
Face Recognition Vendor Test
Ongoing

General Evaluation Specifications
VERSION 3.0

Patrick Grother

Mei Ngan
Kayee Hanaoka

Information Access Division
Information Technology Laboratory

Contact via frvt@nist.gov

April 6, 2023

 1

mailto:frvt@nist.gov

FRVT Ongoing

NIST General Evaluation Specifications Page 1 of 7

Revision History 2

 3

 4

Date Version Description

April 1, 2019 1.0 Initial document

September 9, 2020 1.1 Update operating system to CentOS 8.2 and compiler to g++ 8.3.1

Adjust the legal similarity score range

February 14, 2022 1.2 Update operating system to Ubuntu 20.04.3 and compiler to g++ 9.3.0

August 29, 2022 2.0 Remove Section 8 and link to current/definitive data structures header file on
GitHub

April 6, 2023 3.0 Add support for iris images; and make text generic for face or iris or
multimodal

 5

FRVT Ongoing

NIST General Evaluation Specifications Page 2 of 7

Table of Contents 6

1. Audience .. 3 7
2. Rules for Participation.. 3 8

2.1. Participation Agreement .. 3 9
2.2. Validation ... 3 10
2.3. Number and Schedule of Submissions ... 3 11

3. Reporting.. 3 12
3.1. Version Control... 3 13

4. Hardware specification .. 4 14
5. Operating system, compilation, and linking environment .. 4 15
6. Software and Documentation.. 5 16

6.1. Library and Platform Requirements ... 5 17
6.2. Configuration and developer-defined data.. 5 18
6.3. A Note on Training.. 5 19
6.4. Submission folder hierarchy ... 5 20
6.5. Installation and Usage .. 6 21
6.6. Documentation... 6 22
6.7. Modes of operation .. 6 23

7. Runtime behavior .. 6 24
7.1. Interactive behavior, stdout, logging ... 6 25
7.2. Exception Handling ... 6 26
7.3. External communication .. 6 27
7.4. Stateless behavior .. 6 28
7.5. Single-thread Requirement/Parallelization.. 6 29

8. Data structures supporting the API ... 7 30
 31

List of Tables 32

33

FRVT Ongoing

NIST General Evaluation Specifications Page 3 of 7

1. Audience 34

Participation in FRVT is open to any organization worldwide. There is no charge for participation. The target audience is 35
researchers and developers of FR algorithms. While NIST intends to evaluate stable technologies that could be readily 36
made operational, the test is also open to experimental, prototype and other technologies. All algorithms must be 37
submitted as implementations of the API defined in the specific test’s API document. 38

2. Rules for Participation 39

2.1. Participation Agreement 40

A participant must properly follow, complete, and submit the FRVT Participation Agreement. This must be done once, 41
either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for each submitted 42
implementation thereafter UNLESS there are major organizational changes to the submitting entity. 43

NOTE If an organization updates their cryptographic signing key, they must send a new completed participation 44
agreement submission for this evaluation, with the fingerprint of their public key. 45

2.2. Validation 46

Prior to submission, all participants must run their software through the provided corresponding validation package for 47
the test they wish to enter. The validation package will be made available at https://github.com/usnistgov/frvt. The 48
purpose of validation is to ensure consistent algorithm output between the participant’s execution and NIST’s execution. 49

2.3. Number and Schedule of Submissions 50

Participants may send one submission as often as every four calendar months from the last submission for evaluation. 51
NIST will evaluate implementations on a first-come-first-served basis, and quickly publish results. 52

3. Reporting 53

Unless otherwise specified for a specific test, for all algorithms that complete the evaluations, NIST will post performance 54
results on the NIST FRVT website. NIST will maintain an email list to inform interested parties of updates to the website. 55
Artifacts will include a leaderboard highlighting the top performing submissions in various areas (e.g., accuracy, speed 56
etc.) and individual implementation-specific report cards. NIST will maintain reporting on the two most recent algorithm 57
submissions from any organization. In the event an algorithm is no longer operable (e.g., license expiration, etc.), that 58
algorithm will be retired from the evaluation. Prior submission results will be archived but remain accessible via a public 59
link. 60

Important: This is an open test in which NIST will identify the algorithm and the developing organization. Algorithm 61
results will be attributed to the developer. Results will be machine generated (i.e. scripted) and will include timing, 62
accuracy and other performance results. These will be posted alongside results from other implementations. Results will 63
be expanded and modified as additional implementations are tested, and as analyses are implemented. Results may be 64
regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analysis is added. 65

NIST may additionally report results in workshops, conferences, conference papers and presentations, journal articles and 66
technical reports. 67

3.1. Version Control 68

Developers must submit a version.txt file in the doc/ folder that accompanies their algorithm – see Section 6.4. The string 69
in this file should allow the developer to associate results that appear in NIST reports with the submitted algorithm. This 70
is intended to allow end-users to obtain productized versions of the prototypes submitted to NIST. NIST will publish the 71
contents of version.txt. NIST has previously published MD5 hashes of the core libraries for this purpose. 72

https://github.com/usnistgov/frvt

FRVT Ongoing

NIST General Evaluation Specifications Page 4 of 7

4. Hardware specification 73

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 74
computer blades that may be used in the testing. Each machine has at least 128 GB of memory. We anticipate that 16 75
processes can be run without time slicing, though NIST will handle all multiprocessing work via fork()1. Participant-76

initiated multiprocessing is not permitted. 77

All implementations shall use 64 bit addressing. 78

NIST intends to support highly optimized algorithms by specifying the runtime hardware. We use multiple computers 79
including the following: 80

― Intel® Xeon® Gold 6254 CPU @ 3.10GHz 81

― Intel® Xeon® E5-2630 v4 CPU @ 2.20GHz2 82

― Intel® Xeon® E5-2680 v4 CPU @ 2.4GHz2 83

― Intel® Xeon® Gold 6140 CPU @ 2.30GHz3 84

All timing tests will be measured on Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz. FRVT tests will not support the use of 85
Graphics Processing Units (GPUs). 86

5. Operating system, compilation, and linking environment 87

The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 88
from https://nigos.nist.gov/evaluations/ubuntu-20.04.3-live-server-amd64.iso which is the 64-bit version of Ubuntu 89
20.04.3 LTS (Focal Fossa). 90

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 91
under Ubuntu 20.04.3. 92

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 93
in a format that is dynamically-linkable using the C++17 compiler g++ version 9.3.0. 94

A typical link line might be 95

g++ -I. -Wall -m64 -o frvt11 frvt11.cpp -L. –lfrvt_11_acme_007 96

The Standard C++ library should be used for development. Header files containing API function prototypes will be 97
provided separately for each FRVT track and documented in each of the corresponding API documents. 98

The header files will be made available to implementers at https://github.com/usnistgov/frvt. All algorithm submissions 99
will be compiled against the officially published header files – developers should not alter the header files when compiling 100
and building their libraries. 101

All compilation and testing will be performed on x86_64 platforms. Thus, participants are strongly advised to verify 102
library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 103
problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 104

 105

1 http://man7.org/linux/man-pages/man2/fork.2.html
2 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe
popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdseed adx smap xsaveopt cqm_llc
cqm_occup_llc
3 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe
popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx avx512f rdseed adx smap clflushopt
avx512cd xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc

https://nigos.nist.gov/evaluations/ubuntu-20.04.3-live-server-amd64.iso
https://github.com/usnistgov/frvt

FRVT Ongoing

NIST General Evaluation Specifications Page 5 of 7

6. Software and Documentation 106

6.1. Library and Platform Requirements 107

Participants shall provide NIST with binary code only (i.e. no source code). The implementation should be submitted in 108
the form of a dynamically-linked library file. 109

The core library shall be named according to “Implementation Library Filename” documented in each API document. The 110
library name will generally follow the convention: libfrvt_<track>_<provider>_<sequence>.so. Additional supplemental 111
libraries may be submitted that support this “core” library file (i.e. the “core” library file may have dependencies 112
implemented in these other libraries). Supplemental libraries may have any name, but the “core” library must be 113
dependent on supplemental libraries in order to be linked correctly. The only library that will be explicitly linked to the 114
test driver is the “core” library. 115

Intel Integrated Performance Primitives (IPP) ® libraries are permitted if they are delivered as a part of the developer-116
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 117
libraries shall not prevent running on CPUs that do not support IPP. Please take note that some IPP functions are 118
multithreaded and threaded implementations are prohibited. 119

Developers may obviously use common deep learning frameworks (e.g. Caffe, TensorFlow, etc.) and should submit those 120
dependencies as supplemental libraries. NIST has successfully received and run implementations leveraging such deep 121
learning frameworks in other evaluations with no issues. 122

Do not include any standard libraries (e.g., libc.so, libgcc.so, etc.) that come with the operating system and/or compilation 123
environment in your submission. The NIST test harness will handle all image I/O, so do not include JPEG or PNG libraries 124
(i.e., libjpg.so, libpng.so) in your submission. If you need to include those libraries for other reasons, please contact NIST 125
prior to your submission. NIST will report the size of the supplied libraries. 126

Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted 127
library name. 128

6.2. Configuration and developer-defined data 129

The implementation under test may be supplied with configuration files and supporting data files. NIST will report the 130
size of the supplied configuration files. 131

6.3. A Note on Training 132

NIST and the FRVT program do not train biometric recognition algorithms. We do not provide training data to software, 133
and software is prohibited from adapting to any data we pass to the algorithms. Training of biometric recognition 134
algorithms is not a turn-key operation; instead it is typically an extended process involving researchers curating suitable 135
training sets, establishing architectures and hyperparameters, and running trials over days or weeks, and then evaluating 136
the output. The result of such a process, which is often iterative, is usually a “trained model” i.e. static data and 137
parameters that can be saved and provided to NIST as an integral part of the black-box recognition engine. NIST does not 138
support training, because our tests seek to mimic operational reality and, there, algorithms are almost always shipped 139
and used “as is” without any training or adaptation to customer data. The representation of the biometric characteristic, 140
as described by the “model”, is fixed until the software is upgraded. 141

6.4. Submission folder hierarchy 142

Participant submissions shall contain the following folders at the top level 143

― lib/ - contains all participant-supplied software libraries 144

― config/ - contains all configuration and developer-defined data, e.g., trained models 145

― doc/ - contains version.txt, which documents versioning information for the submitted software and any other 146
participant-provided documentation regarding the submission 147

― validation/ - contains validation output 148

FRVT Ongoing

NIST General Evaluation Specifications Page 6 of 7

6.5. Installation and Usage 149

The implementation shall be installable using simple file copy methods. It shall not require the use of a separate 150
installation program and shall be executable on any number of machines without requiring additional machine-specific 151
license control procedures or activation. The implementation shall not use nor enforce any usage controls or limits based 152
on licenses, number of executions, presence of temporary files, etc. The implementation shall remain operable for at 153
least six months from the submission date. 154

6.6. Documentation 155

Participants shall provide documentation of additional functionality or behavior beyond that specified here. 156

6.7. Modes of operation 157

Implementations shall not require NIST to switch “modes” of operation or algorithm parameters. For example, the use of 158
two different feature extractors must either operate automatically or be split across two separate library submissions. 159

7. Runtime behavior 160

7.1. Interactive behavior, stdout, logging 161

The implementation will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted 162
library shall: 163

― Not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require terminal 164
interaction e.g. reads from “standard input”. 165

― Run quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. 166

― Only if requested by NIST for debugging, include a logging facility in which debugging messages are written to a log 167
file whose name includes the provider and library identifiers and the process PID. 168

7.2. Exception Handling 169

The application should include error/exception handling so that in the case of a fatal error, the return code is still 170
provided to the calling application. 171

7.3. External communication 172

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 173
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 174
other process), nor read from such, nor otherwise manipulate it. If detected, NIST will take appropriate steps, including 175
but not limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 176
documentation of the activity in published reports. 177

7.4. Stateless behavior 178

All components in this test shall be stateless, except as noted. This applies to localization and detection, feature 179
extraction, and matching. Thus, all functions should give identical output, for a given input, independent of the runtime 180
history. NIST will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, 181
including but not limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, 182
and documentation of the activity in published reports. 183

7.5. Single-thread Requirement/Parallelization 184

Implementations must run in single-threaded mode, because NIST will parallelize the test by dividing the workload across 185
many cores and many machines. Implementations must ensure that there are no issues with their software being 186
parallelized via the fork() function. Developers should take caution with checking threading when using third-party 187
frameworks (e.g., TensorFlow, MXNet, etc.). 188

FRVT Ongoing

NIST General Evaluation Specifications Page 7 of 7

8. Data structures supporting the API 189

The common data structures used to support the C++ API functions for the various FRVT tasks are published on GitHub at 190
https://github.com/usnistgov/frvt/blob/master/common/src/include/frvt_structs.h. The actual C++ API function 191
prototypes themselves are documented separately for each test and are available on the website for each track. 192

https://github.com/usnistgov/frvt/blob/master/common/src/include/frvt_structs.h

	1.
	1.
	1.
	1.
	1.
	1.
	1.
	1.
	1.
	1. Audience
	2. Rules for Participation
	2.1. Participation Agreement
	2.2. Validation
	2.3. Number and Schedule of Submissions

	3. Reporting
	3.1. Version Control

	1.
	4. Hardware specification
	5. Operating system, compilation, and linking environment
	6. Software and Documentation
	6.1. Library and Platform Requirements
	6.2. Configuration and developer-defined data
	6.3. A Note on Training
	6.4. Submission folder hierarchy
	6.5. Installation and Usage
	6.6. Documentation
	6.7. Modes of operation

	7. Runtime behavior
	7.1. Interactive behavior, stdout, logging
	7.2. Exception Handling
	7.3. External communication
	7.4. Stateless behavior
	7.5. Single-thread Requirement/Parallelization

	8. Data structures supporting the API

