examples.levelSet.advection.trenchΒΆ
This example creates a trench with the following zero level set:
\[\begin{split}\phi \left( x, y \right) = 0 & \text{when $y = L_y / 5$ and $x \ge L_x / 2$} \\
\phi \left( x, y \right) = 0 & \text{when $L_y / 5 \le y \le 3 Ly / 5$ and $x = L_x / 2$} \\
\phi \left( x, y \right) = 0 & \text{when $y = 3 Ly / 5$ and $x \le L_x / 2$}\end{split}\]
>>> from fipy import CellVariable, Grid2D, DistanceVariable, TransientTerm, FirstOrderAdvectionTerm, AdvectionTerm, Viewer
>>> from fipy.tools import numerix, serialComm
>>> height = 0.5
>>> Lx = 0.4
>>> Ly = 1.
>>> dx = 0.01
>>> velocity = 1.
>>> cfl = 0.1
>>> nx = int(Lx / dx)
>>> ny = int(Ly / dx)
>>> timeStepDuration = cfl * dx / velocity
>>> steps = 200
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = ny, communicator=serialComm)
>>> var = DistanceVariable(name = 'level set variable',
... mesh = mesh,
... value = -1.,
... hasOld = 1
... )
>>> x, y = mesh.cellCenters
>>> var.setValue(1, where=(y > 0.6 * Ly) | ((y > 0.2 * Ly) & (x > 0.5 * Lx)))
>>> var.calcDistanceFunction()
>>> advEqn = TransientTerm() + FirstOrderAdvectionTerm(velocity)
The trench is then advected with a unit velocity. The following test can be made for the initial position of the interface:
>>> r1 = -numerix.sqrt((x - Lx / 2)**2 + (y - Ly / 5)**2)
>>> r2 = numerix.sqrt((x - Lx / 2)**2 + (y - 3 * Ly / 5)**2)
>>> d = numerix.zeros((len(x), 3), 'd')
>>> d[:, 0] = numerix.where(x >= Lx / 2, y - Ly / 5, r1)
>>> d[:, 1] = numerix.where(x <= Lx / 2, y - 3 * Ly / 5, r2)
>>> d[:, 2] = numerix.where(numerix.logical_and(Ly / 5 <= y, y <= 3 * Ly / 5), x - Lx / 2, d[:, 0])
>>> argmins = numerix.argmin(numerix.absolute(d), axis = 1)
>>> answer = numerix.take(d.ravel(), numerix.arange(len(argmins))*3 + argmins)
>>> print(var.allclose(answer, atol = 1e-1))
1
Advect the interface and check the position.
>>> if __name__ == '__main__':
... viewer = Viewer(vars=var, datamin=-0.1, datamax=0.1)
...
... viewer.plot()
>>> from builtins import range
>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt = timeStepDuration)
... if __name__ == '__main__':
... viewer.plot()
>>> distanceMoved = timeStepDuration * steps * velocity
>>> answer = answer - distanceMoved
>>> answer = numerix.where(answer < 0., 0., answer)
>>> var.setValue(numerix.where(var < 0., 0., var))
>>> print(var.allclose(answer, atol = 1e-1))
1
Last updated on Nov 20, 2024.
Created using Sphinx 7.1.2.