
Exemplar One-to-Many
Friction Ridge Image and Features Technology Evaluation

Test Plan and Application Programming Interface
Last Updated: 28 January 2025

Contents

1 Introduction 2

2 Evaluation Imagery 3

3 Scenarios and Variables 5

4 Application Programming Interface Highlights 8

5 Software and Documentation 17

References 22

Revision History 22

Not Human Subjects Research

The National Institute of Standards and Technology Research Protections Office reviewed the
protocol for this project and determined it is “not human subjects research” as defined in 15 CFR
27, the Common Rule for the Protection of Human Subjects.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this document in order
to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are necessarily the best available for
the purpose.

FRIF TE E1N Test Plan

1 Introduction

The National Institute of Standards and Technology (NIST) is conducting an ongoing, large-scale
one-to-many (1:N) evaluation of exemplar fingerprint technologies entitled Friction Ridge Image and
Features Technology Evaluation Exemplar One-to-Many (FRIF TE E1N). In an effort to assess the state
of the art in automated exemplar friction ridge feature extraction and identification, participants
are asked to submit software libraries with algorithms capable of:

• extracting features from all types of fingerprint impression images,

• segmenting multi-finger impression images,

• building databases of fingerprint templates, and

• searching templates against databases to produce lists of similar candidates.

1.1 Background

In 2003, NIST conducted their first large-scale 1:N exemplar fingerprint Technology Evaluation
(TE) under the name Fingerprint Vendor Technology Evaluation (FpVTE). This first iteration required
participants to submit both hardware and software to NIST for evaluation. After nearly a decade,
FpVTE 2012 was announced, expanding on the 2003 iteration, but entirely in software libraries
running on NIST-provided commodity server hardware. Several other friction ridge, face, and iris
recognition evaluations have been run in an “ongoing” mode since FpVTE 2012. As of 2024, NIST
will re-launch FpVTE as FRIF TE E1N (FRIF E1N or E1N, for short), completing the transition of
all NIST friction ridge TEs to an on-demand service for the biometric community.

1.2 What is FRIF?

NIST conducts several friction ridge TEs, each with their own set of unique application program-
ming interfaces (APIs) and associated requirements. FRIF is an attempt to unify all of the APIs and
requirements from all of the NIST friction ridge TEs. NIST realizes that there is often outside pres-
sure to participate in their TEs, and having several disparate TEs interfaces to learn consumes value
time that could otherwise be spent on other core work tasks. The hope is that unification makes
it easier to participate in one or more NIST friction ridge TEs without needing to reimplement
shared products and tasks.

In the friction ridge modality, in addition to E1N, NIST also conducts TEs of one-to-one (1:1)
verification, mark 1:N identification, and multi-finger segmentation.

1.3 What is FRIF TE E1N?

FRIF TE E1N studies the computational performance and accuracy of automated open set exemplar
identification algorithms and their associated feature extraction algorithms. These algorithms are
typically components of an Automated Biometric Identification System (ABIS). In FRIF TE E1N,
software libraries under test assemble a reference database of templates derived from friction ridge
images and/or features and search that database with one or more exemplar friction ridge image
and/or feature probes. NIST reports on the computational performance and accuracy of these
algorithms in public analysis reports.

2

FRIF TE E1N Test Plan

2 Evaluation Imagery

2.1 Source

Imagery used in FRIF TE E1N comes from a variety of sources. The vast majority of images are
operational in nature. This means they were collected by law enforcement, border protection, or
other local or federal government employees as a part of their professional duties. Other data may
come from subjects recruited as part of institutional review board (IRB)-approved collections.

2.2 Region

The primary friction ridge region evaluated in FRIF TE E1N is the distal phalanx. Images often
include other regions of the hand in addition to the distal phalanges, up to and including the
entirety of the hand (i.e., a full palm friction ridge generalized position).

In addition to the primary distal phalanx focus, implementations may be asked to perform palm
searches using templates derived from images that may not contain distal phalanges (i.e., a lower
palm friction ridge generalized position).

2.3 Quality

Due to the operational nature of the source of the imagery, the quality of the images varies
dramatically between datasets and samples within the datasets. NIST may choose to disclose NIST
Fingerprint Image Quality 2 (NFIQ 2) quality scores in the future for types of images supported
by the NFIQ 2 algorithm.

Participants are encouraged to use the metadata provided with the imagery (Section 2.4) to assess
quality in their own way and store this value in their template. This collection of quality values
may help advise future directions in friction ridge image quality, especially when it comes to palm
and contactless imagery. See Section 4.4 for more details.

2.4 Metadata

Participants may be provided with known metadata about each image during template creation.
Depending on the scenario being tested (Section 3), some, all, or none of this information will be
provided. Possible metadata is detailed in Section 3.2.2.

2.5 Access

Most FRIF TE E1N evaluation datasets are protected under the Privacy Act (5 U.S.C. §552a) and
are treated as controlled unclassified information (CUI) as defined in Executive Order 13556. FRIF
TE E1N participants will not have access to such FRIF TE E1N evaluation data, before, during, or
after the evaluation. NIST will provide similar image data from research datasets that can be used
to prepare software libraries for FRIF TE E1N.

Note that participants will additionally not have access to any data generated by their software
libraries at NIST, regardless of the source of the imagery used to derive such data. Alterations to
this policy are at the discretion of the FRIF TE E1N liaison.

3

FRIF TE E1N Test Plan

Line 0

Line 𝑘

Line ℎ − 1

Line 0 Line 𝑘 Line ℎ − 1

(0, 0)

(
𝑤 × bpp

bpc × bpp
8 − 1, ℎ − 1

)

(
𝑤 × bpp

bpc × bpp
8 − 1, 0

)

(0, ℎ − 1)

Figure 1: Order of image scanlines in data passed to FRIF TE E1N implementations. In FRIF TE E1N, bpc = bpp (i.e.,
always a single color component—grayscale). Fingerprint image sourced from NIST Special Database 302 [1, 2].

2.6 Format

The software library under test must be capable of processing friction ridge images sent as buffers
of uncompressed raw pixels. Images are all encoded with a single color component (i.e., grayscale).
This component may be comprised of either 8 bits or 16 bits per pixel. Sample data in both bit
depths is provided during software validation.

Images shall follow the scan sequence described in ISO/IEC 39794-4:2019, §6.2, visualized in
Figure 1. The origin is the upper-left corner of the image. The 𝑋-coordinate (horizontal) position
shall increase positively from the origin to the right side of the image. The 𝑌-coordinate (vertical)
position shall increase positively from the origin to the bottom of the image.

Bit depths shall follow the description in ISO/IEC 39794-4:2019, §6.3.4. The minimum value that
will be assigned to a “black” pixel (e.g.,) is zero (0) in all color components. The maximum value
that will be assigned to a “white” pixel (e.g.,) is

(
2bpc − 1

)
in all color components, where bpc is

bits per component (either 8 or 16).

Image width and height are measured in pixels and will be supplied to the software library under
test as supplemental information. Pixels are stored left to right, top to bottom. The number of
bytes in an image is equal to (width × height × bpp

bpc × bpp
8), where bpp is bits per pixel. Again, in

FRIF TE E1N, images are always in grayscale (i.e., a single color component, or bpc = bpp).

4

FRIF TE E1N Test Plan

3 Scenarios and Variables

Analysis in FRIF TE E1N will be the result of evaluating search scenarios (described in Section 3.1)
with combinations of search variables (described in Section 3.2). Together, these differentiations
provide operationally-relevant situations for examination.

3.1 Probe Template Scenarios

The API for FRIF TE E1N is flexible enough to support multiple probe template generation scenar-
ios. Each scenario represents a possible realistic law enforcement search scenario.

3.1.1 Single Region

A single image and/or feature set describing a single friction ridge region is provided to the
template creation method. A probe template is produced from this method and is then provided
to the search method.

3.1.2 Multiple Single Regions

Like Section 3.1.1, but more than one individual image and/or feature set is provided. The samples
may be of the same or different regions.

3.1.3 Simultaneous Region

Like Section 3.1.2, but to obtain multiple regions, software libraries under test need to first segment
from a single multi-region sample.

3.1.4 Multiple Simultaneous Regions

Like Section 3.1.3, but there may be more than one sample to be segmented, such as the common
“identification flat (4-4-2)” capture, consisting of a right slap, left slap, and thumb slap.

3.1.5 Multiple Simultaneous and/or Single Regions

A combination of Section 3.1.2 and Section 3.1.4.

3.1.6 Palm

Searching one or more palm impressions, with (i.e., upper palm, full palm) or without (i.e., lower
palm) distal phalanges included in the sample.

3.2 Variables

Searches can range in difficulty by changing several variables for any of the search scenarios
described in Section 3.1.

5

FRIF TE E1N Test Plan

3.2.1 Probe Friction Ridge Generalized Position

The name of the friction ridge generalized position (i.e., right index) is typically provided when
the probe template is created, since this information is typically known in operational scenarios.
However, software libraries under test shall be capable of searching based on the friction ridge
generalized position being identified as UnknownFinger or UnknownPalm. Search results will be
reported separately when searched with an unknown friction ridge generalized position.

3.2.1.1 UnknownFrictionRidge

Software libraries under test need not be capable of searching probes with the friction ridge position
UnknownFrictionRidge, since this is more relevant for fingermark searches (e.g., such as those
evaluated in ELFT). However, for robustness and potential research purposes, it is appreciated if
this scenario produced as meaningful as possible results using capabilities already present in the
software library under test, such as treating the probe as both UnknownFinger and UnknownPalm. It
is not expected for software libraries under test to include a separate fingermark algorithm.

3.2.2 Extended Feature Set

ANSI/NIST ITL 1-2011 added support for Extended Feature Set (EFS), a data block which, “defines
the content, format, and units of measurement for the definition and/or exchange of friction ridge
feature information” [3]. In the FRIF TE E1N API, a subset of EFS information is available to
software libraries under test to assist in feature extraction and searching.

Some, all, or none of this data will be provided to the software library under test during feature
extraction. The source (e.g., Certified Latent Print Examiner (CLPE), third-party algorithm) of the
specified features will not be provided.

Please note that all EFS information is converted from and provided via the API in pixels at the
provided resolution with the same image origin as a convenience, not units of 10 µm, as defined
by the standard. As such, some rounding error may occur.

3.2.3 Features Only

Some or all of the data described in Section 3.2.2 will be provided to the software library under
test during feature extraction. No image will be provided. The software library under test should
encode theses features into their template format for later searching.

3.2.4 Impression Types

The impression type of both probes and references may vary. Examples include, but are not limited
to, searching plain impressions against rolled impressions, and searching contactless impressions
against plain and rolled impressions.

3.2.5 Finger Positions

Combinations of different finger positions mimicking different operational scenarios may be em-
ployed. Examples include, but are not limited to, searching only fingers from the left hand, and
searching only index fingers.

6

http://fingerprint.nist.gov/elft

FRIF TE E1N Test Plan

3.2.6 Database Size

The number of references in a database has an affect on open set identification. NIST will evaluate
performance with reference databases containing various numbers of nonmated references.

3.2.7 Database Quality

The quality of references in the database plays a large part in the quality of candidates returned
in a candidate list. Many aspects affect quality, such as the sensor type and the skill of the sensor
operator. Where possible, NIST will vary the quality of the mated reference in the database.

7

FRIF TE E1N Test Plan

4 Application Programming Interface Highlights

The FRIF TE E1N API is only discussed briefly in this test plan. Thorough documentation is
available directly in the C++ header file, and is additionally formatted both for the web and for
print.

The FRIF TE E1N API is written in C++ and makes use of C++20 features. The core library does not
need to adopt this standard, but will need to be compiled with the appropriate flags to support
linkage with the FRIF TE E1N test application. All code should be built with the same compiler to
ensure compatibility with the FRIF TE E1N test application and to prevent difficult to debug link
and runtime errors.

A stub implementation of the API that is provided.

4.1 FRIF Namespace

All API code for FRIF TE E1N exists within the FRIFnamespace. The FRIFnamespace itself contains
several namespaces containing code shared by all FRIF TEs. Classes and methods core to Exemplar
One-to-Many are found in the namespace FRIF::Evaluations::Exemplar1N. To participate in
FRIF TE E1N, implementations of the abstract classes Exemplar1N::ExtractionInterface and
Exemplar1N::SearchInterface must be present, as well as implementations of all defined static
methods within Exemplar1N.

4.1.1 ReturnStatus

The ReturnStatus struct is used in most non-trivial API methods to return information from
the software library under test about the status of performing an operation. If an operation is
successful, the default-constructed ReturnStatus is sufficient to indicate success (e.g., return {};
or return (ReturnStatus());. In failure conditions, software libraries under test shall set the
result parameter of ReturnStatus to Result::Failure. For debugging purposes, it is helpful to
include text matching the regular expression [[:graph:]]* regarding why the failure occurred
in ReturnStatus’s message parameter. If it adds meaningful information, message can also be
populated when successful, but is otherwise discouraged.

The API attempts to differentiate between the result of operations in terms of technical functionality
and usability. For instance, an implementation may functionally succeed to call createTemplate(),
but the data provided is of such low quality, that the software library under test chooses not to
produce a template. This would result in a ReturnStatus with Result::Success, but an omitted
CreateTemplateResult. Similarly, an implementation may successfully search their database, but
not find any candidate worth returning, which would be communicated in a similar manner.

While this doesn’t change the resulting analysis (i.e., a miss is still miss), it does help differentiate
between the root cause of errors. For example, in searchSubject(), an empty CandidateList could
be produced by searching either an invalid template or a template from a low-quality sample. The
former would elicit a response of Result::Failure, since the operation could not be completed, and
the latter, a response of Result::Success, since the operation completed, but no useful candidate
could be found due to the input.

8

https://github.com/usnistgov/frif/blob/master/e1n/include/e1n.h
https://pages.nist.gov/frif/doc/e1n/api
https://pages.nist.gov/frif/doc/e1n/api.pdf
https://pages.nist.gov/frif/doc/e1n/api.pdf

FRIF TE E1N Test Plan

4.1.2 Features

The EFS::Features struct encapsulates metadata about an image of one or more hand regions.
Depending on the scenario (Section 3), this data may be provided only in part or not at all. In
other cases, some or all of the data simply might not be known. Software libraries under test are
expected to process all Images provided, regardless of what metadata is provided.

This struct is also used to expose data encoded in templates, as described in Section 4.4.

4.2 Extracting Features

The FRIF TE E1N API defines the abstract class ExtractionInterface, with several pure virtual
functions to support extracting features and creating templates from a wide variety of friction
ridge images. Participants shall publicly inherit ExtractionInterface to implement all feature
extraction methods, including static methods.

4.2.1 Compatibility

ExtractionInterface::getCompatibility() encodes knowledge about what versions of previously-
generated artifacts can be reused with this version. It is important to be accurate, as NIST, in an
effort to efficiently run evaluations, will almost always opt to reuse artifacts where possible.

This method also lets the FRIF TE E1N test application know at runtime if there is a meaningful
implementation of the template introspection methods.

4.2.2 Identification

ExtractionInterface::getProductIdentifier() provides a means for organizations to provide
marketing information to readers of FRIF TE E1N analysis reports. If desired, populate the
Product-Identifier struct with marketing and Common Biometric Exchange Formats Framework
(CBEFF) information about the feature extraction algorithms embedded within the software library
under test. This information will be printed verbatim in FRIF TE E1N analysis reports.

4.2.3 Create Template

ExtractionInterface::createTemplate() is the workhorse of the ExtractionInterface. Depend-
ing on the scenario (Section 3), the software library under test will be provided zero or more
friction ridge images and/or feature sets and be expected to produce a single buffer of data in the
form of a template usable by the software library under test.

Notes

• This method supports differentiation between Probe and Reference templates.

• The software library under test may be provided more than one image per friction ridge
position, especially when creating Reference templates.

• Internally, the software library under test may store more than one template, but data must
be returned as a single buffer.

• If a single Image contains more than one friction ridge position (e.g., an upper palm capture),
it is the responsibility of the software library under test to segment into multiple regions

9

FRIF TE E1N Test Plan

for feature extraction, if desired. Participants should consider participating in NIST’s Slap
Fingerprint Segmentation III evaluation for segmentation practice and detailed analysis.

• Depending on the scenario, some, all, or none of the EFS metadata will be provided. The
software library under test is still expected to process the image regardless of what, if any,
EFS data is received.

• Feature-only searches (Section 3.2.3) are facilitated by not providing an Image. If no Image
is provided, there is guaranteed to be some EFS data provided. Implementations should
encode this information into a template usable by the SearchInterface.

– For feature-only searches, Feature will only ever refer to a single finger or palm region.
That is, if the features were based on a multi-finger image, only Feature for a single
finger of that image would be provided per instance.

• The source of Feature data is not specified. It may be from your software library under test,
a different software library under test, or a CLPE.

Implementations should target consuming no more than ≈3 GB per process when extracting fea-
tures. Implementations using significant amounts of RAM may be disqualified at NIST’s discre-
tion.

4.2.4 Create Reference Database

Once all Reference templates have been created, the FRIF TE E1N test application will provide them
en masse to ExtractionInterface::createReferenceDatabase(). This method should ingest these
templates, do any necessary processing, and write some sort of structure to disk at the location pro-
vided by the databaseDirectory parameter. This location will be provided to the SearchInterface
later for searching. When creating the reference database, the number of templates provided is
exactly the number of identities represented (i.e., consolidated) and no de-duplication efforts are
necessary.

While the structure of the database is not defined by NIST, NIST will enforce certain file count and
size limitations to ensure efficient data center operations.

4.2.4.1 Database Size

The path pointed to by databaseDirectory will reside on a local disk. Depending on the number
of bytes written, it is likely that the amount of RAM available during searchSubject() could be
significantly less than the size of the reference database. Exact values will be provided at runtime.
Software libraries will have an opportunity before searching (via load()) to load data into RAM. To
that end, NIST encourages software libraries to store data in a structure that facilitates being partially
cached in RAM (NIST anticipates the amount of RAM available for load() to be ≈300 GB).

4.3 Searching the Database

The FRIF TE E1N API defines the abstract class SearchInterface, with several pure virtual func-
tions to support searching and modifying the reference database created withExtractionInterface.
Participants shall publicly inherit SearchInterface to implement all feature extraction meth-
ods.

10

https://www.nist.gov/itl/iad/image-group/slap-fingerprint-segmentation-evaluation-iii
https://www.nist.gov/itl/iad/image-group/slap-fingerprint-segmentation-evaluation-iii

FRIF TE E1N Test Plan

4.3.1 Identification

As in template creation (Section 4.2.2), the FRIF TE E1N API provides a means for providing
marketing information about the search algorithm to readers of NIST reports. If desired, return
this information in SearchInterface::getProductIdentifier(). This information will be printed
verbatim in FRIF TE E1N analysis reports.

4.3.2 Compatibility

Like inExtractionInterface (Section 4.2.1), SearchInterface::getCompatibility() encodes knowl-
edge of compatibility with previously-generated artifacts and runtime support for optional fea-
tures.

4.3.3 Load

After construction and prior to the first search, software libraries under test have the opportunity
to load() up to maxSize bytes (provided at runtime) into RAM. NIST anticipates the amount of
RAM available for load() to be ≈300 GB. This data will be shared by multiple search process
through the FRIF TE E1N test application’s use of fork(). Information in excess of maxBytes shall
be read from disk.

Database information on disk and loaded into RAM shall remain read-only during the entire
SearchInterface lifecycle.

4.3.4 Search

Probe templates created in the ExtractionInterface are searched through the reference database in
SearchInterface::searchSubject() and SearchInterface::searchSubjectPosition(). Software
libraries under test will be provided a single template created by their template generation imple-
mentation and are expected to return a list of potential candidates with accompanying similarity
scores.

The details requested about a candidate in a candidate list are what differentiates the search
methods SearchInterface::searchSubject() and SearchInterface::searchSubjectPosition().
For SearchInterface::searchSubject(), only the subject identifier should be returned. This
search interface will be called in scenarios where there are several friction ridge positions within the
probe template, and the operational scenario only dictates that you find if the represented subject
is in the enrollment database. SearchInterface::searchSubjectPosition() will be used when
it’s important to return both the subject identifier and the most similar friction ridge generalized
position. This is more likely to be called when searching with a friction ridge generalized position
of UnknownFinger or UnknownPalm. Depending on the scenario, omitting, misidentifying, or over-
generalizing a friction ridge position may result in a miss.

In addition to a candidate list, these methods also ask for a bool as to whether or not the software
library under test believes the candidate list contains the true mate. This may be based on an
internal perceived similarity score threshold or any other heuristic.

Implementations should target consuming no more than≈1 GB per process (in excess of the shared
database, described in Section 4.3.3) when searching. Implementations using significant amounts
of RAM may be disqualified at NIST’s discretion.

11

FRIF TE E1N Test Plan

4.4 Research Data

The FRIF TE E1N API provides two facilities to gain insight into the decisions made by the software
library under test. Currently, providing these insights is optional, but may help in debugging
errors during the FRIF TE E1N evaluation, provide insights into miss analysis, and aid future NIST
research.

4.4.1 Templates

There is no template format requirement for the data returned from ExtractionInterface::-
createTemplate(). ExtractionInterface::extractTemplateData() allows for insight into what
kind of data is included in the otherwise opaque template. This method should return one
TemplateData per friction ridge position per image. If the TemplateData is derived from a single
finger in a multi-region image, the Coordinates of a convex polygon enclosing the region of interest
of the finger in question should be recorded in the roi parameter. An example of returning
TemplateData from an identification flat image is shown in Figure 2.

4.4.2 Correspondence

Many search algorithms operate by mimicking the actions of CLPEs—corresponding groupings of
minutia found in a probe image with the same groupings found in an exemplar image. This infor-
mation can be exposed via SearchInterface::extractCorrespondence(). This method returns a
list of corresponding minutia for each candidate in a candidate list for a given search. An example
of returning Correspondence is shown in Figure 3.

Each Candidate is included in a separat

Important

Minutia returned in Correspondence shall come from the set returned in ExtractionInterface::-
extractTemplateData().

4.5 Fundamentals

4.5.1 Object Construction

Each class defines a static “factory” method named getImplementation(). These methods provide
the software library under test necessary filesystem paths needed to load provided configura-
tions and their reference database, as applicable. The software library under test is responsible
for implementing these methods that return an instance of the child class that implements the
appropriate FRIF TE E1N interface. The FRIF TE E1N test application will exclusively use the
returned object for calling API methods. When the FRIF TE E1N test application forks, calls
to getImplementation() will occur before the fork, such that large read-only memory buffers are
shared between processes, relying on Linux copy-on-write pages.

4.5.2 Errors

Each non-trivial API method provides a way to return a ReturnStatus where information about
failures and errors can be expressed to the FRIF TE E1N test application (Section 4.1.1). It’s not
always possible to safely jump out of code in certain error conditions (e.g., a memory allocation

12

FRIF TE E1N Test Plan

std::vector<TemplateData> tds{};
tds.reserve(4);

TemplateData tdLM{};
tdLM.imageIdentifier = 6; // Copy, provided in createTemplate()

// Parse your template to get this info. It is hardcoded here for clarity.
tdLM.features.frgp = FrictionRidgeGeneralizedPosition::LeftMiddle;
tdLM.features.roi = std::vector<Coordinate>{{285, 16}, {306, 3}, {341, 3},{356, 20}, {356, 114}, {285, 114}};
tdLM.features.orientation = 8;
tdLM.features.valueAssessment = ValueAssessment::Value;
tdLM.features.pct = PatternClassification::LeftLoop;
tdLM.features.plr = false;
tdLM.features.trv = false;

// Locations are relative to the rectangle bounding td.features.roi (lighter red above).
tdLM.features.cores = std::vector<Coordinate>{{48, 24}};
tdLM.features.minutia = std::vector<Minutia>{};
tdLM.features.minutia->emplace_back({{12, 26}, -14.5, MinutiaType::RidgeEnding});
tdLM.features.minutia->emplace_back({{{57, 34}, 15.0, MinutiaType::Bifurcation});
tdLM.features.minutia->emplace_back({{{47, 12}, 48.2, MinutiaType::Bifurcation});
// . . .

tdLM.imageQuality = 83;
tds.push_back(tdLM);

// . . . Repeat for other fingers. All have same imageIdentifier . . .

return (tds);

Figure 2: Example of returning TemplateData from ExtractionInterface::extractTemplateData(). In this example,
a left identification flat image (frgp = 14) was provided to ExtractionInterface::createTemplate(). The graphic
visualizes what might have been recorded for the left middle finger. The red dashed line shows a six-sided polygon
region of interest, with the lighter red rectangle representing the bounding rectangle formed by the region of interest. All
Coordinate are relative to the bounding rectangle. Green and blue dots indicate minutia and the yellow circle indicates
a core. All annotations are simulated. The code example shows only what would be needed to return information for
the left middle finger. Fingerprint image sourced from NIST Special Database 302 [1, 2].

13

FRIF TE E1N Test Plan

CandidateListCorrespondence allCorrespondence{};

for ([[maybe_unused]] const auto &[candidate, similarity] : searchResult.candidateList) {
// Retrieve reference template for this Candidate. For simplicity, we’ll assume this private method returns a
// FRIF::IO::TemplateData.
const TemplateData referenceTemplate = this->retrieve(candidate);

// Determine which Minutia align between the probe and this reference
const std::vector<std::pair<Minutia, Minutia>> minutiae = this->determineCorrespondingPairs(

probeTemplate, referenceTemplate);

// Save away all those Minutia
Correspondence c{};
c.correspondence.reserve(minutiae.size());
for (const std::pair<Minutia, Minutia> &m : minutiae) {

CorrespondenceRelationship cr{};
cr.probeIdentifier = probeIdentifier // Copy, provided in createTemplate()
cr.probeImageIdentifier = 6; // Copy, provided in createTemplate()
cr.referenceIdentifier = candidate.candidateIdentifier
cr.referenceImageIdentifier = candidate.inputIdentifier;

// Corresponding Minutia MUST align from TemplateData. The commented values here are for clarity and are from
// the previous extractTemplateData() examples.
cr.probeMinutia = m.first;
cr.referenceMinutia = m.second; // Iteration 1: {12, 26}; Iteration 2: {57, 34}; Iteration 3: {47, 12}; . . .

c.push_back(cr);
}
c.complex = false;

allCorrespondence[candidate.candidateIdentifier] = c;
}

return (allCorrespondence);

Figure 3: Example of returning Correspondence within a CandidateListCorrespondence from SearchInterface::-
extractCorrespondence(). For each candidate in searchResult.candidateList, a Correspondence is created and its
collection of CorrespondenceRelationship is reserved. Then, corresponding Minutia for each pair of probeTemplate
and reference template (retrieved from the loaded reference database) are determined and iteratively set in
CorrespondenceRelationship objects. The Minutia set here must match the Minutia returned in TemplateData from
ExtractionInterface::extractTemplateData(). A complexity decision is made for each candidate and then the entire
collection is returned.

14

FRIF TE E1N Test Plan

failure). In this case, it may be appropriate to throw an exception. The FRIF TE E1N test application
will catch std::exception from all API methods. To assist in debugging these failure scenarios,
please be sure to throw exceptions inherited from std::exception and populate the what_arg
parameter with a description of the problem. If your existing custom exception type does not inherit
std::exception, consider catching it and re-throwing a std::runtime_error with appropriate
information. Like the message member of ReturnStatus, all exception what_arg shall match the
regular expression [[:graph:]]*.

4.5.3 Multiprocessing

All API methods shall be single-threaded. The reason is that the NIST test driver operates as a
Message Passing Interface (MPI) job to multiple nodes, forking on each node to run many tasks in
parallel. See Section 5.1.1 for more details.

ExtractionInterface::createReferenceDatabase() and SearchInterface::load() are exceptions
to this rule. NIST will run these methods on a single node in a single process. For these methods,
NIST expects the software library under test to make use of threading (if necessary) to complete
the creation and loading of the reference database as fast as possible, within the required time
limits. Software libraries under test should query the system for a hint of the number of supported
concurrent threads (e.g., std::thread::hardware_concurrency()) and make reasonable use of
them.

4.5.4 Speed

All API methods have speed thresholds that must be achieved before NIST will accept a software
library for evaluation. Technical details are described in Section 5.4. Required speeds are as listed
in Table 1. Note that multi-finger images are considered multiple samples for the purposes of
timing. For example, a four-finger slap image would be considered four samples and a full palm
image would be considered sixteen samples.

For template creation and searching, these speeds will be enforced as the mean observed duration
on a fixed subset of data from the evaluation datasets (Section 2). For all other methods, these values
will be hard maximums. If these times are reached before the method has returned, the NIST test
driver will forcibly terminate and NIST will request a faster version from the participant.

15

FRIF TE E1N Test Plan

API Method Metric Requirement

getLibraryIdentifer() Max 250 ms

Ex
tr

ac
tio

n

getImplementation() Max 5 s
getCompatibility() Max 250 ms
getProductIdentifier() Max 250 ms
createTemplate(): Exemplar Sample Mean 3 s × 𝑀 per sample
createTemplate(): Features (no image) Sample Mean 1.5 s per feature set
extractTemplateData() Max 500 ms
createReferenceDatabase() Max 5 ms per identifier

Se
ar

ch

getImplementation() Max 5 s
getCompatibility() Max 250 ms
getProductIdentifier() Max 250 ms
load() Max 1 ms per identifier
search() Sample Mean 40 µs per identifier
extractCorrespondence() Max 500 ms

Table 1: API runtime requirements. API Method indicates the FRIF TE E1N API method for the current timing
requirement. Metric indicates how the duration will be enforced—either a hard maximum or as a mean value measured
over a fixed sample. Requirement indicates the value that must be achieved. For some methods, the value is variable
based on the number of identifiers in the reference database. In others, a multiplier 𝑀 is in effect. See Table 2 for a list
of these values.

Image Contents 𝑀 Value

Single Finger 1
Two-Finger Simultaneous Capture 2
Four-Finger Simultaneous Capture 4
Upper, Lower, or Writer’s Palm 8
Joint Regions 8
Full Palm 16

All Other Regions 8

Table 2: 𝑀 value requirements for feature extraction. Image Contents is what friction ridge structure is depicted within
an image. M Value is what is used as a multipler in the calculation of time permitted for feature extraction. See Table 1
for other parts of the time allocation equation.

16

FRIF TE E1N Test Plan

5 Software and Documentation

5.1 Software Libraries and Platform Requirements

The methods specified in Section 4 shall be implemented exactly as defined in a software library.
The header file used by the FRIF TE E1N test application is provided on the FRIF TE E1N website
in the FRIF TE E1N validation package (Section 5.3).

5.1.1 Restrictions

5.1.1.1 Dynamic Library

Participants shall provide NIST with binary code in the form of a software library only (i.e., no
source code or headers). Software libraries must be submitted in the form of a dynamic/shared
library file (i.e., .sofile). This library shall be know as the core library, and shall be named according
to the guidelines in Section 5.1.6. Static libraries (i.e., .a files) are not allowed. Multiple shared
libraries are permitted if technically required and are compatible with the validation package
(Section 5.3). Any required libraries that are not standard to Ubuntu Server 24.04.1 LTS must be
built and submitted alongside the core library. All submitted software libraries will be placed in
a single directory, and NIST will add this directory (and only this directory) to the runtime library
search path list (RUNPATH, see Section 5.1.2).

5.1.1.2 Single Configuration

Individual software libraries provided must not include multiple modes of operation or algorithm
variations managed by NIST. No NIST-managed configurations or options will be tolerated within
one library. For example, the use of two different minutia sorting techniques would be split across
two separate software libraries (though the FRIF TE E1N application indicates that NIST will only
accept one submission every 120 days).

Supplemental non-library files (e.g., pre-specified configurations and training models) are permit-
ted. If necessary, these files shall be placed in a dedicated directory as specified in the validation
submission instructions (Section 5.3). Filenames and checksums of all provided files will be re-
ported in FRIF TE E1N analysis reports. The path to such files will be provided as a parameter
to getImplementation() (Section 4.5.1). No participant-specific environment variables will be
set for an implementation to affect operation. NIST will additionally not alter any system-level
configuration.

Example
A participant submits a software library that internally has a customizable minutia sorting algo-
rithm. The software library decides which sorting algorithm to used based on the contents of a
text file, config.txt. The participant submits their software library and config.txt pre-configured
to use a sorting algorithm 𝐴. After NIST discovers a defect, the participant realizes the defect is
not present when the sorting algorithm is set to 𝐵, and could be corrected by a small change to
config.txt. Even though the change is minor, the participant must submit a new config.txt and a
new software library with incremented version number (Section 5.1.6) to correct the defect.

5.1.1.3 Multiprocessing

With two exceptions (Section 4.5.3), the software library shall not make use of threading, forking,
OpenMP, std::execution::par, or any other multiprocessing techniques. The FRIF TE E1N test

17

FRIF TE E1N Test Plan

application operates as an MPI job over multiple compute nodes, and then forks itself into many
processes. In the test environment, there is no advantage to threading. It limits the usefulness of
NIST’s batch processing and makes it impossible to compare timing statistics across FRIF TE E1N
participants.

The software library under test shall not acknowledge the existence of other processes running
on the test hardware, such as through semaphores or pipes, nor attempt to communicate with any
other process.

5.1.1.4 Deterministic Operation

The software library under test shall remain stateless and deterministic. API calls with the same
inputs shall produce the same outputs on all nodes at all times.

5.1.1.5 Filesystem

The software library under test shall not read from or write to any file system or file handle,
including standard streams. It shall not attempt any external communication such as network
connections via sockets.

The only exception to this rule is when interacting with the reference database. In this case, the
software library under test shall only read and write to areas at or below the filesystem path
provided in getImplementation().

Software libraries under test shall also be permitted to read configuration files at or below the
filesystem path provided in getImplementation(). This path and its contents shall be read-
only.

5.1.2 External Dependencies

It is preferred that the API specified by this document be implemented in a single core library
if possible, to reduce the likelihood of difficult to remotely debug linking errors. Additional
libraries may be submitted that support this core library file (i.e., the core library file may have
dependencies implemented in other libraries if a single library is not feasible). It is recommended
that the RUNPATH of these dependent libraries be set to $ORIGIN, since the only participant library
that the FRIF TE E1N test application will explicitly link is the core library. The FRIF TE E1N test
application’s RUNPATHwill include the directory containing the participant’s core library. Filenames
and checksums of all library files will be reported in FRIF TE E1N analysis reports.

5.1.3 libfrif.so

Core libraries will need to depend on the NIST-provided libfrif.so for implementations of
FRIF TE-wide API methods. Participants shall not alter the provided header file for libfrif.so.
NIST will build and supply libfrif.so, and so this library shall not be included in validation
submissions (Section 5.3).

5.1.4 libfrif_e1n.so

A second NIST-provided library, libfrif_e1n.so, provides implementations for E1N-specific
methods.

18

FRIF TE E1N Test Plan

Again, core libraries will need to depend on this NIST-provided library. Participants shall not alter
the provided header file for libfrif_e1n.so. NIST will build and supply libfrif_e1n.so, and so
this library shall not be included in validation submissions (Section 5.3).

5.1.5 Hardware Dependencies

Use of intrinsic functions and inline assembly is allowed and encouraged, but software libraries
shall be able to run and are required to pass validation (Section 5.3) on Intel CPUs, including,
but not limited to, Intel Xeon E5-2680, Intel Xeon E5-4650, Intel Xeon Gold 6140, and Intel Xeon
Gold 6254. Unavailable intrinsics shall be avoided where unsupported and their lack of use shall
not change output. Speed tests that run on a fixed sample dataset will be run as described in
Section 5.4.

5.1.6 Naming

The core software library submitted for FRIF TE E1N shall be named in a predefined format.
The first part of the software library’s name shall be libfrif_e1n_. The second piece of the
software library’s name shall be a non-infringing and case-sensitive unique identifier that matches
the regular expression [:alnum:]+ (likely the participating organization’s name), followed by an
underscore. The final part of the software library’s name shall be a four uppercase hexadecimal
digit version number, followed by a file extension. Be cognizant of the name provided, as this
will be name NIST uses to refer to your submission in reports. Supplemental libraries may have
any name, but the core library must be dependent on supplemental libraries in order to be linked
correctly. The only participant library that will be explicitly linked to the FRIF TE E1N test driver
is the core library, as demonstrated in Sections 5.1.2 and 5.1.7.

The version number shall match the uppercase hexadecimal version number with leading 0s,
as returned by Evaluations::Exemplar1N::getLibraryIdentifier(). With this naming scheme,
every core library received by NIST shall have a unique filename. Incorrectly named or versioned
software libraries will be rejected.

Note
When NIST encounters an error, NIST will expect a different version number on resubmission.
Incrementing the version number is not a penalty. It is NIST’s way of ensuring they’re always
running with the latest version of a software library and its templates, and that analysis is run
against appropriate log files.

NIST discourages trying to align version numbers for marketing use. Instead, make use of the
marketing identification features of the API described in Section 4.2.2 for this purpose.

Example
Initech submits a software library named libfrif_e1n_initech_101C.so with build 4 124 of their
algorithm. This library returns {0x101C, "initech"} from getLibraryIdentifier(). NIST deter-
mines that Initech’s searchSubject() method is too slow and rejects the library. Initech submits
build 4 125 to correct the defect in 4 124. Initech updates getLibraryIdentifier() in their imple-
mentation to return{0x101D, "initech"}and renames their library tolibfrif_e1n_initech_101D.so.
In FRIF TE E1N analysis reports, NIST refers to Initech’s library as initech+101D.

19

FRIF TE E1N Test Plan

mpicxx -o frif_e1n frif_e1n.cpp -Llib -Wl,--enable-new-dtags -Wl,-rpath,lib \
-lfrif -lfrif_e1n -lfrif_e1n_initech_101D -std=c++20

Figure 4: Example compilation and link command for the FRIF TE E1N test application.

5.1.7 Operating Environment

The software library will be tested in non-interactive “batch” mode (i.e., without terminal support)
in an isolated environment (i.e., no Internet connectivity). Thus, the software library under test
shall not use any interactive functions, such as graphical user interface calls, or any other calls that
require terminal interaction (e.g., writes to stdout) or network connectivity. Any messages for
debugging failure conditions shall be provided via the message parameter of ReturnStatus (or via
exceptions in extreme cases) and not write to files or the console.

NIST will link the provided library files to a C++20 language test driver application using the
compiler g++ (version Ubuntu 13.3.0-6ubuntu2~24.04, via mpicxx) under Ubuntu Server 24.04.1
LTS, as seen in Figure 4.

Participants are required to provide their software libraries in a format that is linkable using g++
with the NIST test driver. All compilation and testing will be performed on 64-bit hardware
running Ubuntu Server 24.04.1 LTS. Participants are strongly encouraged to verify library-level
compatibility with g++ on Ubuntu Server 24.04.1 LTS prior to submitting their software to NIST to
avoid unexpected problems.

5.2 Usage

5.2.1 Software Libraries

The software library shall be executable on any number of machines without requiring additional
machine-specific license control procedures, activation, hardware dongles, or any other form of
rights management.

The software library under test’s usage shall be unlimited. No usage controls or limits based on
licenses, execution date/time, number of executions, etc., shall be enforced by the software library.
Should a limitation be encountered, the software library under test shall have FRIF TE E1N testing
status revoked.

5.3 Validation and Submitting

NIST shall provide a validation package that will link the participant core software library to a sample
FRIF TE E1N test application. A script included in the validation package runs a series of tests
and reporting routines to help ensure correct operation at NIST. Once the validation successfully
completes on the participant’s system, a file with logs, the participant’s software libraries, and any
provided configuration files will be created. After being signed and encrypted, only this file and
a public key shall be submitted to NIST. Any software library submissions not generated by an
unmodified copy of the latest version of NIST’s FRIF TE E1N validation package will be rejected.
Any software library submissions that generate errors while running the validation package on
NIST’s hardware will be rejected. Validation packages that have recorded errors while running
on the participant’s system will be rejected. Any submissions of successful validation runs not
created on Ubuntu Server 24.04.1 LTS will be rejected. Any submissions not signed and encrypted

20

FRIF TE E1N Test Plan

with the private key whose public key fingerprint is recorded on the participant’s FRIF TE E1N
agreement will be rejected.

Participants may resubmit a new validation package immediately upon being notified of a vali-
dation rejection. NIST may impose a “cool down” period of several months for participants with
excessive repeated rejections in order to most efficiently make use of test hardware.

5.3.1 Agreement

Before releasing FRIF TE E1N analysis reports, NIST must receive a signed FRIF TE E1N agreement.
Even if the information has not changed, a new agreement must be submitted for each FRIF TE
E1N analysis report NIST posts. This agreement may be e-mailed.

5.3.2 Communication

All communication to NIST shall be addressed to the FRIF TE E1N e-mail alias frif@nist.gov and
not a specific member of the FRIF TE E1N team. This will help ensure your message is replied to
in an efficient manner.

5.4 Speed

Timing tests will be run and reported. Speed requirements are listed in Table 1. For those methods
where Metric is Sample Mean, the test will be performed using a fixed sample of the FRIF TE E1N
dataset (Section 2) on an Intel Xeon Gold 6254 CPU prior to completing the entire test. Submissions
that do not meet the timing requirements listed for each method in Table 1 will be rejected. A table
of timing requirements can be seen in Section 4.5.4.

Speed tests of ExtractionInterface::createReferenceDatabase() will also be performed on an
Intel Xeon Gold 6254 CPU. For expediency, NIST may choose to allow some discretion in the
runtime of this method. For example, if the maximum runtime is 10 h but the actual runtime
was 10.1 h and there was demand for compute resources in our data center, it may be prudent to
continue the evaluation, since a resubmission in this example would also require the regeneration
of millions of templates.

Due to the nature of the FRIF TE E1N API, timing failures may not be seen by NIST until several
days after submission. Participants may resubmit a new validation package immediately upon
being notified of a timing rejection. NIST may impose a “cool down” period of several months
for participants with excessive repeated rejections in order to most efficiently make use of test
hardware.

21

mailto:frif@nist.gov

FRIF TE E1N Test Plan

References

[1] Fiumara G, et al. (2018) National Institute of Standards and Technology Special Database 302:
Nail to Nail Fingerprint Challenge. National Institute of Standards and Technology, Technical
Note 2007. https://doi.org/10.6028/NIST.TN.2007

[2] Fiumara G, et al. NIST Special Database 302 Nail to Nail (N2N) Fingerprint Challenge, National
Institute of Standards and Technology, Zip Archive. https://doi.org/10.18434/M31943

[3] American National Standard for Information Systems (2016) Information Technology: ANSI/
NIST-ITL 1-2011 Update 2015 — Data Format for the Interchange of Fingerprint, Facial & Other
Biometric Information. NIST Special Publication 500-290e3 https://doi.org/10.6028/NIST.SP.
500-290e3

Revision History

28 January 2025

• Initial release.

22

https://doi.org/10.6028/NIST.TN.2007
https://doi.org/10.18434/M31943
https://doi.org/10.6028/NIST.SP.500-290e3
https://doi.org/10.6028/NIST.SP.500-290e3

	Introduction
	Evaluation Imagery
	Scenarios and Variables
	Application Programming Interface Highlights
	Software and Documentation
	References
	Revision History

