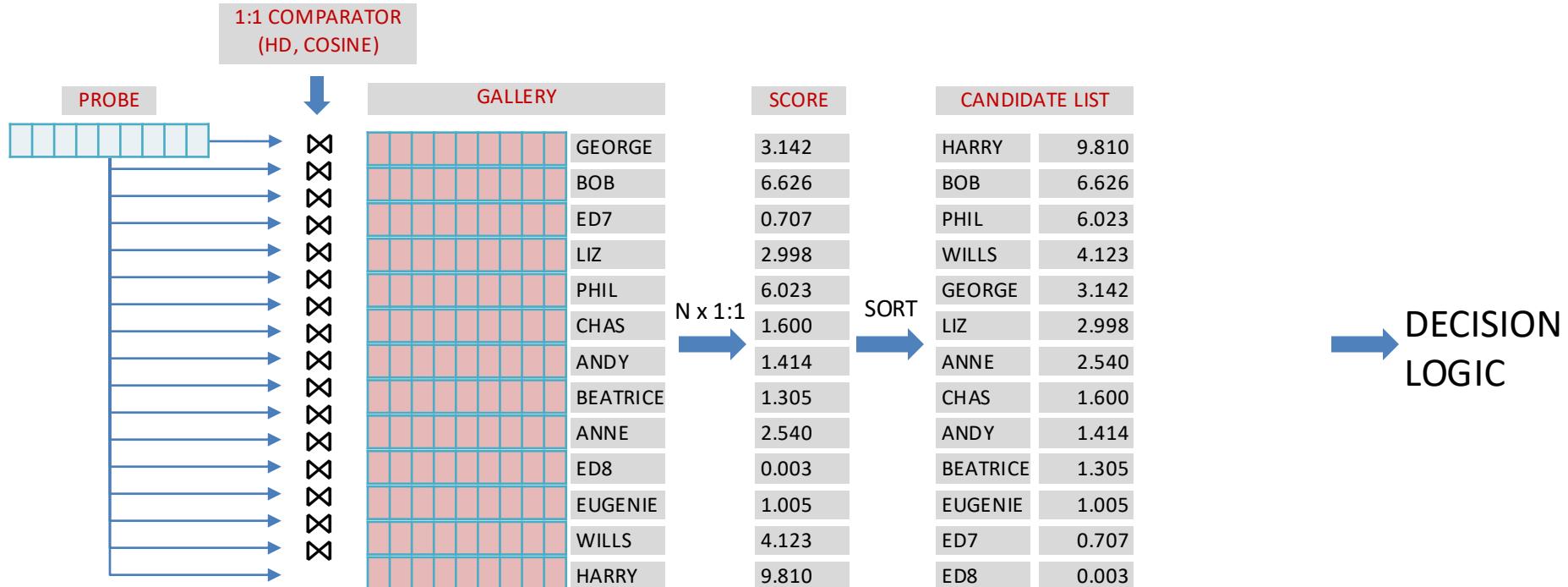
SOME ALGORITHMS IMPLEMENT 1:N AS N 1:1 COMPARISONS.

- + OTHERS DO NOT...
- + OTHERS DO MORE ...

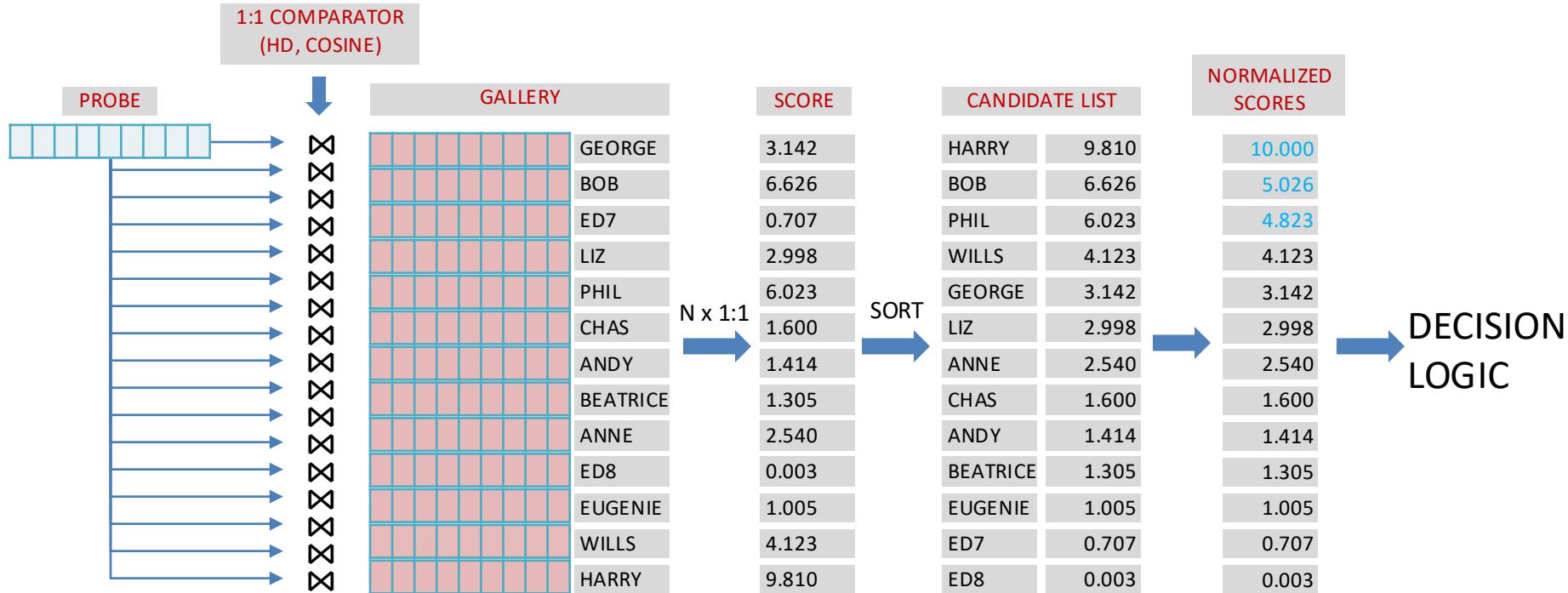
EXAMPLES FOLLOW...

THE BINOMIAL MODEL OF THE LAST FEW
SLIDES WILL NOT WORK CORRECTLY FOR
SUCH SEARCH ALGORITHMS

DEFAULT IMPLEMENTATION OF 1:N: EXHAUSTIVE SEARCH = N 1:1 COMPARISONS + SORT



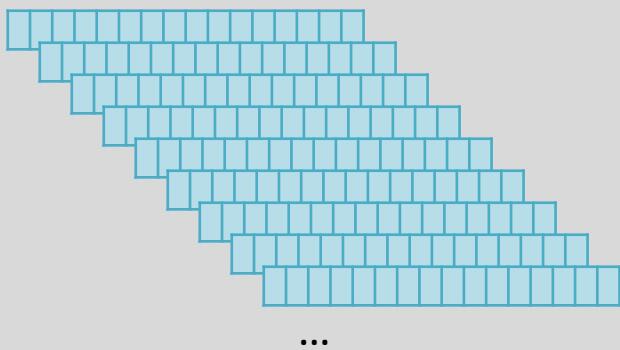
BUT: SOME DEVELOPERS NORMALIZE SCORES INTRODUCES DEPENDENCE ON GALLERY



- Jens Peter Huber [Using Biometric Verification To Estimate Identification Performance](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4341620) Identix Corporate Research, Biometrics Symposium 2006
<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4341620>
- Ross J. Micheals, Walter Scheirer, Terrance Boult, Anderson Rocha [Robust Fusion: Extreme Value Theory for Recognition Score Normalization](#), ECCV 2010
- Ethan M. Rudd, Lalit P. Jain, Walter J. Scheirer, and Terrance E. Boult [The Extreme Value Machine](#), IEEE PAMI, March 2018

OTHER 1:N ALGORITHMS DO NOT COMPUTE N COMPARISONS

SET OF N TEMPLATES,
PRODUCED INDEPENDENTLY



FINALIZE()

CONVERT LINEAR SET OF
TEMPLATES INTO A
SPECIALIZED GRAPH
STRUCTURE.

THIS OPERATION MAY BE
EXPENSIVE, BUT MAY
AFFORD GAINS SUCH AS
LOW SEARCH DURATION

FAST SEARCH DATA STRUCTURE



Fig. 1. Illustration of the Hierarchical NSW idea. The search starts from an element from the top layer (shown red). Red arrows show direction of the greedy algorithm from the entry point to the query (shown green).

Yu A. Malkov, D. A. Yashunin, **Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs**. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 42 No. 4 April 2020 pp. 824–836 <https://doi.org/10.1109/TPAMI.2018.2889473>

1:N FAST DATA STRUCTURE SUMMARY

SEARCHABLE DATA STRUCTURE

- **LINEAR:** Many developers implement 1:N search as N 1:1 comparisons aka exhaustive search
- **CONSTRUCTED:** Others build indexes, graphs, trees, or a dictionary, or other exotic data structure
- Some developers field both types of algorithms

PROS

- Speed
- Storage (memory, cloud)
- False positive rates ?
- False positive rates grow as N^0 i.e. flat
- Demographic dependencies

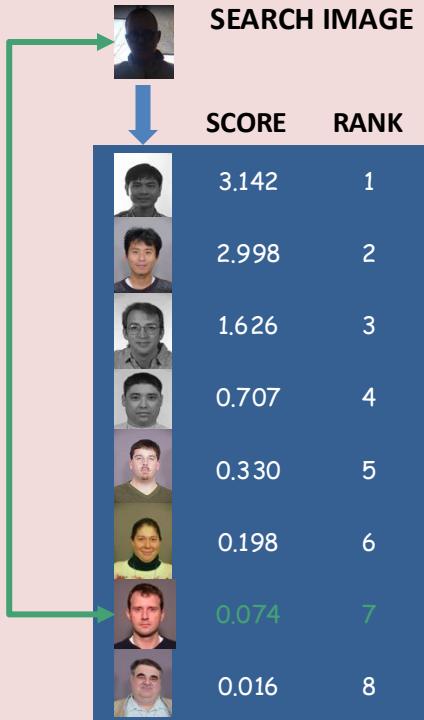
CONS

- Cost of
 - Constructor()
 - Insert()
 - Delete()
 - Deleting somebody from a database may not be a simple operation
- Score interpretation is complicated
 - score is (often) not $f(x,y)$
 - instead $f(x, GALLERY)$

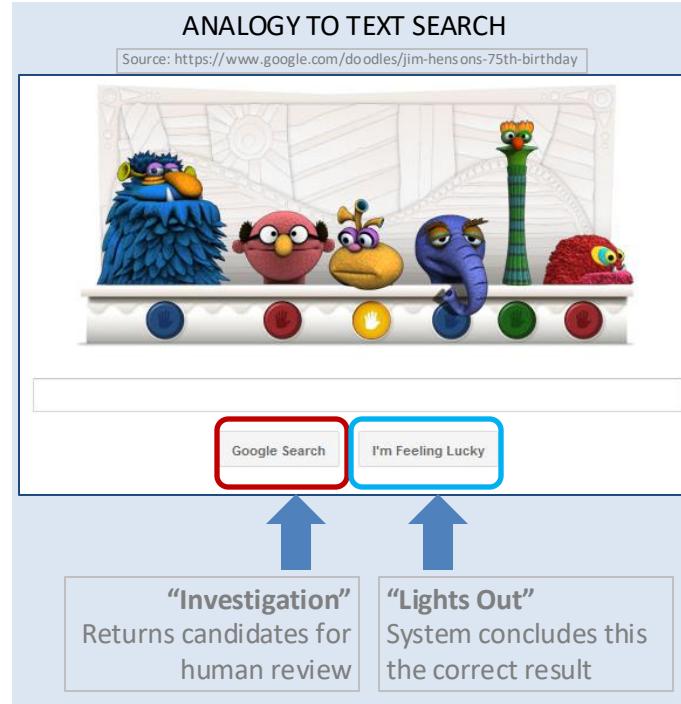
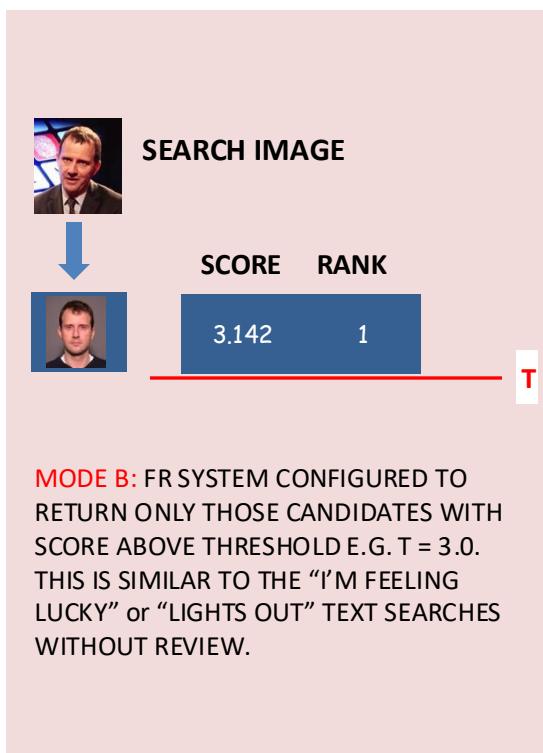
TESTS

- Should not assume 1:N is implemented naively
- Evaluate separately!

TWO MODES OF OPERATION: INVESTIGATION VS. IDENTIFICATION



MODE A: FR SYSTEM IS CONFIGURED TO RETURN A FIXED NUMBER OF CANDIDATES (HERE 8) REGARDLESS OF SCORE. THIS IS LIKE MOST TEXT SEARCHES WHERE WE REVIEW CANDIDATE DOCS.



INVESTIGATIONAL USE OF FACE RECOGNITION AND DEMOGRAPHICS

T = 0 INVESTIGATIONS

- » HISTORICALLY LAW ENFORCEMENT SEARCHES USED A SYSTEM CONFIGURED TO RETURN A FIXED NUMBER OF CANDIDATES
 - NO THRESHOLD APPLIED OR, EQUIVALENTLY, THE THRESHOLD IS 0
- » IF THE PROBE-PHOTO SUBJECT IS IN THE GALLERY, THE SYSTEM RETURNS THE FIXED NUMBER OF MOST SIMILAR CANDIDATES.
 - THE CANDIDATES WILL OFTEN INCLUDE THE CORRECT MATED ENTRY OR ENTRIES
 - THE FALSE NEGATIVE IDENTIFICATION RATE (FNIR) aka “MISS RATE” IS THE FRACTION OF MATED SEARCHES THAT DO NOT INCLUDE THE CORRECT MATE AMONG THE CANDIDATES
 - EXCEPT WITH POOR QUALITY PHOTOS OR WHERE AGEING HAS OCCURRED, FNIR WILL BE CLOSE TO ZERO.
- » BUT IF THE PROBE PHOTO SUBJECT IS NOT IN THE GALLERY, THE SYSTEM AGAIN RETURNS THE SAME FIXED NUMBER OF MOST SIMILAR CANDIDATES
 - ALL OF THESE ARE FALSE POSITIVES, SO THE FALSE POSITIVE IDENTIFICATION RATE (FPIR) IS 1.
 - A HUMAN INVESTIGATION – WHICH CAN INCLUDE HUMAN COMPARISON OF PHOTOGRAPHS AND CONSIDERATION OF NON-BIOMETRIC INFORMATION – IS NEEDED TO EXONERATE SUCH CANDIDATES

T > 0

- » MANY APPLICATIONS OF FACE RECOGNITION IMPOSE A THRESHOLD, T: ONLY THOSE CANDIDATES ABOVE THRESHOLD ARE RETURNED.
- » A T > 0 POLICY DEMANDS RETURN OF ONLY SUFFICIENTLY SIMILAR FACES
- » WHEN T IS HIGH, AND THE PROBE PHOTO HAS A MATE IN THE GALLERY, THE SYSTEM WILL USUALLY RETURN THE CORRECT CANDIDATE, SO FNIR WILL BE SMALL. THIS WILL NOT BE TRUE:
 - FOR POOR QUALITY PHOTOS, SUCH AS THOSE WITH BLUR OR POOR EXPOSURE.
 - WHEN THE GALLERY PHOTO WAS COLLECTED MANY YEARS BEFORE THE PROBE AND THE FACE HAS CHANGED APPEARANCE.
 - LIKEWISE IF THERE IS ANY SUBSTANTIAL CHANGE IN APPEARANCE, A FALSE NEGATIVE CAN OCCUR.
- » WHEN T IS HIGH, AND A PROBE PHOTO HAS NO MATE IN THE GALLERY, THE SYSTEM WILL USUALLY RETURN NO CANDIDATES, SO FPIR IS SMALL
 - FALSE POSITIVES CAN OCCUR WHEN THE PROBE SUBJECT HAS AN IDENTICAL TWIN IN THE GALLERY AND THE TWIN IS RETURNED.
 - AN ALGORITHM WITH LARGE DEMOGRAPHIC DIFFERENTIALS COULD MORE OFTEN YIELD SIMILARITY SCORES ABOVE THRESHOLD FOR SOME GROUPS.
 - FALSE POSITIVES CAN ALWAYS BE SURPRESSED BY ELEVATING T

THINKING THROUGH CONSEQUENCES: THREE EXAMPLE APPLICATIONS

1. DISPENSING DRUGS

- » NON-REPUDIATION
- » 1:1
- » VOLUME: 100S PER DAY
- » TRANSACTIONS ARE ALMOST ALWAYS MATED
 - PROB(IMPOSTOR) IS LOW
- » FALSE NEGATIVE → INCONVENIENCE
- » FALSE POSITIVE → PRESCRIPTION DRUG FRAUD
- » WHO IS HARMED BY DEMOGRAPHIC DIFFERENTIAL IN FP?
 - SOME PHARMACISTS

2. PAPERLESS BOARDING

- » FACILITATION OF RECORDING IMMIGRATION EXIT AND ACCESS CONTROL TO AIRCRAFT
- » 1:N
- » VOLUME: 100S PER FLIGHT
- » TRANSACTIONS ARE ALMOST ALWAYS MATED
 - PROB (IMPOSTOR) IS LOW
- » FALSE NEGATIVE →
 - PAPER BOARDING WITH AIRLINE STAFF
 - UN-RECORDED EXIT FOR VISA-HOLDER
- » FALSE POSITIVE
 - → STOWAWAY
 - → MISMATCHES BETWEEN TRAVELERS WHO ARE PERMITTED TO BOARD
- » WHO IS HARMED BY FP DIFFERENTIAL?
 - AIRLINE
 - IMMIGRATION DATABASE

3. WATCHLIST

- » SOCCER STADIUM. COUNTER-TERRORISM. COMPULSIVE GAMBLERS
- » 1:N
- » VOLUME: 10S OF THOUSANDS PER DAY
- » TRANSACTIONS ARE ALMOST ALWAYS NON-MATED
 - PROB (GENUINE) IS LOW
- » FALSE NEGATIVE → UNDETECTED “BAD GUY”
- » FALSE POSITIVE → INCORRECT ENFORCEMENT ACTION ... CIVIL LIBERTIES
- » WHO IS HARMED BY DEMOGRAPHIC DIFFERENTIALS IN FP?
 - BYSTANDERS

DEMOGRAPHICS SUMMARY

- » LEADING CONTEMPORARY ALGORITHMS
 - ARE VERY ACCURATE
 - INCREASINGLY TOLERATE POOR IMAGE QUALITY
 - GENERALLY DISTRIBUTE ERRORS UNEVENLY ACROSS DEMOGRAPHICS
- » FALSE POSITIVE DIFFERENTIALS MUCH LARGER THAN FALSE NEGATIVE DIFFERENTIALS
 - MORE FALSE POSITIVES IN ASIAN AND AFRICAN FACES
 - MORE FALSE POSITIVES IN WOMEN
 - MORE FALSE POSITIVES IN THE OLD AND VERY YOUNG
 - WITH EXCEPTIONS TO THIS!
- » ONE-TO-MANY ALGORITHMS DON'T NECESSARILY BEHAVE LIKE ONE-TO-ONE
 - MANY DO
 - BUT SOME ONE-TO-MANY STABILIZE FALSE ALARM RATES

- FALSE NEGATIVES FROM CHANGE OF APPEARANCE - OFTEN POOR PHOTOGRAPHY
- FALSE POSITIVES FROM ALGORITHMS APPLIED TO "UNKNOWN" DEMOGRAPHIC GROUPS
 - EVEN WITH HIGH QUALITY IMAGES

- » ALGORITHM MATTERS
 - SOME MORE ACCURATE THAN OTHERS
 - SOME DEMOGRAPHICALLY INSENSITIVE
 - "KNOW-YOUR-ALGORITHM" (KYA)
 - SET THRESHOLD TO LIMIT FPIR FOR THE WORST-CASE DEMOGRAPHIC
- » APPLICATION MATTERS
 - ERROR IMPACTS RANGE FROM INCONSEQUENTIAL TO GRAVE
- » INCOMPLETE REPORTING IN COVERAGE
 - CONFUSION OF FACE "ANALYSIS" WITH "RECOGNITION"
 - DETECTION IS NOT RECOGNITION
 - AGE ESTIMATION IS NOT RECOGNITION
 - FAILURE TO IDENTIFY WHICH COMPONENT IS AT FAULT
 - DETECTOR? CAMERA? ALGORITHM?
 - DIFFERENTIATE FALSE POSITIVES FROM FALSE NEGATIVES
 - MISSING REPORTS ON FALSE POSITIVES
- » SINCE 2019
 - SOME DEVELOPERS HAVE ADDRESSED DIFFERENTIALS.
 - WE HAVE SUMMARY "FITNESS" INDICATORS
 - ACADEMIC RESEARCH
- » CONSULT SUMMARY "BIAS" MEASURES