

Face Recognition Vendor Test
Ongoing

Still Face and Iris 1:N Identification
Application Programming Interface

VERSION 3.0

Patrick Grother
Mei Ngan

Kayee Hanaoka
Information Access Division

Information Technology Laboratory

Jan 18, 2024

FRVT Ongoing 1:N

NIST API Page 2 of 14

Revision History

Date Version Description
FRVT 2018 Prior evaluation documented in NIST IR 8238
April 1, 2019 1.0 Initial document
September 9, 2020 1.0.1 - Update link to General Evaluation Specifications document

- Adjust the legal similarity score range
August 16, 2021 1.0.2 Removed FRVT 1:1 pre-requisite. Developers may now participate in FRVT 1:N

without having to participate in FRVT 1:1
November 3, 2021 1.0.3 - Added clarification that multi-threading is allowed in the finalizeEnrollment()

function
- Removed holdover text from 2018
- Added clarification on function time limits to be based on a single core

January 7, 2022 2.0 Add second version of createTemplate() function from Section 8.4.4 that supports
the existence of multiple people in an image

April 6, 2023 3.0 1. Add support for iris images, allowing 1:N evaluation of iris recognition
algorithms – this replaces the previous IREX 10 submission protocol.
2. Allow evaluation of multimodal (face + iris) algorithms.
3. Specify new time limits and faster CPU processor for measurement of
processing duration.
4. Add support for non-visible illumination wavelengths for iris and face

FRVT Ongoing 1:N

NIST API Page 3 of 14

Table of Contents 1

1. FRVT 1:N ... 4 2
1.1. Scope ... 4 3

2. General Evaluation Specifications .. 4 4
3. Core accuracy metrics .. 4 5
4. Application relevance ... 4 6
5. Limits .. 5 7

5.1. Time limits ... 5 8
5.2. Template size limits .. 5 9

6. Implementation Library Filename .. 5 10
7. Data structures supporting the API .. 5 11

7.1. File structure for enrolled template collection ... 6 12
8. API specification ... 8 13

8.1. Header File .. 8 14
8.2. Namespace ... 8 15
8.3. Overview ... 8 16
8.4. API ... 9 17

 18
List of Tables 19

Table 1 – Processing time limits in seconds, per 640 x 480 image ... 5 20
Table 2 – Enrollment dataset template manifest ... 6 21
Table 3 – Labels describing gallery composition .. 7 22
Table 4 – Structure for a candidate .. 7 23
Table 5 – Procedural overview of the 1:N test ... 8 24
Table 6 – Template creation initialization .. 10 25
Table 7 – Template Creation/Feature Extraction from one or more images of exactly one person 11 26
Table 8 – Template Creation/Feature Extraction of one or more people detected from an image 12 27
Table 9 – Enrollment finalization .. 13 28
Table 10 – Identification initialization .. 14 29
Table 11 – Identification search ... 14 30
 31

32

FRVT Ongoing 1:N

NIST API Page 4 of 14

1. FRVT 1:N and IREX 1:N 33

1.1. Scope 34
This document establishes a concept of operations and an application programming interface (API) for evaluation of one-35
to-many face recognition algorithms, one-to-many iris recognition algorithms, and algorithms that can extract information 36
from face and iris images of the same person to implement multimodal one-to-many recognition. 37

 38
Developers may submit a one-to-many search algorithm that operates on 39

- Face images only, or 40

- Iris images only, or 41

- Multimodal samples comprised of both face and iris images. The implementation must handle some unimodal 42
samples – for example, a gallery for which 80% of enrolled samples are face and iris, but 10% of samples are 43
face-only, and 10% are iris-only. 44

2. General Evaluation Specifications 45

General and common information shared between all Ongoing FRVT tracks are documented in the FRVT General 46
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for 47
participation, hardware and operating system environment, software requirements, reporting, and common data 48
structures that support the APIs. 49

3. Core accuracy metrics 50

This test will execute open-universe searches. That is, some proportion of searches will not have an enrolled mate. From 51
the candidate lists returned by algorithms, NIST will compute and report accuracy metrics, primarily: 52

― False negative identification rate (FNIR) – the proportion of mated searches which do not yield a mate within the top 53
R ranks and at or above threshold, T. 54

― False positive identification rate (FPIR) – the proportion of non-mated searches returning any (1 or more) candidates 55
at or above a threshold, T. 56

― Selectivity – the average number of non-mated candidates returned at or above a threshold, T. This quantity has a 57
value running from 0 to L, the number of candidates requested. It may be fractional, as it is estimated as a count 58
divided by the number of non-mate searches. 59

These quantities are estimated from candidate lists produced by requesting the top L most similar candidates to the 60
search. We do not intend to execute searches requesting only those candidates above a specified input threshold. 61

We will report FNIR, FPIR and selectivity by sweeping the threshold over the interval [0, infinity). Error tradeoff plots (FNIR 62
vs. FPIR, parametric on threshold) will be the primary reporting mechanism. 63

We will also report FNIR by sweeping a rank R over the interval [1, L] to produce (the complement of) the cumulative 64
match characteristic (CMC). 65

We will report proportions of template generations that fail to produce a viable template – i.e. failure to enroll rate (FTE). 66

4. Application relevance 67

NIST anticipates reporting FNIR in two FPIR regimes: 68

― Investigation mode: Given candidate lists and a threshold of zero, the CMC metric is relevant to investigational 69
applications where human examiners will adjudicate candidates in decreasing order of similarity. This is common in 70
law enforcement “lead generation”. 71

https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT Ongoing 1:N

NIST API Page 5 of 14

― Identification mode: We will apply (high) thresholds to candidate lists and report FNIR values relevant to 72
identification applications where human labor is matched to the tolerable number of false positives per unit time. 73
This is used in duplicate-ID detection searches for credential issuance and, more so, in surveillance applications. 74

Developers are encouraged to submit variants tailored to minimize FNIR in the two FPIR regimes, and to explore the 75
speed-accuracy trade space. 76

5. Limits 77

5.1. Time limits 78
The elemental functions of the implementations shall execute under the time constraints of Table 1. These time limits 79
apply to the function call invocations defined in section 8. Assuming the times are random variables, NIST cannot regulate 80
the maximum value, so the time limits are median values. This means that the median of all operations should take less 81
than the identified duration. Timing will be estimated from at least 1000 separate invocations of each elemental function. 82

Timing will be measured as wall clock time on a fixed Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz computer. Durations are 83
measured by wrapping API function in calls to the std::chrono() high-resolution timer. 84

Table 1 – Processing time limits in seconds, per 640 x 480 image 85

Function 1:N Face 1:N Iris 1:N Face + Iris
Template Generation: Conversion of one 640x480 image to
one template

1.5 sec (1 core) 1.5 sec (1 core) 3.0 seconds
(one face + one eye)

1:N finalization (on gallery of 1 million enrolled templates)
e.g. for building of a fast search data structure

40000 sec 40000 sec 80000

1:N template search for:
- N = 1 million enrolled templates
- L = 50 returned candidates

10 sec (1 core) 25 sec (1 core) 25 sec (1 core)

5.2. Template size limits 86
There are no template size limits. However, NIST anticipates evaluating performance with N in excess of 107. For 87
implementations that represent a gallery in memory with a linear data structure, the memory of our machines implies a 88
limit on template sizes. For example, given machines equipped with 768GB of memory, and N = 25 million, templates 89
cannot exceed 32KB without tapping into virtual memory. 90

The API, however, supports multi-stage searches and read access of the disk during the 1:N search. Disk access would 91
likely be very slow. In all cases, algorithms shall meet the duration limits given in Table 1, with linear gallery size scaling. 92

6. Implementation Library Filename 93

- The core library shall be named as libfrvt_1N_<provider>_<sequence>.so, with 94
- provider: non-infringing name of the main provider. Do not use names of product lines, and do not include 95

organizational legal organizational abbreviations such as LLC, Corp, Gmbh, Ltd. Example: acme. 96
- sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to 97

NIST. Example: 007 98
 99
Example core library names: libfrvt_1N_acme_000.so, libfrvt_1N_myface_000.so, etc. 100
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted 101
library name. 102

7. Data structures supporting the API 103

The general data structures supporting this API are documented in the FRVT - General Evaluation Specifications document 104
available at https://pages.nist.gov/frvt/api/FRVT_common.pdf. The data structures specific to this particular test are 105
described within this document. The header files are published at https://github.com/usnistgov/frvt. 106

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt

FRVT Ongoing 1:N

NIST API Page 6 of 14

7.1. File structure for enrolled template collection 107
To support these 1:N tests, NIST will concatenate enrollment templates into a single large file, the EDB (i.e. enrollment 108
database). The EDB is a simple binary concatenation of proprietary templates. There is no header. There are no 109
delimiters. The EDB may be many gigabytes in length. 110

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 111
has the format shown as an example in Table 2. If the EDB contains N templates, the manifest will contain N lines. The 112
fields are space (ASCII decimal 32) delimited. There are three fields. Strictly speaking, the third column is redundant. 113

Important: If a call to the template generation function fails, or does not return a template, NIST will include the Template 114
ID in the manifest with size 0. Implementations must handle this appropriately. 115

Table 2 – Enrollment dataset template manifest 116
Field name Template ID Template Length Position of first byte in EDB
Datatype required std::string uint64_t uint64_t
Example lines of a manifest file appear
to the right. Lines 1, 2, 3 and N appear.

90201744 1024 0
person01 1536 1024
7456433 512 2560
...
subject12 1024 307200000

 117
The EDB scheme avoids the file system overhead associated with storing millions of small individual files. 118

7.1.1. Gallery Type 119

 120

 121

UNCONSOLIDATED G3CONSOLIDATED G1

The algorithm is given k >=
1 images of each individual
but under separate IDs.

Num. people, N = 6
Num. images, M = 6
Num. identifiers, Q = 6
Num. createTemplate
calls, T = 6

Num. people, N = 6
Num. images, M = 7
Num. identifiers, Q = 7
Num. createTemplate calls,
T = 7

Num. people, N = 6
Num. images, M = 9
Num. identifiers, Q = 6
Num. createTemplate
calls, T = 6

CONSOLIDATED G2

The algorithm is given k
>= 1 images of each
individual under a single
identifier.

Same
person
under
two IDs

CONSOLIDATED
MULTIMODAL G4

The algorithm is given k >=
1 face images and n = 1 iris
images of each individual.

Num. people, N = 6
Num. images, M = 12
Num. identifiers, Q = 6
Num. createTemplate calls,
T = 6

The operational case
corresponds to event-based
enrollment where person
identity information is
either not known or
ignored.

The algorithm is given
k = 1 images of each
individual under a
single identifier.

CONSOLIDATED
MULTIMODAL G5

The algorithm is given k >=
1 face images and n = 2 iris
images of each individual.

Num. people, N = 6
Num. images, M = 18
Num. identifiers, Q = 6
Num. createTemplate calls,
T = 6

FRVT Ongoing 1:N

NIST API Page 7 of 14

Figure 1 – Illustration of consolidated versus unconsolidated enrollment database3 122

Figure 1 illustrates four examples of two types of galleries: 123

― Consolidated: The database is formed by enrolling all images of a subject under a common identity label. The result 124
is a gallery with N identities and N templates. This type of gallery presents us with the cleanest experimental design, 125
“one needle in a haystack” scenario. It allows algorithms to perform image and feature level fusion. Operationally it 126
requires high integrity biographical information to maintain. 127

― Unconsolidated: The database is formed by enrolling photographs without regard to whether the subject already has 128
already been enrolled or not. Under this scheme, different images of the same person can exist in the gallery under 129
different subject identifiers, that is, there are N identities, and M > N database entries. 130

During gallery finalization, algorithms will be provided with an enumerated label from Table 3 which specifies the type of 131
gallery being processed. 132

Table 3 – Labels describing gallery composition 133
Label as C++ enumeration Meaning
enum class GalleryType {
 Consolidated, Consolidated, subject-based enrollment
 Unconsolidated Unconsolidated, event-based or photo-based enrollment
};

7.1.2. Data structure for result of an identification search 134
All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 135
similar matching entries list first with lowest rank. The data structure shall be that of Table 4. 136

Table 4 – Structure for a candidate 137
 C++ code fragment Remarks
1. typedef struct Candidate
2. {
3. bool isAssigned; If the candidate computation succeeded, this value is set to true. False otherwise.

If value is set to false, score and templateId will be ignored entirely.
4. std::string templateId; The Template ID from the enrollment database manifest defined in clause 7.1.
5. double score; Measure of similarity or dissimilarity between the identification template and the enrolled

candidate.

- For face recognition, a similarity score - higher is more similar

- For iris recognition, a non-negative measure of dissimilarity (maybe a distance) -
lower is more similar

- For multimodal face and iris, a similarity score - higher is more similar

An algorithm is free to assign any value to a candidate. The distribution of values will have
an impact on the false-negative and false-positive identification rates.

The score values should be reported on the range that is used in the developer’s software
products. We require scores to be non-negative. Developers often use [0,1], for
example. Our test reports include various plots with threshold values e.g. FMR(T), to allow
end-users to set thresholds in operations. These plots may become difficult to interpret if
scores span many orders of magnitude.

6. } Candidate;
 138

3 The face images contained in this figure are from the publicly available Special Database 32 - Multiple Encounter Dataset (MEDS).
https://www.nist.gov/itl/iad/image-group/special-database-32-multiple-encounter-dataset-meds

https://www.nist.gov/itl/iad/image-group/special-database-32-multiple-encounter-dataset-meds

FRVT Ongoing 1:N

NIST API Page 8 of 14

8. API specification 139

FRVT 1:N and IREX 10 participants shall implement the relevant C++ prototyped interfaces of section 8. Full 140
documentation is available at https://usnistgov.github.io/IREX10/API/class_f_r_v_t__1_n_1_1_interface.html. C++ was 141
chosen in order to make use of some object-oriented features. 142

 143
Please note that included with the FRVT 1:N validation package (available at https://github.com/usnistgov/frvt) is a “null” 144
implementation of this API. The null implementation has no real functionality but demonstrates mechanically how one 145
could go about implementing this API. 146

8.1. Header File 147
The prototypes from this document will be written to a file named frvt1N.h and will be available to implementers at 148
https://github.com/usnistgov/frvt. 149

8.2. Namespace 150
All supporting data structures will be declared in the FRVT namespace. All API interfaces/function calls for this track will 151
be declared in the FRVT_1N namespace. 152

8.3. Overview 153
The 1:N identification application proceeds in three phases: enrollment, finalization and identification. The identification 154
phase includes separate probe feature extraction and search stages. 155

The design reflects the following testing objectives for 1:N implementations. 156

- support distributed enrollment on multiple machines, with multiple processes running in parallel
- allow recovery after a fatal exception, and measure the number of occurrences
- allow NIST to copy enrollment data onto many machines to support parallel testing
- respect the black-box nature of biometric templates
- extend complete freedom to the provider to use arbitrary algorithms
- support measurement of duration of core function calls
- support measurement of template size
- support measurement of template insertion and removal times into an enrollment database

Table 5 – Procedural overview of the 1:N test 157

Ph
as

e # Name Description Performance Metrics to
be reported by NIST

En
ro

llm
en

t

E1 Initialization initializeTemplateCreation(TemplateRole=Enrollment_1N)

Give the implementation the name of a directory where any provider-supplied
configuration data will have been placed by NIST. This location will otherwise be
empty.

The implementation is permitted read-only access to the configuration directory.

E2 Parallel Enrollment create{Face,Iris,FaceAndIris}Template(TemplateRole=Enrollment_1N)

For each of N individuals, pass K >= 1 images of the individual to the implementation for
conversion to a template. The implementation will return a template to the calling
application.

NIST's calling application will be responsible for storing all templates as binary files.
These will not be available to the implementation during this enrollment phase.

Multiple instances of the calling application may run simultaneously or sequentially.
These may be executing on different computers.

Statistics of the times
needed to enroll an
individual.

Statistics of the sizes of
created templates.

The incidence of failed
template creations.

https://usnistgov.github.io/IREX10/API/class_f_r_v_t__1_n_1_1_interface.html
https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt

FRVT Ongoing 1:N

NIST API Page 9 of 14

Ga
lle

ry
 F

in
al

iza
tio

n

F1 Finalization finalizeEnrollment()

Permanently finalize the enrollment directory. This supports, for example, adaptation
of the image-processing functions, adaptation of the representation, writing of a
manifest, indexing, and computation of statistical information over the enrollment
dataset.

The implementation is permitted read-write-delete access to the enrollment directory
and read-only access to the configuration directory during this phase.

Note: finalizeEnrollment() will be called in a separate process than the enrollment
functions.

Size of the enrollment
database as a function
of population size N.

Duration of this
operation. The time
needed to execute this
function shall be
reported with the
preceding enrollment
times.

Pr
ob

e
Te

m
pl

at
e

Cr
ea

tio
n

S1 Initialization initializeTemplateCreation(TemplateRole=Search_1N)

Give the implementation the name of a directory where any provider-supplied
configuration data will have been placed by NIST. This location will otherwise be
empty.

The implementation is permitted read-only access to the configuration directory.

Statistics of the time
needed for this
operation.

S2 Template
preparation

create{Face,Iris,FaceAndIris}Template(TemplateRole=Search_1N)

For each probe, create a template from K >= 1 images.

The result of this step is a search template.

Multiple instances of the calling application may run simultaneously or sequentially.
These may be executing on different computers.

Statistics of the time
needed for this
operation.

Statistics of the size of
the search template.

Se
ar

ch

S3 Initialization initializeIdentification()

Tell the implementation the location of an enrollment directory that contains the
gallery files produced from the finalize() function. The enrollment directory will always
contain a successfully finalized gallery (i.e. will never be empty). The implementation
should read all or some of the enrolled data into main memory, so that searches can
commence.

The implementation is permitted read-only access to the enrollment directory during
this phase.

Note: The search functions (initializeIdentification(), identifyTemplate()) will be called in
a separate process from the enrollment functions, therefore, you cannot assume that
initializeTemplateCreation() is called by the test harness prior to the search functions.

Statistics of the time
needed for this
operation.

S4 Search identifyTemplate()

A template is searched against the enrollment database.

Developers shall not attempt to improve the duration of the identifyTemplate()
function by offloading any of its processing into the template creation function.

Statistics of the time
needed for this
operation.

Accuracy metrics - Type
I + II error rates.

Failure rates.

8.4. API 158

8.4.1. Interface 159
The software under test must implement the interface Interface by subclassing this class and implementing each 160
method specified therein. 161

 C++ code fragment Remarks
1. Class Interface
2. {

public:

FRVT Ongoing 1:N

NIST API Page 10 of 14

3. static std::shared_ptr<Interface> getImplementation(); Factory method to return a managed pointer
to the Interface object. This function is
implemented by the submitted library and
must return a managed pointer to the
Interface object.

4. // Other functions to implement
5. };

There is one class (static) method declared in Interface. getImplementation() which must also be 162
implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the 163
implementation class. A typical implementation of this method is also shown below as an example. 164

 C++ code fragment Remarks
 #include “frvt1N.h”

using namespace FRVT_1N;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<Interface>
Interface::getImplementation()
{
 return std::make_shared<NullImpl>();
}
// Other implemented functions

8.4.2. Initialization of template creation 165
Before any feature extraction/template creation calls are made, the NIST test harness will call the initialization function of 166
Table 6. This function will be called BEFORE any calls to fork() are made. 167

Table 6 – Template creation initialization 168

Prototype ReturnStatus initializeTemplateCreation(
const std::string &configDir, Input
TemplateRole role); Input

Description

This function initializes the implementation under test and sets all needed parameters in preparation for template
creation. This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to the
template creation function via fork().

This function will be called from a single process/thread.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

role A value from the TemplateRole enumeration that indicates the intended usage of the
template to be generated. In this case, either Enrollment_1N or Search_1N.

Output
Parameters

None

Return Value See General Evaluation Specifications document for all valid return code values.

8.4.3. Template Creation from one or more images of exactly one person 169
The functions of Table 7 supports role-specific generation of template data from one or more images of exactly one 170
person. A vector of face or iris or face+iris images is converted to a single template using this function. 171

NOTE: For any given submission, developers may only implement ONE of the functions in Table 7. That is, a single 172
submission may only support face recognition or iris recognition or multimodal recognition. For the functions that are not 173
implemented, the function shall return ReturnCode::NotImplemented. 174

https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT Ongoing 1:N

NIST API Page 11 of 14

Some of the proposed datasets include K > 2 images per of a person’s iris or face. This affords the possibility to model a 175
recognition scenario in which a new image of a person’s face or iris is compared against all prior images. Use of multiple 176
images per person has been shown to elevate accuracy over a single image. 177

For this test, NIST will enroll K >= 1 images under each identity. Normally the probe will consist of a single face image or 178
an image for each iris, but NIST may examine the case where multiple images of a single biometric are enrolled. 179
Ordinarily, the probe images will be captured after the enrolled images of a person. The method by which the face 180
and/or iris recognition implementation exploits multiple images is not regulated. The test seeks to evaluate developer 181
provided technology for multi-presentation fusion. 182

This document defines a template to be the result of applying feature extraction to a set of K >= 1 images. An algorithm 183
might internally fuse K feature sets into a single model or maintain them separately - in any case the resulting proprietary 184
template is contained in a contiguous block of data. All identification functions operate on such multi-image templates. 185

Table 7 – Template Creation/Feature Extraction from one or more images of exactly one person’s face or iris 186

Prototype for
face
recognition

ReturnStatus createFaceTemplate(
const std::vector<Image> &faces, Input
TemplateRole role, Input
std::vector<uint8_t> &templ,
std::vector<EyePair> &eyeCoordinates);

Output
Output

Prototype for
iris
recognition

ReturnStatus createIrisTemplate(
const std::vector<Image> &irises, Input
TemplateRole role, Input
std::vector<uint8_t> &templ,
std::vector<IrisAnnulus> &irisLocations);

Output
Output

Prototype for
multimodal
face + iris
recognition

ReturnStatus createFaceAndIrisTemplate(
const std::vector<Image> &facesIrises, Input
TemplateRole role, Input
std::vector<uint8_t> &templ); Output

Description Takes a vector of image(s) and outputs a proprietary template and associated coordinates. The vector to store the
template will be initially empty, and it is up to the implementation to populate it with the appropriate data.

For enrollment templates (TemplateRole=Enrollment_1N): If the function executes correctly (i.e., returns a successful
return code), the template will be enrolled into a gallery. The NIST calling application may store the resulting
template, concatenate many templates, and pass the result to the enrollment finalization function (see section 8.4.5).
The resulting template may also be inserted immediately into previously finalized gallery. When the implementation
fails to produce a template (i.e., returns a non-successful return code), it shall still return a blank template (which can
be zero bytes in length). The template will be included in the enrollment database/manifest like all other enrollment
templates but is not expected to contain any feature information.

IMPORTANT: NIST's application writes the template to disk. Any data needed during subsequent searches should be
included in the template or created from the templates during the enrollment finalization function of section 8.4.5.

For identification/probe templates (TemplateRole=Search_1N): The NIST calling application may commit the template
to permanent storage or may keep it only in memory (the developer implementation does not need to know). If the
function returns a non-successful return status, the output template will not be used in subsequent search
operations.

Input
Parameters

faces, irises, or faceIrises Input face, iris, or face+iris images
Note: For multimodal (face+iris), the implementation must handle some unimodal samples
- for example, a gallery for which 80% of enrolled samples are face and iris, but 10% of
samples are face-only, and 10% are iris-only.

role Label describing the type/role of the template to be generated. In this case, it will either
be Enrollment_1N or Search_1N.

Output
Parameters

templ The output template. The format is entirely unregulated. This will be an empty vector
when passed into the function, and the implementation can resize and populate it with the
appropriate data.

FRVT Ongoing 1:N

NIST API Page 12 of 14

eyeCoordinates or
irisLocations

The function shall return
- For face images, eye coordinates – the estimated eye centers for left and right eyes
- For iris images – iris locations - estimates of the limbus center and pupil and limbus

radii
Return Value See General Evaluation Specifications document for all valid return code values.

8.4.4. Template Creation of one or more people detected from a face image 187
This function supports role-specific generation of one or more templates that correspond to one or more people’s faces 188
are detected in an image. Some of the proposed test images include K > 1 persons for some images and situations where 189
the subject of interest may or may not be the foreground face (largest face in the image). This function allows the 190
implementation to return a template for each person detected in the image. For testing, NIST will 191

1. Enroll one more templates from a single call to this function or the function of Table 7 192

2. Generate one or more search templates from a single call to this function or the function of Table 7 193

3. Search all templates generated from 2) against the enrollment database 194

4. Use the maximum similarity score or best rank across all searches from 3) in our calculation of FNIR and FPIR 195
(this applies to both genuine and imposter searches) 196

NOTE 1: The implementation must be able to match any combination of enrollment and search templates generated 197
from this function and the function of Table 7. In other words, the output template format should be consistent between 198
this function and the function of Table 7. 199

NOTE 2: This function will not be called with iris images. 200

 201

Table 8 – Template Creation/Feature Extraction of one or more people detected from an image 202

Prototypes ReturnStatus createFaceTemplate(
const Image &image, Input
TemplateRole role, Input
std::vector<std::vector<uint8_t>> &templs,
std::vector<EyePair> &eyeCoordinates);

Output
Output

Description This function supports template generation from one or more people detected in a single image. It takes a single
input image and outputs one or more proprietary templates and associated eye coordinates based on the number of
people detected. The vectors to store the template(s) and eye coordinates will be initially empty, and it is up to the
implementation to populate them with the appropriate data.

For enrollment templates (TemplateRole=Enrollment_1N): If the function executes correctly (i.e. returns a successful
return code), the template(s) will be enrolled into a gallery. The NIST calling application may store the resulting
template(s), concatenate many templates, and pass the result to the enrollment finalization function (see section
8.4.5). The resulting template(s) may also be inserted immediately into previously finalized gallery. When the
implementation fails to produce a template (i.e. returns a non-successful return code), it shall still return a blank
template (which can be zero bytes in length). The template will be included in the enrollment database/manifest like
all other enrollment templates, but is not expected to contain any feature information.

IMPORTANT: NIST's application writes the template to disk. Any data needed during subsequent searches should be
included in the template, or created from the templates during the enrollment finalization function of section 8.4.5.

For identification/probe templates (TemplateRole=Search_1N): The NIST calling application may commit the
template(s) to permanent storage, or may keep it only in memory (the developer implementation does not need to
know). If the function returns a non-successful return status, the output template(s) will not be used in subsequent
search operations.

Input
Parameters

image A single image that contains one or more people in the photo
role Label describing the type/role of the template to be generated. In this case, it will either be

Enrollment_1N or Search_1N.

https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT Ongoing 1:N

NIST API Page 13 of 14

Output
Parameters

templs A vector of output template(s). The format of the template(s) is entirely unregulated. This will
be an empty vector when passed into the function, and the implementation can resize and
populate it with the appropriate data.

eyeCoordinates For each person detected in the image, the function shall return the estimated eye centers. This
will be an empty vector when passed into the function, and the implementation shall populate it
with the appropriate number of entries. Values in eyeCoordinates[i] shall correspond to
templs[i].

Return Value See General Evaluation Specifications document for all valid return code values.

 203

8.4.5. Finalization 204
After all templates have been created, the function of Table 9 will be called. This freezes the enrollment data. After this 205
call the enrollment dataset will be forever read-only. 206

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 207
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 208
No output is expected from this function, except a return code. 209

Implementations shall not move the input data. Implementations shall not point to the input data. Implementations 210
should not assume the input data will be readable after the call. Implementations must, at a minimum, copy the input 211
data or otherwise extract what is needed for search. 212

Table 9 – Enrollment finalization 213

Prototypes ReturnStatus finalizeEnrollment(
const std::string &configDir, Input
const std::string &enrollmentDir, Input
const std::string &edbName, Input
const std::string &edbManifestName, Input
GalleryType galleryType); Input

Description This function takes the name of the top-level directory where the enrollment database (EDB) and its manifest have
been stored. These are described in section 7.1. The enrollment directory permissions will be read + write.

The function supports post-enrollment, developer-optional, book-keeping operations, statistical processing and
data re-ordering for fast in-memory searching. The function will generally be called in a separate process after all
the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably
do nothing.

This function will be called from a single process/thread. Implementation of this function does not need to be
single-threaded (i.e., developers may use multiple threads within this function).

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters or run-
time data files.

enrollmentDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section 7.1.
While the file will have read-write-delete permission, the implementation should only alter
the file if it preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name. This is a
NIST-provided input – implementers shall not internally hard-code or assume any values.

edbManifestName The name of a single file containing the EDB manifest of section 7.1.
The file may be opened directly. It is not necessary to prepend a directory name. This is a
NIST-provided input – implementers shall not internally hard-code or assume any values.

galleryType A label from Table 3 specifying the composition of the gallery.

https://pages.nist.gov/frvt/api/FRVT_common.pdf

FRVT Ongoing 1:N

NIST API Page 14 of 14

Output
Parameters

None

Return Value See General Evaluation Specifications document for all valid return code values.

8.4.6. Search Initialization 214
The function of Table 10 will be called once prior to one or more calls of the searching function of Table 11 and the gallery 215
insert and delete functions of Section 0. The function might set static internal variables so that the enrollment database is 216
available to the subsequent identification searches. This function will be called BEFORE any calls to fork() are made. 217

Table 10 – Identification initialization 218

Prototype ReturnStatus initializeIdentification(
const string &configDir, Input
const string &enrollmentDir); Input

Description This function reads whatever content is present in the enrollmentDir, for example a manifest placed there by the
finalizeEnrollment() function.
This function will be called from a single process/thread.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

enrollmentDir The read-only top-level directory in which enrollment data was placed. This directory
will contain the gallery files produced from the finalize() function. The enrollment
directory will always contain a successfully finalized gallery (i.e. will never be empty).

Return Value See General Evaluation Specifications document for all valid return code values.

8.4.7. Search 219
The function of Table 11 compares a proprietary identification template against the enrollment data and returns a 220
candidate list. 221

Table 11 – Identification search 222

Prototype ReturnStatus identifyTemplate (
const std::vector<uint8_t> &idTemplate, Input
const uint32_t candidateListLength, Input
std::vector<Candidate> &candidateList); Output

Description

This function searches a template against the enrollment set, and outputs a list of candidates. The candidateList
vector will initially be empty, and the implementation shall populate the vector with candidateListLength entries.

Input Parameters idTemplate A template generated from the template creation function - If the value returned
by that function was non-zero the contents of idTemplate will not be used and
this function (i.e. identifyTemplate) will not be called.

candidateListLength The number of candidates the search should return
Output
Parameters

candidateList A vector containing "candidateListLength " objects of candidates. The datatype is
defined in section 7.1.2. Each candidate shall be populated by the
implementation. The candidates shall appear in descending order of similarity -
i.e. most similar entries appear first.

Return Value See General Evaluation Specifications document for all valid return code values.
 223

NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0 £ L £ 224
200, and L << N. We will measure the dependence of search duration on L. 225

 227

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf

