fipy.meshes.nonUniformGrid3D

Classes

NonUniformGrid3D([dx, dy, dz, nx, ny, nz, ...])

3D rectangular-prism Mesh

class fipy.meshes.nonUniformGrid3D.NonUniformGrid3D(dx=1.0, dy=1.0, dz=1.0, nx=None, ny=None, nz=None, overlap=2, communicator=DummyComm(), _RepresentationClass=<class 'fipy.meshes.representations.gridRepresentation._Grid3DRepresentation'>, _TopologyClass=<class 'fipy.meshes.topologies.gridTopology._Grid3DTopology'>)

Bases: Mesh

3D rectangular-prism Mesh

X axis runs from left to right. Y axis runs from bottom to top. Z axis runs from front to back.

Numbering System:

Vertices: Numbered in the usual way. X coordinate changes most quickly, then Y, then Z.

Cells: Same numbering system as vertices.

Faces: XY faces numbered first, then XZ faces, then YZ faces. Within each subcategory, it is numbered in the usual way.

property VTKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VTKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5]
 [ 0.5  0.5  1.5  1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)
[[  5.5   6.5   5.5   6.5]
 [ 10.5  10.5  11.5  11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  3.5  4.5  3.5  4.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]
>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  2.5  2.5  3.5  3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  1.5  2.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333,  3.83333333,
...                 2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
...                 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[ 0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
...                  2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [ 0.5, 0.5, 1.5, 1.5, 1., 1.,
...                  1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                         nx = 2, ny = 2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                           nx = 1, ny = 1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  0.5  1.5  0.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5  0.5]
 [ 0.5  0.5  0.5  0.5  1.5  1.5  1.5  1.5  0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh 
Traceback (most recent call last):
...
MeshAdditionError: Dimensions do not match
__div__(other)

Tests. >>> from fipy import * >>> print((Grid1D(nx=1) / 2.).cellCenters) [[ 0.25]] >>> AbstractMesh(communicator=None) / 2. Traceback (most recent call last): … NotImplementedError

__getstate__()

Helper for pickle.

__mul__(factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5]
 [ 0.5  0.5  1.5  1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[ 1.5  4.5  1.5  4.5]
 [ 1.5  1.5  4.5  4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)
[[ 1.5  4.5  1.5  4.5]
 [ 1.   1.   3.   3. ]]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,)) 
Traceback (most recent call last):
...
ValueError: shape mismatch: objects cannot be broadcast to a single shape
__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5]
 [ 0.5  0.5  1.5  1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)
[[  5.5   6.5   5.5   6.5]
 [ 10.5  10.5  11.5  11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  3.5  4.5  3.5  4.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]
>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  2.5  3.5  2.5  3.5]
 [ 0.5  0.5  1.5  1.5  2.5  2.5  3.5  3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  1.5  2.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333,  3.83333333,
...                 2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
...                 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[ 0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
...                  2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
...                [ 0.5, 0.5, 1.5, 1.5, 1., 1.,
...                  1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
...                        cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                         nx = 2, ny = 2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
...                           nx = 1, ny = 1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5  0.5  1.5  0.5  1.5  2.5]
 [ 0.5  0.5  1.5  1.5  0.5  0.5  1.5  1.5  0.5]
 [ 0.5  0.5  0.5  0.5  1.5  1.5  1.5  1.5  0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh 
Traceback (most recent call last):
...
MeshAdditionError: Dimensions do not match
__repr__()

Return repr(self).

__rmul__(factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[ 0.5  1.5  0.5  1.5]
 [ 0.5  0.5  1.5  1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[ 1.5  4.5  1.5  4.5]
 [ 1.5  1.5  4.5  4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)
[[ 1.5  4.5  1.5  4.5]
 [ 1.   1.   3.   3. ]]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,)) 
Traceback (most recent call last):
...
ValueError: shape mismatch: objects cannot be broadcast to a single shape
__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m Traceback (most recent call last): … TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘UniformGrid1D’

__truediv__(other)

Tests. >>> from fipy import * >>> print((Grid1D(nx=1) / 2.).cellCenters) [[ 0.25]] >>> AbstractMesh(communicator=None) / 2. Traceback (most recent call last): … NotImplementedError

property aspect2D

The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs
property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),
...                        numerix.nonzero(mesh.facesBack)[0])) 
True
>>> ignore = mesh.facesBack.value 
property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
...                        numerix.nonzero(mesh.facesBottom)[0])) 
True
>>> ignore = mesh.facesBottom.value 
>>> x, y, z = mesh.faceCenters
>>> print(numerix.allequal((12, 13),
...                        numerix.nonzero(mesh.facesBottom & (x < 1))[0])) 
True
>>> ignore = mesh.facesBottom.value 
property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
...                        numerix.nonzero(mesh.facesBottom)[0])) 
True
>>> ignore = mesh.facesBottom.value 
>>> x, y, z = mesh.faceCenters
>>> print(numerix.allequal((12, 13),
...                        numerix.nonzero(mesh.facesBottom & (x < 1))[0])) 
True
>>> ignore = mesh.facesBottom.value 
property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((0, 1, 2, 3, 4, 5),
...                        numerix.nonzero(mesh.facesFront)[0])) 
True
>>> ignore = mesh.facesFront.value 
property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),
...                        numerix.nonzero(mesh.facesLeft)[0])) 
True
>>> ignore = mesh.facesLeft.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((9, 13),
...                        numerix.nonzero(mesh.facesLeft)[0])) 
True
>>> ignore = mesh.facesLeft.value 
property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((24, 28),
...                        numerix.nonzero(mesh.facesRight)[0])) 
True
>>> ignore = mesh.facesRight.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((12, 16),
...                        numerix.nonzero(mesh.facesRight)[0])) 
True
>>> ignore = mesh.facesRight.value 
property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((6, 7, 8),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((6, 7, 8),
...                        numerix.nonzero(mesh.facesTop)[0])) 
True
>>> ignore = mesh.facesTop.value 
property x

Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print(Grid1D(nx=2).x)
[ 0.5  1.5]
property y

Equivalent to using cellCenters[1].

>>> from fipy import *
>>> print(Grid2D(nx=2, ny=2).y)
[ 0.5  0.5  1.5  1.5]
>>> print(Grid1D(nx=2).y)
Traceback (most recent call last):
  ...
AttributeError: 1D meshes do not have a "y" attribute.
property z

Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print(Grid3D(nx=2, ny=2, nz=2).z)
[ 0.5  0.5  0.5  0.5  1.5  1.5  1.5  1.5]
>>> print(Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):
  ...
AttributeError: 1D and 2D meshes do not have a "z" attribute.
Last updated on Nov 20, 2024. Created using Sphinx 7.1.2.