

Face Recognition Vendor Test
Ongoing

Performance of Automated
Presentation Attack Detection (PAD) Algorithms

Concept, Evaluation Plan, and API
VERSION 1.5.2

Mei Ngan

Patrick Grother
Kayee Hanaoka

Austin Hom
Joyce Yang

Information Access Division
Information Technology Laboratory

February 1, 2023

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 2 of 14

Revision History

Date Version Description

March 23, 2022 0.1 Draft document for public comment

August 19, 2022 1.0 Intended final document

September 21, 2022 1.1 Additional information on image and video frame size, video
length, frame rate, and compression ratio added in Section 5.3.
Hardware specifications for the timing test added in Section 1.5.

September 30, 2022 1.2 Additional information on still input media, algorithmic behavior,
and metrics has been added in Sections 5.3, 5.4, and 5.6.

October 4, 2022 1.3 Clarifications on timing for video frames and additional
information on input media orientation has been added in Sections
1.5 and 5.3. Links to the latest API header file and validation

package have been added in Section 5.

October 17, 2022 1.4 Updates to participation rules and deadlines added in Section 2.3.

December 12, 2022 1.5 Updates to API function calls to provide optional
“decisionProperties" structure for developers to provide additional
information/descriptions on media properties and their
relationship to the PAD decision. See Sections 5.7.3.1 and 5.7.3.2.

January 3, 2023 1.5.1 Examples of when algorithms should report an evasion attack

related to occlusion have been added to Section 5.4.

February 1, 2023 1.5.2 Clarifications on commonly used surgical/medical masks in
impersonation attacks have been added to Section 5.4.

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 3 of 14

Table of Contents

1. PAD 5
1.1. SCOPE 5

1.1.1. Physical (Analog) vs. Digital Attacks 5
1.1.2. Hardware vs. Software-based PAD 6
1.1.3. Offline Testing 6

1.2. GENERAL FRVT EVALUATION SPECIFICATIONS 6
1.3. REPORTING 7
1.4. ACCURACY METRICS 7
1.5. TIME LIMITS 8

2. RULES FOR PARTICIPATION 8
2.1. PARTICIPATION AGREEMENT 8
2.2. VALIDATION 8
2.3. NUMBER AND SCHEDULE OF SUBMISSIONS 8

3. DATA STRUCTURES SUPPORTING THE API 9

4. IMPLEMENTATION LIBRARY FILENAME 9

5. API SPECIFICATION 9
5.1. HEADER FILE 9
5.2. NAMESPACE 9
5.3. INPUT MEDIA 9
5.4. ALGORITHMIC BEHAVIOR 10
5.5. DEMOGRAPHIC BIAS 11
5.6. PAD SCORE, CALIBRATION, THRESHOLDS, METRICS CALCULATION 11
5.7. API 11

5.7.1. Interface 11
5.7.2. Initialization 12
5.7.3. Presentation Attack Detection 12

5.7.3.1. Presentation Attack Detection - Impersonation Intent 12
5.7.3.2. Presentation Attack Detection - Evasion Intent 13

List of Tables

1. PAD 5
1.1. SCOPE 5

1.1.1. Physical (Analog) vs. Digital Attacks 5
1.1.2. Hardware vs. Software-based PAD 6
1.1.3. Offline Testing 6

1.2. GENERAL FRVT EVALUATION SPECIFICATIONS 6
1.3. REPORTING 7
1.4. ACCURACY METRICS 7
1.5. TIME LIMITS 8

2. RULES FOR PARTICIPATION 8
2.1. PARTICIPATION AGREEMENT 8
2.2. VALIDATION 8
2.3. NUMBER AND SCHEDULE OF SUBMISSIONS 8

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 4 of 14

3. DATA STRUCTURES SUPPORTING THE API 9

4. IMPLEMENTATION LIBRARY FILENAME 9

5. API SPECIFICATION 9
5.1. HEADER FILE 9
5.2. NAMESPACE 9
5.3. INPUT MEDIA 9
5.4. ALGORITHMIC BEHAVIOR 10
5.5. DEMOGRAPHIC BIAS 11
5.6. PAD SCORE, CALIBRATION, THRESHOLDS, METRICS CALCULATION 11
5.7. API 11

5.7.1. Interface 11
5.7.2. Initialization 12
5.7.3. Presentation Attack Detection 12

5.7.3.1. Presentation Attack Detection - Impersonation Intent 12
5.7.3.2. Presentation Attack Detection - Evasion Intent 13

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 5 of 14

1. PAD

1.1. Scope

A presentation attack (PA), as defined by the ISO/IEC 301071 standard on biometric presentation attack detection, is
“the presentation of an artefact or of human characteristics to a biometric capture subsystem in a fashion intended to
interfere with system policy”. A presentation attack is often launched with the intent of impersonation (the user is
trying to authenticate as a target identity) or evasion (the user is trying to fool the biometric system into not
recognizing their true identity). The goals of impersonation include trying to gain positive access privilege as someone
else, for example, trying to unlock someone’s cell phone or gain access to a facility. The goals of evasion are typically
to conceal one’s true identity to evade recognition from say a watchlist, or to create a separate enrollment under a
different name. Biometric systems can potentially be attacked by an unknown number of presentation attack
instruments, and the number or type of attack instruments in existence is not well-known. Some examples of known
presentation attack instruments include artificial “gummy” fingers2, “replay” attacks where the attacker is holding a
photo or video of someone’s face to the camera3, and iris photo and contact lens attacks4.

Presentation attack of face recognition systems (and the ability to detect it) is an area of high interest given the
widespread deployment of face recognition systems, particularly in unmanned/unsupervised and remote enrollment
and authentication scenarios.

1.1.1. Physical (Analog) vs. Digital Attacks

Presentation attacks have traditionally been associated with physical, analog artefacts that are presented to the
sensor. Examples of this include donning a silicone face mask or holding up a printed photo or tablet display to the
camera. More recently, a different form of digital presentation attack has surfaced, often called an injection attack,
where the attacker bypasses the camera and a digital image or video is injected into the system by virtual camera
software. This is a possibility in those scenarios where the capture cannot be trusted - for example in some mobile
phones - because the integrity of the sensor/camera cannot be guaranteed. FRVT PAD intends to evaluate physical
attacks with analog artefacts. Digital injection attacks, while an important aspect of the presentation attack
landscape, are out of scope for this evaluation.

Figure 1 - Analog versus digital attacks

1 ISO/IEC 30107-1:2016 Information technology — Biometric presentation attack detection — Part 1: Framework
2 Tsutomu Matsumoto, Hiroyuki Matsumoto, Koji Yamada, and Satoshi Hoshino "Impact of artificial "gummy" fingers on fingerprint
systems", Proc. SPIE 4677, Optical Security and Counterfeit Deterrence Techniques IV, (19 April 2002);
https://doi.org/10.1117/12.462719
3 https://mobidev.biz/blog/face-anti-spoofing-prevent-fake-biometric-detection
4 Chaos Computer Club Berlin: Chaos Computer Clubs breaks iris recognition system of the Samsung Galaxy S8 (2017).
https://www.ccc.de/en/updates/2017/iriden

http://standards.iso.org/ittf/PubliclyAvailableStandards/c053227_ISO_IEC_30107-1_2016.zip
https://doi.org/10.1117/12.462719
https://mobidev.biz/blog/face-anti-spoofing-prevent-fake-biometric-detection
https://www.ccc.de/en/updates/2017/iriden

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 6 of 14

1.1.2. Hardware vs. Software-based PAD

PAD capabilities generally fall into two categories – software-based and hardware-based PAD. Table 1 summarizes the
relevance and applications of software vs. hardware-based PAD. The FRVT PAD test will provide ongoing independent
testing of software-based facial PAD detection technologies. The evaluation is designed to assess software-based
PA detection capability to inform developers and current and prospective end-users. Software-based PAD solutions
operate only on the captured imagery.

Software-based PAD has a role in those applications where a commodity or non-biometric camera is used for
collection of an image that is then transmitted to a receiving system. For example, if a passport or other ID photo is
collected in a retail outlet using a generic portrait camera, the passport issuing agency may check for PA. Likewise in
some countries’ border control points, the capture subsystem may not include a (hardware) PAD module, instead
relying on remote server-side PAD operating solely on the image.

This document establishes an initial concept of operations and an application programming interface (API) for
evaluation of software-based algorithms to detect facial presentation attack from still photographs and/or video
frames.

Note: Hardware-based PAD solutions are currently out of scope in FRVT PAD. For developers interested in evaluation
of hardware-based PAD capabilities, the DHS Science and Technology Directorate is planning a future technology
demonstration to include testing of hardware-based PAD capabilities.

Table 1 – Software vs. hardware-based PAD

 Software-based PAD Hardware-based PAD

Input Image/video Image/video + other non-standardized
data or signals sensed by dedicated

hardware

Mode of
operation

Server-based or cloud-based PAD with
non-face-aware capture device;

offline PAD in existing/legacy systems

Client or edge-based PAD with dedicated
face-aware capture device

Applications Applications where capture processes
and devices are not controlled or

cannot be configured to perform PAD

Applications where hardware is
controllable/configurable during the

capture process to perform PAD

1.1.3. Offline Testing

FRVT PAD will be conducted as an offline evaluation at a NIST facility by applying algorithms to still photos and/or
video frames that are sequestered on computers controlled by NIST. Offline evaluations are attractive because they
allow uniform, fair, repeatable, and large-scale statistically robust testing. However, they do not capture all aspects of
an operational system. Offline tests do not include a live image acquisition component or any interaction with real
users. Our approach is adopted to allow evaluation on large datasets and to achieve repeatability where all algorithms
are tested against the same evaluation datasets.

1.2. General FRVT Evaluation Specifications

General and common information shared between all Ongoing FRVT tracks are documented in the FRVT General
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for
participation, hardware and operating system environment, software requirements, reporting, and common data
structures that support the APIs.

https://pages.nist.gov/frvt/html/frvt_pad.html
https://www.dhs.gov/science-and-technology/biometric-technology-rally
https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 7 of 14

1.3. Reporting

For all algorithms that complete the evaluation, NIST will provide performance results back to the participating
organizations. NIST may additionally report and share results with partner government agencies and interested
parties, and in workshops, conferences, conference papers, presentations and technical reports.

Important: NIST will publish the name of the developer’s organization, the algorithm identifiers, and the performance
results with attribution to the developer. Results will be machine generated (i.e. scripted) and will include timing,
accuracy and other performance results. These will be provided alongside results from other implementations. Results
will be expanded and modified as additional implementations are tested, and as analyses are implemented. Results
may be regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analyses
are added.

Note: Due to data sensitivities, NIST does not intend on disclosing and describing the presentation attack instruments
used in our evaluation. We will report PA detection metrics for each presentation attack instrument (PAI) but without
the name or description of the PAI. This is intended to encourage broad PAD effectiveness across unknown PAs, and to
discourage tuning to specific attacks. This reflects the operational reality that attackers don’t advertise their methods.

1.4. Accuracy metrics

This test will evaluate algorithmic ability to detect whether an image or a video contains a presentation attack or not.
Per established metrics5 for assessment of presentation attacks, NIST will compute and report:

● Attack Presentation Classification Error Rate (APCER) – the proportion of presentation attack samples
incorrectly classified as bona fide presentation

● Bona Fide Presentation Classification Error Rate (BPCER) – the proportion of bona fide samples incorrectly
classified as presentation attack samples

● Attack Presentation Non-Response Rate (APNRR6) and Bona Fide Presentation Non-Response Rate (BPNRR) –
the proportion of presentation attack and bona fide samples, respectively, that do not generate a response
and fail to be processed by the algorithm software, whether it’s elective refusal to process the imagery or an
involuntary error. Failure to process events will be logged when the algorithm software returns a non-
successful return code from the PAD function, indicating that something went wrong while processing the
imagery for PAD.

We intend on reporting the above quantities for various presentation attack species.

We intend on incorporating failure to process events into the calculation of BPCER and APCER. All occurrences of
failure to process by an algorithm will be treated as if a presentation attack is detected with the confidence score set
to +1.

We will also publish error tradeoff plots (BPCER vs. APCER, parametric on threshold) and other analyses as
appropriate.

5 International Organization for Standardization: Information Technology – Biometric presentation attack detection – Part 3: Testing
and reporting. ISO/IEC FDIS 30107-3:2017, JTC 1/SC 37, Geneva, Switzerland, 2017
6 ISO/IEC 30107-3 includes APNRR “proportion of attack presentations using the same PAI species that cause no response at the

PAD subsystem or data capture subsystem” to quantify outcomes where the sensor is not even triggered by the presented PA
sample. We use APNRR to quantify that for the PAD-subsystem, which here is the algorithm under test.

https://www.iso.org/standard/67381.html

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 8 of 14

1.5. Time limits

The elemental functions of the implementations shall execute under the time constraints of Table 2. These time limits
apply to the function call invocations defined in Section 5. Assuming the times are random variables, NIST cannot
regulate the maximum value, so the time limits are median values. This means that the median of all operations
should take less than the identified duration. NIST will publish duration statistics.

The time limits apply per image/video frame.

Table 2 – Processing time limits in milliseconds, per 1280 x 960 image/video frame

Function

detectImpersonationPA ()
detectEvasionPA ()

5000 (1 core)

All timing tests will be measured on Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz processors. FRVT tests will not support
the use of graphics processing units (GPUs).

2. Rules for participation

2.1. Participation agreement

A participant must properly follow, complete, and submit the FRVT Participation Agreement. This must be done once,
either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for each submitted
implementation thereafter. Note: Organizations that have already submitted a participation agreement for FRVT
Ongoing 1:1 do not need to send in a new participation agreement unless the organization updates their
cryptographic signing key.

2.2. Validation

All participants must run their software through the provided FRVT PAD validation package prior to submission. The
validation package is available at https://github.com/usnistgov/frvt. The purpose of validation is to ensure consistent
algorithm output between the participant’s execution and NIST’s execution. Our validation set is not intended to
provide training or test data.

2.3. Number and Schedule of Submissions

NIST will run an initial evaluation of software PAD implementations starting on January 3rd, 2023 and will accept
algorithm submissions between January 3rd – February 28th, 2023. Developers may submit up to two PAD
implementations to NIST by February 28th, 2023. For each submission, NIST will provide feedback to developers in the
form of an algorithm report card approximately 2 - 3 weeks after a working algorithm is received. The algorithm
report cards will only be shared with developers as interim feedback. After February 28th, NIST will publicly report
results for all algorithms received some time later. At that point, we will determine and announce whether the FRVT
PAD evaluation will proceed on an ongoing basis.

The following rules apply:

• Results for all algorithms submitted to the FRVT PAD benchmark will be included in the final public report,
with developer names associated with their submissions.

• All submissions received by February 28th will receive an algorithm report card.
• Developers may choose to submit a first algorithm, wait to receive an algorithm report card, then submit a

second algorithm.

• Developers may implement the PAD API function for impersonation PAs, evasion PAs, or both. There is no
penalty for implementing only one of the PAD functions.

https://pages.nist.gov/frvt/agreements/frvt_participation_agreement.pdf
https://github.com/usnistgov/frvt

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 9 of 14

The reason for conducting an initial phase of evaluation on a fixed timetable is because we do not know the capability
of solutions on our various PA datasets.

3. Data structures supporting the API

The data structures supporting this API are documented in the FRVT - General Evaluation Specifications document
available at - https://pages.nist.gov/frvt/api/FRVT_common.pdf.

4. Implementation Library Filename

The core library shall be named as libfrvt_pad_<provider>_<sequence>.so, with

● provider: single word, non-infringing name of the main provider. Example: acme
● sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to

NIST. Example: 007

Example core library names: libfrvt_pad_acme_000.so, libfrvt_pad_mycompany_006.so.
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted
library name.

5. API specification

Please note that included with the FRVT PAD validation package (available at https://github.com/usnistgov/frvt) will
be a “null” implementation of this API. The null implementation has no real functionality but demonstrates
mechanically how one could go about implementing this API.

5.1. Header File

The prototypes from this document will be written to a file named frvt_pad.h and are currently available to
implementers at https://github.com/usnistgov/frvt/blob/master/pad/src/include/frvt_pad.h.

5.2. Namespace

All supporting data structures will be declared in the FRVT namespace. All API interfaces/function calls for this track
will be declared in the FRVT_PAD namespace.

5.3. Input Media

A single image or a sequence of video frames of a single subject will be provided to the PAD algorithms for detection
of a presentation attack. All images will contain a single subject presented to the camera. Image/video frame
orientation can be either portrait or landscape.

Presentation Attack Instruments (PAIs)
Initially, the PAIs used in this test are documented in the public domain. NIST aims to expand the diversity of PAIs
used in the evaluation over time to reflect the increase in complexity/diversity of attacks. New datasets added to the
test will be run on previously submitted algorithms to ensure fair comparison of results.

Capture Environment

● The camera is in a fixed position.
● Images and videos contain a single, cooperative subject, with neutral expression, approximately centered in

the field of view.

Still Images

● Image width and height in pixels are provided as input to the algorithm. Image dimensions range from
640x480 to 5184x3456.

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt/blob/master/pad/src/include/frvt_pad.h

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 10 of 14

● Only color images be used in the evaluation.
● Still imagery used in the evaluation range from losslessly-compressed PNG files to lossy-compressed JPG files.

We intend on running both compressed and uncompressed imagery and reporting performance/effects of
both.

Video
Video sequences can be variable length across all samples provided. Videos will only contain entirely bona fide
attempts or entirely presentation attack attempts. That is, there will not be a scenario where a bona fide and PA exist
in the same video sequence. For videos, the frame rate in frames per second will be provided to the algorithms.

● Video Compression

o The use of compression is operationally realistic for those applications where PAD operates on
received media rather than a live-captured stream direct from the sensor. All videos in this test are
compressed with h264, with compression ratios in the range of 30:1 to 50:1.

● Video capture

● Video frame rate is provided as input to the algorithm in frames per second (fps). Frame rates range
from 24 fps to 60 fps, with typical frame rate of 24 frames per second.

● Video capture device information is not provided as input to the algorithm.
● Video duration ranges from 3 seconds to 30 seconds, with typical duration of 25 seconds.
● Video frame width and height in pixels are provided to the algorithm. Video frame dimensions range

from 1920x1080 to 3840x2160.
● We intend on breaking out analysis and performance by PAI and image vs. video.

NOTE: The imagery provided in the validation package is used for the sole purpose of validation and stress-testing the
software. The imagery is not necessarily representative of actual test data that will be used to evaluate the
implementations.

5.4. Algorithmic behavior

● When should algorithms report +1.0 in an impersonation attack?

o If there is any intent to impersonate/spoof a recognition system. We do not intend on including
commonly used surgical/medical masks (e.g., N95, light blue surgical masks, etc.) in our evaluation of
impersonation attacks.

● When should algorithms report 0 in an impersonation attack?

o No informative value is contained in the image for the software to make a determination either way.

● When should algorithms report -1.0 in an impersonation attack?

o The image is entirely consistent with natural human faces in typical portrait imagery collected in a
cooperative presentation to a camera.

● When should algorithms report +1.0 in an evasion attack?

o If there is any intent to undermine a recognition outcome. For example, given a photo, large subject
deviations from ISO/ICAO portrait photo compliance such as large pose variations, overly
exaggerated facial expressions, obstructions of the view of the face (e.g., occlusions from protective
face masks, headwear, clothing, hands covering the face), could be considered attempts to
undermine recognition outcomes.

● When should algorithms report 0 in an evasion attack?

o No informative value is contained in the image for the software to make a determination either way.

● When should algorithms report -1.0 in an evasion attack?

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 11 of 14

o The image is entirely consistent with natural human faces in typical portrait imagery collected in a
cooperative presentation to a camera.

5.5. Demographic Bias

Initially, demographic effects will not be a primary evaluation objective, but if observed, we may report concentration
of errors specific to particular groups.

5.6. PAD score, calibration, thresholds, metrics calculation

The detectionImpersonationPA() and detectEvasionPA() functions should return a score between [-1, 1], where 0 is
indicating uncertainty in that the input sample has no informative value. We aim to support applications where
continuous thresholds can be set based on empirical trials and to that end, we discourage implementations that
quantize PAD scores or concentrate scores at +1.0 or -1.0. The error trade off calculation will use a single threshold
swept between -1.0 and +1.0. However, recognizing that human operators may be involved in adjudicating whether a
questionable sample is indeed a PAI, we may additionally report the PAD score interval between the highest bona fide
scores and lowest PA scores. The isPA boolean returned from the API functions represents a single decision point on a
DET at a particular threshold. Operationally, a PAD system would be configured to operate at a particular threshold.

What would be the size of the evaluation datasets - what levels of precision will you be able to reach for APCER and
BPCER?

o We anticipate being able to reliably quantify very low BPCER values (below 0.0001) by using large sets of
operational bona fide photos. We plan on reporting APCER @ BPCER for various fixed BPCER values.

o We cannot yet gauge APCER values as we have not completed PA image curation.

5.7. API

5.7.1. Interface

The software under test must implement the interface Interface by subclassing this class and implementing each
method specified therein.

 C++ code fragment Remarks
 Class PADInterface
 {

public:

 static std::shared_ptr<Interface> getImplementation(); Factory method to return a managed pointer
to the Interface object. This function is
implemented by the submitted library and
must return a managed pointer to the
Interface object.

 // Other functions to implement
 };

There is one class (static) method declared in Interface. getImplementation() which must also be
implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the
implementation class. A typical implementation of this method is also shown below as an example.

 C++ code fragment Remarks

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 12 of 14

 #include <frvt_pad.h>

using namespace FRVT_PAD;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<Interface>

Interface::getImplementation()

{

 return std::make_shared<NullImpl>();

}

// Other implemented functions

5.7.2. Initialization

Before any presentation attack detection calls are made, the NIST test harness will call the initialization function of
Table 3. This function will be called BEFORE any calls to fork()7 are made. This function must be implemented.

Table 3 – Initialization

Prototype ReturnStatus initialize(

const std::string &configDir); Input

Description

This function initializes the implementation under test. It will be called by the NIST application before any calls to
the presentation attack detection functions of this API. The implementation under test should set all parameters.
This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to any other
functions via fork().

This function will be called from a single process/thread.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

Output
Parameters

None

Return Value See General Evaluation Specifications document for all valid return code values. This function must be
implemented.

5.7.3. Presentation Attack Detection

PAD implementations are often fielded in applications where the classes of risk are known. For example, in
authentication, a primary concern is impersonation. In background checks, the concern is of evasion/concealment.
The functions of Table 4 and Table 5 separately evaluate presentation attack detection with the intent of
impersonation and evasion, respectively. A single image or a sequence of video frames is provided to the functions for
detection of a presentation attack. Both PA imagery and non-PA (bona fide) imagery will be used, which will support
measurement of attack presentation classification error rate (APCER) with a bona fide classification error rate (BPCER).
Developers must implement one or both of these PAD functions. Multiple instances of the calling application may run
simultaneously or sequentially. These may be executed on different computers.

5.7.3.1. Presentation Attack Detection - Impersonation Intent

 Table 4 – Presentation Attack Detection – Impersonation Intent

Prototypes ReturnStatus detectImpersonationPA (

const Media &suspectedPA, Input

bool &isPA, Output (required)

double &score,

std::vector< std::pair<std::string, std::string> > &decisionProperties);

Output (required)

Output (optional)

7 http://man7.org/linux/man-pages/man2/fork.2.html

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 13 of 14

Description This function takes a piece of input media containing an image or sequence of video frames and outputs a binary
decision on whether the media represents a PA and a "padiness" score on [-1, 1] representing how confident the
algorithm is that the piece of media contains a PA. A value of -1 means certainty that the media does not contain
a PA, and +1 represents certainty that the media does contain a PA. A value near 0 will indicate uncertainty.
Developers may optionally populate a vector of key-value string pairs to provide additional information and/or

descriptions on media properties and their relationship to their PAD decision.

Input
Parameters

suspectedPA Input media of a single still image, or a sequence of video frames. The media will either
contain a PA with the intent of impersonating someone else or a bona fide.

Output
Parameters

isPA True if media contains a PA; False otherwise

score A real-valued score on [-1, 1]

Developers are cautioned that if software only ever reports a few discrete values, the
resulting error-tradeoff characteristic will have steps, such that end-users will not be able
to set thresholds that finely target some objective (e.g. BPCER = 0.01). This limitation will
not occur if the algorithm emits scores with a continuous distribution.

decisionProperties [OPTIONAL] A vector of key-value string pairs that developers can use to provide
additional information/descriptions on media properties and their relationship to the PAD
decision. There are no strictly-defined properties. Some examples include <”presentation
attack detected”, “replay attack”>, <”presentation attack detected”, “face mask”>,
<”unable to make PAD determination”, “no face detected”>, etc.

Return Value See General Evaluation Specifications document for all valid return code values.

5.7.3.2. Presentation Attack Detection - Evasion Intent

Table 5 – Presentation Attack Detection – Evasion Intent

Prototypes

ReturnStatus detectEvasionPA(

const Media &suspectedPA, Input

bool &isPA, Output (required)

double &score,

std::vector< std::pair<std::string, std::string> > &decisionProperties);

Output (required)

Output (optional)

Description This function takes a piece of input media containing an image or sequence of video frames and outputs a binary
decision on whether the media represents a PA and a "padiness" score on [-1, 1] representing how confident the
algorithm is that the piece of media contains a PA. A value of -1 means certainty that the media does not contain
a PA, and +1 represents certainty that the media does contain a PA. A value near 0 will indicate uncertainty.
Developers may optionally populate a vector of key-value string pairs to provide additional information and/or
descriptions on media properties and their relationship to their PAD decision.

Input
Parameters

suspectedPA Input media of a single still image, or a sequence of video frames. The media will
either contain a PA with the intent of evading or concealing the subject's true
identity or a bona fide.

Output
Parameters

isPA True if media contains a PA; False otherwise

 score A real-valued score on [-1, 1]

Developers are cautioned that if software only ever reports a few discrete values,
the resulting error-tradeoff characteristic will have steps, such that end-users will
not be able to set thresholds that finely target some objective (e.g. BPCER = 0.01).
This limitation will not occur if the algorithm emits scores with a continuous
distribution.

 decisionProperties [OPTIONAL] A vector of key-value string pairs that developers can use to provide
additional information/descriptions on media properties and their relationship to
the PAD decision. There are no strictly-defined properties. Some examples

FRVT PAD

NIST Concept, Evaluation Plan, and API Page 14 of 14

include <”presentation attack detected”, “face mask”>, <”presentation attack
detected”, “exaggerated expression”>, etc.

Return Value See General Evaluation Specifications document for all valid return code values.

	1. PAD
	1.1. Scope
	1.1.1. Physical (Analog) vs. Digital Attacks
	1.1.2. Hardware vs. Software-based PAD
	1.1.3. Offline Testing

	1.2. General FRVT Evaluation Specifications
	1.3. Reporting
	1.4. Accuracy metrics
	1.5. Time limits

	2. Rules for participation
	2.1. Participation agreement
	2.2. Validation
	2.3. Number and Schedule of Submissions

	3. Data structures supporting the API
	4. Implementation Library Filename
	5. API specification
	5.1. Header File
	5.2. Namespace
	5.3. Input Media
	5.4. Algorithmic behavior
	5.5. Demographic Bias
	5.6. PAD score, calibration, thresholds, metrics calculation
	5.7. API
	5.7.1. Interface
	5.7.2. Initialization
	5.7.3. Presentation Attack Detection
	5.7.3.1. Presentation Attack Detection - Impersonation Intent
	5.7.3.2. Presentation Attack Detection - Evasion Intent

