examples.diffusion.anisotropyΒΆ
Solve the diffusion equation with an anisotropic diffusion coefficient.
We wish to solve the problem
\[\frac{\partial \phi}{\partial t} = \partial_j \Gamma_{ij} \partial_i \phi\]
on a circular domain centered at \((0, 0)\). We can choose an anisotropy ratio of 5 such that
\[\begin{split}\Gamma' = \begin{pmatrix}
0.2 & 0 \\
0 & 1
\end{pmatrix}\end{split}\]
A new matrix is formed by rotating \(\Gamma'\) such that
\[\begin{split}R = \begin{pmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{pmatrix}\end{split}\]
and
\[\Gamma = R \Gamma' R^T\]
In the case of a point source at \((0, 0)\) a reference solution is given by,
\[\phi \left( X, Y, t \right) = Q \frac{
\exp \left( -\frac{1}{4 t} \left( \frac{ X^2 }{ \Gamma'_{00}} +
\frac{ Y^2 }{ \Gamma'_{11}} \right) \right) }{ 4 \pi t
\sqrt{\Gamma'_{00} \Gamma'_{11}} }\]
where \(\left(X, Y \right)^T = R \left(x, y \right)^T\) and \(Q\) is the initial mass.
>>> from fipy import CellVariable, Gmsh2D, Viewer, TransientTerm, DiffusionTermCorrection
>>> from fipy.tools import serialComm, numerix
Import a mesh previously created using Gmsh.
>>> import os
>>> mesh = Gmsh2D(os.path.splitext(__file__)[0] + '.msh', communicator=serialComm)
Set the center-most cell to have a value.
>>> var = CellVariable(mesh=mesh, hasOld=1)
>>> x, y = mesh.cellCenters
>>> var[numerix.argmin(x**2 + y**2)] = 1.
Choose an orientation for the anisotropy.
>>> theta = numerix.pi / 4.
>>> rotationMatrix = numerix.array(((numerix.cos(theta), numerix.sin(theta)), \
... (-numerix.sin(theta), numerix.cos(theta))))
>>> gamma_prime = numerix.array(((0.2, 0.), (0., 1.)))
>>> DOT = numerix.NUMERIX.dot
>>> gamma = DOT(DOT(rotationMatrix, gamma_prime), numerix.transpose(rotationMatrix))
Make the equation, viewer and solve.
>>> eqn = TransientTerm() == DiffusionTermCorrection((gamma,))
>>> if __name__ == '__main__':
... viewer = Viewer(var, datamin=0.0, datamax=0.001)
>>> mass = float(var.cellVolumeAverage * numerix.sum(mesh.cellVolumes))
>>> time = 0
>>> dt=0.00025
>>> from builtins import range
>>> for i in range(20):
... var.updateOld()
... res = 1.
...
... while res > 1e-2:
... res = eqn.sweep(var, dt=dt)
...
... if __name__ == '__main__':
... viewer.plot()
... time += dt
Compare with the analytical solution (within 5% accuracy).
>>> X, Y = numerix.dot(mesh.cellCenters, CellVariable(mesh=mesh, rank=2, value=rotationMatrix))
>>> solution = mass * numerix.exp(-(X**2 / gamma_prime[0][0] + Y**2 / gamma_prime[1][1]) / (4 * time)) / (4 * numerix.pi * time * numerix.sqrt(gamma_prime[0][0] * gamma_prime[1][1]))
>>> print(max(abs((var - solution) / max(solution))) < 0.08)
True
Last updated on Nov 20, 2024.
Created using Sphinx 7.1.2.