Measurement Classes¶
The following classes encode the $Pn* keywords for a single measurement.
Optical¶
- class pyreflow.Optical2_0(scale=None, wavelength=None, bin=None, size=None, filter='', power=None, detector_type='', percent_emitted=None, detector_voltage=None, longname='', nonstandard_keywords={})¶
FCS 2.0 $Pn* keywords for optical measurement.
- Variables:
scale (
tuple[()] |tuple[float,float] | None) – (read-write) Value for $PnE. Empty tuple means linear scale; 2-tuple encodes decades and offset for log scale Defaults toNone.wavelength (
float| None) – (read-write) Value for $PnL. Defaults toNone.bin (
int| None) – (read-write) Value of $PKn. Defaults toNone.size (
int| None) – (read-write) Value of $PKNn. Defaults toNone.filter (
str) – (read-write) Value for $PnF. Defaults to"".power (
float| None) – (read-write) Value for $PnO. Defaults toNone.detector_type (
str) – (read-write) Value for $PnT. Defaults to"".percent_emitted (
float| None) – (read-write) Value for $PnP. Defaults toNone.detector_voltage (
float| None) – (read-write) Value for $PnV. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
OverflowError – if
binorsizeis less than0or greater than2**32-1InvalidKeywordValueError – if
scalehas log scale floats which are not both positiveInvalidKeywordValueError – if
wavelengthis negative,0.0,NaN,inf, or-infInvalidKeywordValueError – if
detector_voltage,percent_emitted, orpoweris negative,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
- class pyreflow.Optical3_0(transform, wavelength=None, bin=None, size=None, filter='', power=None, detector_type='', percent_emitted=None, detector_voltage=None, longname='', nonstandard_keywords={})¶
FCS 3.0 $Pn* keywords for optical measurement.
- Variables:
transform (
float|tuple[float,float]) – (read-write) Value for $PnE and/or $PnG. Singleton float encodes gain ($PnG) and implies linear scaling (ie $PnE is0,0). 2-tuple encodes decades and offset for log scale, and implies $PnG is not set.wavelength (
float| None) – (read-write) Value for $PnL. Defaults toNone.bin (
int| None) – (read-write) Value of $PKn. Defaults toNone.size (
int| None) – (read-write) Value of $PKNn. Defaults toNone.filter (
str) – (read-write) Value for $PnF. Defaults to"".power (
float| None) – (read-write) Value for $PnO. Defaults toNone.detector_type (
str) – (read-write) Value for $PnT. Defaults to"".percent_emitted (
float| None) – (read-write) Value for $PnP. Defaults toNone.detector_voltage (
float| None) – (read-write) Value for $PnV. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
OverflowError – if
binorsizeis less than0or greater than2**32-1InvalidKeywordValueError – if
transformhas log scale floats which are not both positiveInvalidKeywordValueError – if
wavelengthis negative,0.0,NaN,inf, or-infInvalidKeywordValueError – if
detector_voltage,percent_emitted, orpoweris negative,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
- class pyreflow.Optical3_1(transform, wavelengths=[], calibration=None, display=None, bin=None, size=None, filter='', power=None, detector_type='', percent_emitted=None, detector_voltage=None, longname='', nonstandard_keywords={})¶
FCS 3.1 $Pn* keywords for optical measurement.
- Variables:
transform (
float|tuple[float,float]) – (read-write) Value for $PnE and/or $PnG. Singleton float encodes gain ($PnG) and implies linear scaling (ie $PnE is0,0). 2-tuple encodes decades and offset for log scale, and implies $PnG is not set.wavelengths (
list[float]) – (read-write) Value for $PnL. Defaults to[].calibration (
tuple[float,str] | None) – (read-write) Value of $PnCALIBRATION. Tuple encodes slope and calibration units. Defaults toNone.display (
tuple[bool,float,float] | None) – (read-write) Value of $PnD. First member of tuple encodes linear or log display (FalseandTruerespectively). The float members encode lower/upper and decades/offset for linear and log scaling respectively. Defaults toNone.bin (
int| None) – (read-write) Value of $PKn. Defaults toNone.size (
int| None) – (read-write) Value of $PKNn. Defaults toNone.filter (
str) – (read-write) Value for $PnF. Defaults to"".power (
float| None) – (read-write) Value for $PnO. Defaults toNone.detector_type (
str) – (read-write) Value for $PnT. Defaults to"".percent_emitted (
float| None) – (read-write) Value for $PnP. Defaults toNone.detector_voltage (
float| None) – (read-write) Value for $PnV. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
OverflowError – if
binorsizeis less than0or greater than2**32-1ValueError – if
displayrepresents a log display (field 1 isTrue) and the two floats are not both positiveInvalidKeywordValueError – if
transformhas log scale floats which are not both positiveInvalidKeywordValueError – if
detector_voltage,percent_emitted, orpoweris negative,NaN,inf, or-infInvalidKeywordValueError – if field 1 in
calibrationis negative,0.0,NaN,inf, or-infInvalidKeywordValueError – if any in
wavelengthsis negative,0.0,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
- class pyreflow.Optical3_2(transform, wavelengths=[], calibration=None, display=None, analyte='', feature=None, tag='', measurement_type='', detector_name='', filter='', power=None, detector_type='', percent_emitted=None, detector_voltage=None, longname='', nonstandard_keywords={})¶
FCS 3.2 $Pn* keywords for optical measurement.
- Variables:
transform (
float|tuple[float,float]) – (read-write) Value for $PnE and/or $PnG. Singleton float encodes gain ($PnG) and implies linear scaling (ie $PnE is0,0). 2-tuple encodes decades and offset for log scale, and implies $PnG is not set.wavelengths (
list[float]) – (read-write) Value for $PnL. Defaults to[].calibration (
tuple[float,float,str] | None) – (read-write) Value of $PnCALIBRATION. Tuple encodes slope, intercept, and calibration units. Defaults toNone.display (
tuple[bool,float,float] | None) – (read-write) Value of $PnD. First member of tuple encodes linear or log display (FalseandTruerespectively). The float members encode lower/upper and decades/offset for linear and log scaling respectively. Defaults toNone.analyte (
str) – (read-write) Value for $PnANALYTE. Defaults to"".feature (
Literal[“Area”, “Width”, “Height”] | None) – (read-write) Value for $PnFEATURE. Defaults toNone.tag (
str) – (read-write) Value for $PnTAG. Defaults to"".measurement_type (
str) – (read-write) Value for $PnTYPE. Defaults to"".detector_name (
str) – (read-write) Value for $PnDET. Defaults to"".filter (
str) – (read-write) Value for $PnF. Defaults to"".power (
float| None) – (read-write) Value for $PnO. Defaults toNone.detector_type (
str) – (read-write) Value for $PnT. Defaults to"".percent_emitted (
float| None) – (read-write) Value for $PnP. Defaults toNone.detector_voltage (
float| None) – (read-write) Value for $PnV. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
ValueError – if
displayrepresents a log display (field 1 isTrue) and the two floats are not both positiveInvalidKeywordValueError – if
transformhas log scale floats which are not both positiveInvalidKeywordValueError – if
detector_voltage,percent_emitted, orpoweris negative,NaN,inf, or-infInvalidKeywordValueError – if field 1 in
calibrationis negative,0.0,NaN,inf, or-infInvalidKeywordValueError – if any in
wavelengthsis negative,0.0,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
Temporal¶
- class pyreflow.Temporal2_0(has_scale=False, bin=None, size=None, longname='', nonstandard_keywords={})¶
FCS 2.0 $Pn* keywords for temporal measurement.
- Variables:
has_scale (
bool) – (read-write) Value for $PnE. Defaults toFalse.bin (
int| None) – (read-write) Value of $PKn. Defaults toNone.size (
int| None) – (read-write) Value of $PKNn. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
OverflowError – if
binorsizeis less than0or greater than2**32-1ParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
- class pyreflow.Temporal3_0(timestep, bin=None, size=None, longname='', nonstandard_keywords={})¶
FCS 3.0 $Pn* keywords for temporal measurement.
- Variables:
timestep (
float) – (read-write) Value of $TIMESTEP.bin (
int| None) – (read-write) Value of $PKn. Defaults toNone.size (
int| None) – (read-write) Value of $PKNn. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
OverflowError – if
binorsizeis less than0or greater than2**32-1InvalidKeywordValueError – if
timestepis negative,0.0,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
- class pyreflow.Temporal3_1(timestep, display=None, bin=None, size=None, longname='', nonstandard_keywords={})¶
FCS 3.1 $Pn* keywords for temporal measurement.
- Variables:
timestep (
float) – (read-write) Value of $TIMESTEP.display (
tuple[bool,float,float] | None) – (read-write) Value of $PnD. First member of tuple encodes linear or log display (FalseandTruerespectively). The float members encode lower/upper and decades/offset for linear and log scaling respectively. Defaults toNone.bin (
int| None) – (read-write) Value of $PKn. Defaults toNone.size (
int| None) – (read-write) Value of $PKNn. Defaults toNone.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
OverflowError – if
binorsizeis less than0or greater than2**32-1ValueError – if
displayrepresents a log display (field 1 isTrue) and the two floats are not both positiveInvalidKeywordValueError – if
timestepis negative,0.0,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"
- class pyreflow.Temporal3_2(timestep, display=None, has_type=False, longname='', nonstandard_keywords={})¶
FCS 3.2 $Pn* keywords for temporal measurement.
- Variables:
timestep (
float) – (read-write) Value of $TIMESTEP.display (
tuple[bool,float,float] | None) – (read-write) Value of $PnD. First member of tuple encodes linear or log display (FalseandTruerespectively). The float members encode lower/upper and decades/offset for linear and log scaling respectively. Defaults toNone.has_type (
bool) – (read-write) Value for $PnTYPE. Defaults toFalse.longname (
str) – (read-write) Value for $PnS. Defaults to"".nonstandard_keywords (
dict[str,str]) – (read-write) Any non-standard keywords corresponding to this measurement. No keys should start with $. Realistically each key should follow a pattern corresponding to the measurement index, something like prefixing with “P” followed by the index. This is not enforced. Defaults to{}.
- Raises:
ValueError – if
displayrepresents a log display (field 1 isTrue) and the two floats are not both positiveInvalidKeywordValueError – if
timestepis negative,0.0,NaN,inf, or-infParseKeyError – if dict key in
nonstandard_keywordsis empty or starts with"$"