fipy.meshes.uniformGrid1D

1D Mesh

Classes

UniformGrid1D([dx, nx, origin, overlap, ...])

Creates a 1D grid mesh.

class fipy.meshes.uniformGrid1D.UniformGrid1D(dx=1.0, nx=1, origin=(0, ), overlap=2, communicator=DummyComm(), _RepresentationClass=<class 'fipy.meshes.representations.gridRepresentation._Grid1DRepresentation'>, _TopologyClass=<class 'fipy.meshes.topologies.gridTopology._Grid1DTopology'>)

Bases: UniformGrid

Creates a 1D grid mesh.

>>> mesh = UniformGrid1D(nx = 3)
>>> print(mesh.cellCenters)
[[ 0.5  1.5  2.5]]
property VTKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VTKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5]
 [ 0.5  0.5  1.5  1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)
[[  5.5   6.5   5.5   6.5]
 [ 10.5  10.5  11.5  11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  3.5  4.5  3.5  4.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]
>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  2.5  2.5  3.5  3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  1.5  2.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333,  3.83333333,
...                 2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
...                 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[ 0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
...                  2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [ 0.5, 0.5, 1.5, 1.5, 1., 1.,
...                  1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                         nx = 2, ny = 2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                           nx = 1, ny = 1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  0.5  1.5  0.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5  0.5]
 [ 0.5  0.5  0.5  0.5  1.5  1.5  1.5  1.5  0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh 
Traceback (most recent call last):
...
MeshAdditionError: Dimensions do not match
__div__(other)

Tests. >>> from fipy import * >>> print((Grid1D(nx=1) / 2.).cellCenters) [[ 0.25]] >>> AbstractMesh(communicator=None) / 2. Traceback (most recent call last): … NotImplementedError

__getstate__()

Helper for pickle.

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5]
 [ 0.5  0.5  1.5  1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)
[[  5.5   6.5   5.5   6.5]
 [ 10.5  10.5  11.5  11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  3.5  4.5  3.5  4.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]
>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  2.5  2.5  3.5  3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  1.5  2.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333,  3.83333333,
...                 2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
...                 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[ 0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
...                  2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [ 0.5, 0.5, 1.5, 1.5, 1., 1.,
...                  1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                         nx = 2, ny = 2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                           nx = 1, ny = 1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  0.5  1.5  0.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5  0.5]
 [ 0.5  0.5  0.5  0.5  1.5  1.5  1.5  1.5  0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh 
Traceback (most recent call last):
...
MeshAdditionError: Dimensions do not match
__repr__()

Return repr(self).

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m Traceback (most recent call last): … TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘UniformGrid1D’

__truediv__(other)

Tests. >>> from fipy import * >>> print((Grid1D(nx=1) / 2.).cellCenters) [[ 0.25]] >>> AbstractMesh(communicator=None) / 2. Traceback (most recent call last): … NotImplementedError

property aspect2D

The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs
property exteriorFaces

Geometry set and calc

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),
...                        numerix.nonzero(mesh.facesBack)[0])) 
True
>>> ignore = mesh.facesBack.value 
property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
...                        numerix.nonzero(mesh.facesBottom)[0])) 
True
>>> ignore = mesh.facesBottom.value 
>>> x, y, z = mesh.faceCenters
>>> print(numerix.allequal((12, 13),
...                        numerix.nonzero(mesh.facesBottom & (x < 1))[0])) 
True
>>> ignore = mesh.facesBottom.value 
property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
...                        numerix.nonzero(mesh.facesBottom)[0])) 
True
>>> ignore = mesh.facesBottom.value 
>>> x, y, z = mesh.faceCenters
>>> print(numerix.allequal((12, 13),
...                        numerix.nonzero(mesh.facesBottom & (x < 1))[0])) 
True
>>> ignore = mesh.facesBottom.value 
property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((0, 1, 2, 3, 4, 5),
...                        numerix.nonzero(mesh.facesFront)[0])) 
True
>>> ignore = mesh.facesFront.value 
property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),
...                        numerix.nonzero(mesh.facesLeft)[0])) 
True
>>> ignore = mesh.facesLeft.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((9, 13),
...                        numerix.nonzero(mesh.facesLeft)[0])) 
True
>>> ignore = mesh.facesLeft.value 
property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((24, 28),
...                        numerix.nonzero(mesh.facesRight)[0])) 
True
>>> ignore = mesh.facesRight.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((12, 16),
...                        numerix.nonzero(mesh.facesRight)[0])) 
True
>>> ignore = mesh.facesRight.value 
property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((6, 7, 8),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((6, 7, 8),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
property x

Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print(Grid1D(nx=2).x)
[ 0.5  1.5]
property y

Equivalent to using cellCenters[1].

>>> from fipy import *
>>> print(Grid2D(nx=2, ny=2).y)
[ 0.5  0.5  1.5  1.5]
>>> print(Grid1D(nx=2).y)
Traceback (most recent call last):
  ...
AttributeError: 1D meshes do not have a "y" attribute.
property z

Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print(Grid3D(nx=2, ny=2, nz=2).z)
[ 0.5  0.5  0.5  0.5  1.5  1.5  1.5  1.5]
>>> print(Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):
  ...
AttributeError: 1D and 2D meshes do not have a "z" attribute.
Last updated on Jun 26, 2024. Created using Sphinx 7.1.2.