

Face Analysis Technology Evaluation

Ongoing

Age Estimation And Verification (AEV)
Application Programming Interface (API)

VERSION 2.0

Kayee Hanaoka

Mei Ngan
Patrick Grother

Information Access Division
Information Technology Laboratory

April 11, 2025

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 1 of 8

TABLE OF CONTENTS

1. FACE ANALYSIS TECHNOLOGY EVALUATION: AGE ESTIMATION AND VERIFICATION (FATE AEV) 1

1.1. SCOPE 2

1.2. GENERAL EVALUATION SPECIFICATIONS 2

1.3. REPORTING 2

1.4. PERFORMANCE METRICS 3

1.5. IMAGE DATASETS 3

2. IMPLEMENTATION REQUIREMENTS 4

2.1. LIBRARY NAMING CONVENTION 4

2.2. REQUIRED EXECUTION DURATIONS 4

3. DATA STRUCTURES AND DATATYPES SUPPORTING THE API 4

4. API SPECIFICATION 5

4.1. HEADER FILE 5

4.2. NAMESPACE 5

4.3. API 5

LIST OF TABLES

TABLE 1 – PROCESSING TIME LIMITS IN MILLISECONDS FOR A SINGLE 640 X 480 IMAGE OF ONE FACE 2
TABLE 2 – INITIALIZATION 5
TABLE 3 – ESTIMATE AGE FROM AN INPUT MEDIA 5
TABLE 4 – ESTIMATE AGE GIVEN GROUND TRUTH FROM SEPARATE MEDIA 6
TABLE 5 – VERIFICATION THAT SUBJECT IN INPUT MEDIA IS COMPLIANT WITH A GIVEN AGE THRESHOLD 6

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 2 of 8

1. Face Analysis Technology Evaluation: Age Estimation And Verification (FATE AEV)

1.1. Scope
This document specifies how NIST will evaluate prototype algorithms that inspect images or video of a person’s face and
return an estimate of their age, or verify their age. The kind of results this activity yields can be seen in NIST Interagency
Report 8525 and its revisions.

Our approach is to run an ongoing, open ended, transparent large-scale black box evaluation in which any developer can
submit compiled library software to NIST and for this to be executed on images on several non-public datasets secured at
NIST. The test is repeatable, fair, statistically robust, and very difficult to game. As an independent government
laboratory, the cost of participation is zero. Participation procedures are on the AEV webpage.

The evaluation is intended to generically support applications including:

1. Verification that a person is above 18, 21 or other key ages, e.g. for sale of alcohol

2. Verification that a person is below a certain age, e.g. entrance to a teen chat room

3. Producing population age statistics for people visiting certain locations, e.g. movie theaters

4. Digital advertising where a display might show an age-tailored advertisement

5. Checks that a passport application photo is recent (not collected 10 years previously)

6. Age estimation for refugees, asylum seekers, and other undocumented individuals

Applications 1 and 2 are recently the subject of legislation in multiple jurisdictions. The mechanism for estimating age is
often not specified in legislation. Face analysis using software is one approach, and is attractive when a photograph is
available or can be captured. As succinctly noted in this infographic, age verification can also be achieved using face
recognition1 to verify the identity of an individual whose age is known from, for example, an authoritative ID document.

This evaluation is not a certification program. It does not establish minimum accuracy criteria, because different
applications have different requirements.

Please direct comments and questions to frvt@nist.gov.

1.2. General Evaluation Specifications
General and common information shared between all tracks of the FRTE/FATE evaluations are documented in a General
Evaluation Specifications document. This includes rules for participation, hardware and operating system environment,
software requirements, reporting, and common data structures that support the APIs.

1.3. Reporting
For all algorithms that complete the evaluation

➔ NIST will publish on its website the name of the developer’s organization, the algorithm identifiers, and the
performance results with attribution to the developer.

➔ NIST may provide other performance results to the participating organization.
➔ NIST may additionally report and share results with partner government agencies and interested parties, and in

standards meetings, workshops, conferences, conference papers, presentations, and technical reports.

1 Face recognition technologies are tasked to determine who is in an image, rather than just their age; they are built on
different neural network architectures trained to optimize different loss functions, and operate by comparing two photos.
They are evaluated by NIST in the separate FRTE program.

https://pages.nist.gov/frvt/reports/aev/fate_aev_report.pdf
https://pages.nist.gov/frvt/reports/aev/fate_aev_report.pdf
https://pages.nist.gov/frvt/html/frvt_age_estimation.html
https://fpf.org/wp-content/uploads/2023/06/FPF_Age-Assurance_final_6.23.pdf
mailto:frvt@nist.gov
https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 3 of 8

Important: The developer’s name will be published alongside the results.

Results will be machine generated (i.e., scripted) and will include timing, accuracy and other performance results. These
will be provided alongside results from other implementations. Results will be expanded and modified as additional
implementations are tested, as new image datasets become available, and as analyses are implemented. Results may be
updated, extended and regenerated after an initial publication for example whenever additional implementations
complete testing, or when new analyses are added.

1.4. Performance Metrics
This test will evaluate algorithmic ability to estimate the age of a person in an image or a video. NIST will measure age
estimation accuracy across various imaging conditions and various demographic groups. Similarly, NIST will measure age
verification accuracy. An initial set of results and analyses and visualizations can be seen in NIST Interagency Report 8525.

The results may be relevant to development of the accuracy criteria now being standardized in ISO/IEC 27566-3.

1.5. Image datasets
NIST will execute the software on an open-ended set of different image databases that are appropriate to various use
cases. Primary interest is in subjects making deliberate cooperative presentations to a camera.

While NIST cannot release sample images from our operational test sets, there are many academic datasets that may be
relevant for development. One such set is NIST Special Database 32 which includes two types of photos: Mugshot
booking photos and smaller, lower quality, webcam photos. We will not use public sets in the AEV evaluation.

2. Implementation requirements

2.1. Library naming convention
The core library shall be named as libfrvt_ae_<provider>_<sequence>.so, with

➔ provider: single word, non-infringing name of the main provider. Example: acme
➔ sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to

NIST. Example: 007

Example core library names: libfrvt_ae_acme_000.so, libfrvt_ae_mycompany_006.so.

Important: Public results will be attributed with the provider’s name and the 3-digit sequence number.

2.2. Required execution durations
The elemental functions of the implementations shall execute under the time constraints of Table 1. These time limits
apply to the function call invocations defined in section 4. The median duration will be compared with the time limit
meaning that the median duration should be less than that given in the Table.

The time limits apply to the processing of one image using a single core of an unloaded server-class computer equipped
with Intel(R) Xeon(R) Gold 6140 CPUs running at 2.30GHz.

Table 1 – Processing time limits in milliseconds for a single 640 x 480 image of one face

Function Age Estimation

estimateAge() Table 3 1000 (1 core)

verifyAge() Table 5

estimateAgeWithReference() Table 4 2000 (1 core)

https://pages.nist.gov/frvt/reports/aev/fate_aev_report.pdf
https://www.nist.gov/itl/iad/image-group/special-database-32-multiple-encounter-dataset-meds

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 4 of 8

3. Data structures and datatypes supporting the API
The data structures supporting this API are documented in the General Evaluation Specifications document, with
corresponding header file named frvt_structs.h published at https://github.com/usnistgov/frvt.

The FATE AEV evaluation requires software to produce continuous age estimates, using a double precision datatype. This
is important for applications where fractional estimates can be estimated reliably and are of interest, e.g. in neonates and
very young children. We recommend providing algorithms capable of returning fractional estimates, even though some
adult-focused age-verification specifications require integer estimates [ACCS].

NOTE: Humans conventionally report their age rounded down to the nearest integer - If Alice is 18 years and 11 months
old, she will state her age as 18. Biological ageing will not respect such truncation, so an algorithm trained on human-
reported ages may underestimate continuous age. NIST’s largest evaluation sets have continuous to-the-day age
metadata.

4. API Specification
FATE AEV participants shall implement the relevant C++ prototyped interfaces in Section 4.3. C++ was chosen in order to
make use of some object-oriented features.

4.1. Header File
The prototypes from this document will be written to a file named frvt_ae.h and will be available to implementers at
https://github.com/usnistgov/frvt.

4.2. Namespace
All supporting data structures will be declared in the FRVT namespace. All API interfaces/function calls for this track will
be declared in the FRVT_AE namespace.

4.3. API

4.3.1. Interface
The software under test must implement the interface Interface by subclassing this class and implementing each
method specified therein.

 C++ code fragment Remarks
1. class Interface
2. {

public:

3. virtual ReturnStatus initialize(
 const std::string &configDir) = 0;

Supports algorithm initialization e.g. reading of DNN
models from file.

4. virtual ReturnStatus estimateAge(
 const Media &face,
 double &age) = 0;

Age (in years) estimation, given either one or more
contemporaneous still images, or a sequence of video
frames. This function is mandatory.

5. virtual ReturnStatus estimateAgeWithReference(
 const Media &faceOne,
 const double ageOne,
 const Media &faceTwo,
 double &ageTwo) = 0;

Estimate the age (in years) from one or more
contemporaneous still images, or a sequence of video
frames of the person in faceTwo.
faceOne and ageOne are provided as inputs for
additional information of the same person in faceTwo.
This function is optional.

https://www.nist.gov/system/files/documents/2019/03/20/frvt_common_1.0.pdf
https://github.com/usnistgov/frvt
https://www.accscheme.com/media/rpwkwzji/accs-1_2020_ageesttechnologies.pdf
https://github.com/usnistgov/frvt

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 5 of 8

6. virtual ReturnStatus verifyAge(
 const Media &face,
 const double ageThreshold,
 double &score) = 0;

Return a score on how likely the face in the image, or
sequence of video frames, is above the provided age
threshold. This function is optional and will only call
with the following age thresholds {13, 16, 18, 21, 25}.

7. static std::shared_ptr<Interface> getImplementation(); Factory method to return a managed pointer to the
Interface object. This function is implemented by
the submitted library and must return a managed
pointer to the Interface object.

8. };

There is one class (static) method declared in Interface. getImplementation() which must also be implemented
by the implementation. This method returns a shared pointer to the object of the interface type, an instantiation of the
implementation class. A typical implementation of this method is also shown below as an example.

 C++ code fragment Remarks
 #include "frvt_ae.h"

using namespace FRVT_AE;

NullImpl::NullImpl () { }

NullImpl::~NullImpl () { }

std::shared_ptr<Interface>
Interface::getImplementation()
{
 return std::make_shared<NullImpl>();
}

// Other implemented functions

4.3.2. Initialization
The NIST test harness will call the initialization function in Table 2 before calling any of the quality assessment functions of
this API. This function will be called BEFORE any calls to fork()2 are made.

Table 2 – Initialization

Prototype ReturnStatus initialize(
const string &configDir); Input

Description

This function initializes the implementation under test. It will be called by the NIST application before any calls to
the age estimation functions of this API. The implementation under test should set all parameters. This function
will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to any other functions via
fork().

Input configDir A read-only directory containing any developer-supplied configuration parameters or run-
time data files. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in this directory are hardwired in the implementation and
are unrestricted.

Output none
Return Value See General Evaluation Specifications document for all valid return code values.

2 Note the copy-on-write semantics of fork() on linux: http://man7.org/linux/man-pages/man2/fork.2.html

https://www.nist.gov/system/files/documents/2019/03/20/frvt_common_1.0.pdf

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 6 of 8

4.3.3. Estimate age from an input media of a person
The estimateAge function takes an image and returns an estimate of the person’s age.

Table 3 – Estimate age from an input media

Prototypes ReturnStatus estimateAge(
const Media &face, Input
double &age); Output

Description This function estimates the age of a person from one or more still images, collected contemporaneously, or a sequence of
video frames of exactly one person. An estimated age should be returned - the estimate should be fractional e.g. 18.4

Input face Input media (stills or video frames) of one person.
Output age Estimated age of the person in fractional years - see discussion in section 3.
Return Value See General Evaluation Specifications document for all valid return code values.

This function must be implemented.

4.3.4. Estimate age from an input media given ground truth from separate media
The estimateAgeWithReference function takes a face image for which the age is known, and a second face image for
which the age must be estimated. This could improve accuracy if there exist people who “look young for their age”, for
example.

Table 4 – Estimate age given ground truth from separate media

Prototypes ReturnStatus estimateAgeWithReference(
const Media &faceOne, Input
const double ageOne, Input
const Media &faceTwo, Input
double &ageTwo); Output

Description This function estimates the age (in years) of the person in faceTwo. This function allows an implementation to either
estimate age as in section 4.3.3, or to exploit the additional information inherent in the faceOne imagery. Developers
should not assume that faceTwo is collected at a later date than faceOne.

Input faceOne Input media (stills or video frames) of one person.
Input ageOne Actual age of the person in faceOne at the time it was taken e.g. 18.4 years.
Input faceTwo Input media (stills or video frames) of the same person in faceOne.
Output ageTwo A value indicating the estimated age of the face in faceTwo. The estimate should be fractional - see

discussion in section 3.
Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

https://www.nist.gov/system/files/documents/2019/03/20/frvt_common_1.0.pdf
https://www.nist.gov/system/files/documents/2019/03/20/frvt_common_1.0.pdf

 AEV - Face Analysis Technology Evaluation Age Estimation

NIST API Page 7 of 8

4.3.5. Age Compliance
This verifyAge function takes a face image and an age threshold, then returns a score indicating how likely the person is
above that age threshold.

Table 5 – Verification that subject in input media is above an age threshold

Prototypes ReturnStatus verifyAge(
const Media &face, Input
const double ageThreshold, Input
double &score); Output

Description This function returns a score, with higher values indicating a greater likelihood that the person's age exceeds the
specified threshold. This function prototype allows an implementation to invoke specialized processing for certain age
groups. We anticipate calling this function with ageThreshold values in {13, 16, 18, 21, and 25}.

Input face Input media (stills or video frames) of one person.
Input ageThreshold Input age of interest.
Output score A real-valued score whose range is not limited by this document, with larger values indicating that

it is more likely that the face in the media is above the age threshold.
Return Value See General Evaluation Specifications document for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

https://www.nist.gov/system/files/documents/2019/03/20/frvt_common_1.0.pdf

