FiPy Manual
Release 3.99+1.9g7861e396d.dirty

Jonathan E. Guyer
Daniel Wheeler
James A. Warren

Materials Science and Engineering Division
and the Center for Theoretical and Computational Materials Science
Material Measurement Laboratory

Sep 16, 2025

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

This software was developed by employees of the National Institute of Standards and Technology (NIST), an agency
of the Federal Government and is being made available as a public service. Pursuant to title 17 United States Code
Section 105, works of NIST employees are not subject to copyright protection in the United States. This software
may be subject to foreign copyright. Permission in the United States and in foreign countries, to the extent that NIST
may hold copyright, to use, copy, modify, create derivative works, and distribute this software and its documentation
without fee is hereby granted on a non-exclusive basis, provided that this notice and disclaimer of warranty appears in
all copies.

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED,
IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THE SOFTWARE
WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT
THE DOCUMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE SOFT-
WARE WILL BE ERROR FREE. IN NO EVENT SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUDING,
BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF,
RESULTING FROM, OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR NOT BASED
UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY
PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR
AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SERVICES PROVIDED HEREUNDER.

Certain commercial firms and trade names are identified in this document in order to specify the installation and usage
procedures adequately. Such identification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that related products are necessarily the best available
for the purpose.

http://www.nist.gov/
http://www.nist.gov/
https://www.copyright.gov/title17/92chap1.html#105
https://www.copyright.gov/title17/92chap1.html#105
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/
http://www.nist.gov/

Contents

]

10

11

12

13

14

15

16

17

18

19

20

Introduction

Overview

Installation

Using FiPy

Solvers

Viewers

Frequently Asked Questions

Efficiency

Theoretical and Numerical Background
Design and Implementation

Virtual Kinetics of Materials Laboratory
Contributors

Publications

Presentations

Change Log

Git practices

Continuous Integration

Conda Lockfiles

README-like documents

Making a Release

Glossary

15

31

47

49

59

61

69

75

77

79

81

83

109

111

113

115

117

121

II Examples

21 Selected Examples

III fipy Package Documentation

22 How to Read the Modules Documentation
23 fipy

24 examples

Bibliography

Python Module Index

Index

125

129

133
135
139
975

1247

1249

1255

Part 1

Introduction

Chapter

Overview

o Azure Pipelines | succeeded Build Documentation passing Test Nix ||passing

osx-64 | win-64 | linux-64 launch [Binder

FiPy is an object oriented, partial differential equation (PDE) solver, written in Pyrhon, based on a standard finite
volume (FV) approach. The framework has been developed in the Materials Science and Engineering Division (MSED)
and Center for Theoretical and Computational Materials Science (CTCMS), in the Material Measurement Laboratory
(MML) at the National Institute of Standards and Technology (NIST).

The solution of coupled sets of PDEs is ubiquitous to the numerical simulation of science problems. Numerous PDE
solvers exist, using a variety of languages and numerical approaches. Many are proprietary, expensive and difficult
to customize. As a result, scientists spend considerable resources repeatedly developing limited tools for specific
problems. Our approach, combining the FV method and Pyhon, provides a tool that is extensible, powerful and freely
available. A significant advantage to Python is the existing suite of tools for array calculations, sparse matrices and
data rendering.

The FiPy framework includes terms for transient diffusion, convection and standard sources, enabling the solution of
arbitrary combinations of coupled elliptic, hyperbolic and parabolic PDEs. Currently implemented models include
phase field [1] [2] [3] treatments of polycrystalline, dendritic, and electrochemical phase transformations, as well as
drug eluting stents [4], reactive wetting [5], photovoltaics [6] and a level set treatment of the electrodeposition process

[71.
The latest information about FiPy can be found at http://www.ctcms.nist.gov/fipy/.

See the latest updates in the Change Log.

https://dev.azure.com/guyer/FiPy/_build?definitionId=2
https://github.com/usnistgov/fipy/actions/workflows/Docs4NIST.yml
https://github.com/usnistgov/fipy/actions/workflows/nix.yml
https://github.com/usnistgov/fipy
https://pypi.python.org/pypi/FiPy
https://anaconda.org/conda-forge/fipy
https://mybinder.org/v2/gh/usnistgov/fipy/master?filepath=examples%2Findex.ipynb
https://gitter.im/usnistgov/fipy?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=body_badge
https://www.openhub.net/p/fipy
http://www.nist.gov/mml/msed/
http://www.ctcms.nist.gov/
http://www.nist.gov/mml/
http://www.nist.gov/
http://www.ctcms.nist.gov/fipy/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

1.1 Even if you don’t read manuals...

...please read Installation, Using FiPy and Frequently Asked Questions, as well as examples.diffusion.meshlD.

1.2 Download and Installation

Please refer to Installation for details on download and installation. FiPy can be redistributed and/or modified freely,
provided that any derivative works bear some notice that they are derived from it, and any modified versions bear some
notice that they have been modified.

1.3 Support

We offer several modes to communicate with the FiPy developers and with other users.

1.3.1 Contact
In order to discuss FiPy with other users and with the developers, we encourage you to use one of the following modes
of communication. We monitor all of these, so there is no need to post to more than one of them.

You may want to read the following resource about asking effective questions: http://www.catb.org/~esr/faqs/
smart-questions.html

If you are having trouble, we are able to offer much more effective help if you provide a minimal reproducible example.

GitHub Discussions

https://github.com/usnistgov/fipy/discussions
Suitable for open-ended conversations, troubleshooting, showing off. ..

If a discussion highlights a bug or feature request, it’s easy for us to migrate GitHub Discussions to GitHub Issues.

GitHub Issues

https://github.com/usnistgov/fipy/issues

Suitable for bug reports, feature requests, and patch submissions.

StackOverflow

https://stackoverflow.com/questions/tagged/fipy

Suitable for questions that (probably) have definitive answers (“How do I...?”). It doesn’t work so well for back-and-
forth conversations, which are better suited to GitHub Discussions. Further, it’s bad at math and they tend to delete
answers that link to our existing documentation, meaning that we’d need to expend considerable effort, using an inferior
tool, to duplicate things we’ve already written.

Seriously, use GitHub Discussions.

4 Chapter 1. Overview

http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
https://stackoverflow.com/help/minimal-reproducible-example
https://github.com/usnistgov/fipy/discussions
https://github.com/usnistgov/fipy/issues
https://stackoverflow.com/questions/tagged/fipy
https://meta.stackexchange.com/questions/30559/latex-on-stack-overflow

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Mailing List

Attention: The mailing list is deprecated. Please use GitHub Discussions, instead.

You can sign up for the mailing list by sending a subscription email to <mailto:fipy+subscribe @list.nist.gov>.

Once you are subscribed, you can post messages to the list simply by addressing email to <mailto:fipy @list.nist.gov>.
To get off the list, send a message to <mailto:fipy+unsubscribe @list.nist.gov>.

Send a message to <mailto:fipy+help @list.nist.gov> to learn other mailing list configurations you can change.

The list is hosted as a Google group. If you are subscribed with a Google account, you can interact with the list,
configure your subscription, and see the archives at https://list.nist.gov/fipy.

List Archive

https://www.mail-archive.com/fipy @list.nist.gov/
Copies of messages sent to fipy @list.nist.gov are stored at The Mail Archive.
Older messages are archived at https://www.mail-archive.com/fipy @nist.gov/.

(note: we have also historically sent copies to http://dir.gmane.org/gmane.comp.python.fipy, but the GMANE site now
appears to be defunct.)

We welcome collaborative efforts on this project.

1.4 Conventions and Notation

FiPy is driven by Python script files than you can view or modify in any text editor. FiPy sessions are invoked from a
command-line shell, such as tcsh or bash.

Throughout, text to be typed at the keyboard will appear 1ike this. Commands to be issued from an interactive shell
will appear:

[s like this]

where you would enter the text ("like this”) following the shell prompt, denoted by “$”.

Text blocks of the form:

>>>a =3 %4
>>> a
12
>>> if a == 12:
print "a is twelve"

a is twelve

are intended to indicate an interactive session in the Python interpreter. We will refer to these as “interactive sessions”
or as “doctest blocks”. The text “>>>" at the beginning of a line denotes the primary prompt, calling for input of a
Python command. The text . ..” denotes the secondary prompt, which calls for input that continues from the line
above, when required by Python syntax. All remaining lines, which begin at the left margin, denote output from the
Python interpreter. In all cases, the prompt is supplied by the Pyrhon interpreter and should not be typed by you.

1.4. Conventions and Notation 5

mailto:fipy+subscribe@list.nist.gov
mailto:fipy+subscribe@list.nist.gov
mailto:fipy@list.nist.gov
mailto:fipy+unsubscribe@list.nist.gov
mailto:fipy+help@list.nist.gov
https://list.nist.gov/fipy
https://www.mail-archive.com/fipy@list.nist.gov/
mailto:fipy@list.nist.gov
https://www.mail-archive.com
https://www.mail-archive.com/fipy@nist.gov/
http://dir.gmane.org/gmane.comp.python.fipy
http://gmane.org/
https://lars.ingebrigtsen.no/2016/07/28/the-end-of-gmane/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Warning: Python is sensitive to indentation and care should be taken to enter text exactly as it appears in the
examples.

When references are made to file system paths, it is assumed that the current working directory is the FiPy distribution
directory, referred to as the “base directory”, such that:

[examples/diffusion/steadyState/mesh1D.py]

will correspond to, e.g.:

[/some/where/FiPy—X .Y/examples/diffusion/steadyState/meshlD.py]

Paths will always be rendered using POSIX conventions (path elements separated by “/”). Any references of the form:

[examples .diffusion.steadyState.meshlD J

are in the Python module notation and correspond to the equivalent POSIX path given above.

We may at times use a

Note: to indicate something that may be of interest

Warning: to indicate something that could cause serious problems.

6 Chapter 1. Overview

Chapter

Installation

The FiPy finite volume PDE solver relies on several third-party packages. It is best to obtain and install those first
before attempting to install FiPy. This document explains how to install 7Py, not how to use it. See Using FiPy for
details on how to use FiPy.

Note: It may be useful to set up a Development Environment before beginning the installation process.

2.1 Pre-Installed on Binder

A full FiPy installation is available for basic exploration on Binder. The default notebook gives a rudimentary intro-
duction to FiPy syntax and, like any Jupyter Notebook interface, tab completion will help you explore the package
interactively.

2.2 Recommended Method

Anaconda.org 345

Attention: There are many ways to obtain the software packages necessary to run FiPy, but the most expedient
way is with the conda package manager. In addition to the scientific Python stack, conda also provides virtual
environment management. Keeping separate installations is useful e.g. for comparing Python 2 and Python 3
software stacks, or when the user does not have sufficient privileges to install software system-wide.

In addition to the default packages, many other developers provide “channels” to distribute their own builds of a
variety of software. These days, the most useful channel is conda-forge, which provides everything necessary to
install FiPy.

https://mybinder.org/v2/gh/usnistgov/fipy/master
http://jupyter.org
https://anaconda.org/conda-forge/fipy
https://conda.io
https://conda.io
https://conda-forge.github.io/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

2.2.1 Install conda

Install conda or install micromamba on your computer.

2.2.2 Create a conda environment

Use one of the following methods to create a self-contained conda environment and then download and populate the
environment with the prerequisites for /7Py from the conda-forge channel at https://anaconda.org. See this discussion
of the merits of and relationship between the different methods.

¢ Conda environment files

This option is the most upgradable in the future and probably the best for development.

$ conda env create --name <MYFIPYENV> \
--file environments/<SOLVER>-environment.yml

Note: You can try to include multiple solver suites using conda env update, but be aware that different suites
may have incompatible requirements, or may restrict installation to obsolete versions of Python. Given that FiPy
can only use one solver suite during a run, installing more than one solver in an environment isn’t necessary.

Attention: Successively updating an environment can be unpredictable, as later packages may conflict with
earlier ones. Unfortunately, conda env create does not support multiple environment files.

Alternatively, combine the different environments/<SOLVER>-environment.yml files you wish to use,
along with environment.yml files for any other packages you are interested in (conda-merge may prove useful).
Then execute:

[$ conda env create --name <MYFIPYENV> --file <MYMERGEDENVIRONMENT>.yml }

e conda-lock lockfiles

This option will pin all the packages, so is the most reproducible, but not particularly upgradable. For most, this
is the safest way to generate a FiPy environment that consistently works.

$ conda-lock install --name <MYFIPYENV> \
environments/locks/conda-<SOLVER>-1ock.yml

or, to be really explicit (and obviating the need for conda-lock):

$ conda create --name <MYFIPYENV> \
--file environments/locks/conda-<SOLVER>-<PLATFORM>.lock

¢ Directly from conda-forge, picking and choosing desired packages
This option is the most flexible, but has the highest risk of missing or incompatible packages.

e.g.:

$ conda create --name <MYFIPYENV> --channel conda-forge \
python=3 numpy scipy matplotlib-base future packaging mpich \
mpidpy petsc4py mayavi "gmsh <4.0|>=4.5.2"

or:

8 Chapter 2. Installation

https://conda.io/projects/conda/en/latest/user-guide/install/
https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html
https://conda.io
https://conda-forge.github.io/
https://anaconda.org
https://pythonspeed.com/articles/conda-dependency-management/
https://conda.io
https://github.com/conda/conda/issues/9294
https://github.com/amitbeka/conda-merge
https://github.com/conda/conda-lock
https://github.com/conda/conda-lock
https://conda-forge.github.io/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

$ conda create --name <MYFIPYENV> --channel conda-forge \
python=2.7 numpy scipy matplotlib-base future packaging \
pysparse mayavi "traitsui<7.0.0" "gmsh<4.0"

Attention: Bit rot has started to set in for Python 2.7. One consequence is that VTKViewers can raise errors
(probably other uses of Mayavi, too). Hence, the constraint of “traitsui<7.0.0”.

2.2.3 Install FiPy

[$ conda install --name <MYFIPYENV> --channel conda-forge fipy

Note: The fipy conda-forge package used to be “batteries included”, but we found this to be too fragile. It now only
includes the bare minimum for FiPy to function.

2.2.4 Enable conda environment

Enable your new environment with:

[$ conda activate <MYFIPYENV>

or:

[$ source activate <MYFIPYENV>

or, on Windows:

[$ activate <MYFIPYENV>

You’re now ready to move on to Using FiPy.

Note: conda can be quite slow to resolve all dependencies when performing an installation. You may wish to consider
using the alternative mamba installation manager to speed things up.

Note: On Linux and Mac OS X, you should have a pretty complete system to run and visualize FiPy simulations. On
Windows, there are fewer packages available via conda, particularly amongst the sparse matrix Solvers, but the system
still should be functional. Significantly, you will need to download and install Gmsh manually when using Python 2.7.

Attention: When installed via conda or pip, FiPy will not include its examples. These can be obtained by cloning
the repository or downloading a compressed archive.

2.2. Recommended Method 9

https://anaconda.org/conda-forge/fipy
http://www.microsoft.com/windows/
https://conda.io
https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://medium.com/@marius.v.niekerk/conda-metachannel-f962241c9437
https://mamba.readthedocs.io/
http://www.linux.org/
http://www.apple.com/macosx/
http://www.microsoft.com/windows/
https://conda.io
https://conda.io
https://github.com/usnistgov/fipy/releases

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

2.3 Obtaining FiPy

FiPy is freely available for download via Git or as a compressed archive. Please see Git usage for instructions on
obtaining FiPy with Git.

Warning: Keep in mind that if you choose to download the compressed archive you will then need to preserve
your changes when upgrades to FiPy become available (upgrades via Git will handle this issue automatically).

2.4 Installing FiPy

Details of the Required Packages and links are given below, but for the courageous and the impatient, FiPy can be up
and running quickly by simply installing the following prerequisite packages on your system:

* Python

* NumPy

* At least one of the Solvers

* At least one of the Viewers (FiPy’s tests will run without a viewer, but you’ll want one for any practical work)

Other Optional Packages add greatly to FiPy’s capabilities, but are not necessary for an initial installation or to simply
run the test suite.

It is not necessary to formally install FiPy, but if you wish to do so and you are confident that all of the requisite
packages have been installed properly, you can install it by typing:

[$ python -m pip install fipy

or by unpacking the archive and typing:

[$ python setup.py install

at the command line in the base FiPy directory. You can also install FiPy in “development mode” by typing:

[$ python setup.py develop

which allows the source code to be altered in place and executed without issuing further installation commands.

Alternatively, you may choose not to formally install FiPy and to simply work within the base directory instead. In this
case or if you are making a non-standard install (without admin privileges), read about setting up your Development
Environment before beginning the installation process.

2.5 Required Packages

2.5.1 Python

http://www.python.org/

FiPy is written in the Python language and requires a Python installation to run. Python comes pre-installed on many
operating systems, which you can check by opening a terminal and typing python, e.g.:

10 Chapter 2. Installation

https://github.com/usnistgov/fipy
https://github.com/usnistgov/fipy/releases
https://github.com/usnistgov/fipy
https://github.com/usnistgov/fipy/releases
https://github.com/usnistgov/fipy
http://www.python.org/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

$ python
Python 2.7.15 |

Type "help", "copyright", "credits" or "license" for more information.
>>>

If necessary, you can download and install it for your platform <http://www.python.org/download>.

Note: FiPy requires at least version 2.7.x of Python.

Python along with many of FiPy’s required and optional packages is available with one of the following distributions.

2.5.2 NumPy

http://numpy.scipy.org
Obtain and install the NumPy package. FiPy requires at least version 1.0 of NumPy.

2.6 Optional Packages

2.6.1 Gmsh

http://www.geuz.org/gmsh/

Gmsh is an application that allows the creation of irregular meshes. When running in parallel, FiPy requires a version
of Gmsh >=2.5 and < 4.0 or >=4.5.2.

2.6.2 SciPy

http://www.scipy.org/

SciPy provides a large collection of functions and tools that can be useful for running and analyzing FiPy simulations.
Significantly improved performance has been achieved with the judicious use of C language inlining (see the Command-
line Flags and Environment Variables section for more details), via the weave module.

2.7 Level Set Packages

To use the level set ([8]) components of FiPy one of the following is required.

2.6. Optional Packages 11

http://www.python.org/download/
http://www.python.org/download
http://numpy.scipy.org
http://www.geuz.org/gmsh/
http://www.scipy.org/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

2.7.1 Scikit-fmm

http://packages.python.org/scikit-fmm/

Scikit-fmm is a python extension module which implements the fast marching method.

2.7.2 LSMLIB

http://ktchu.serendipityresearch.org/software/Ismlib/index.html

The Level Set Method Library (LSMLIB) provides support for the serial and parallel simulation of implicit surface and
curve dynamics in two- and three-dimensions.

Install LSMLIB as per the instructions on the website. Additionally PyLSMLIB is required. To install, follow the
instructions on the website, https://github.com/ktchu/LSMLIB/tree/master/pylsmlib#pylsmlib.

2.8 Development Environment

It is often preferable to not formally install packages in the system directories. The reasons for this include:
* developing or altering the package source code,
* trying out a new package along with its dependencies without violating a working system,
* dealing with conflicting packages and dependencies,
* or not having admin privileges.

To avoid tampering with the system Pyrhon installation, you can employ one of the utilities that manage packages and
their dependencies independently of the system package manager and the system directories. These utilities include
conda, Nix, Stow, Virtualenv and Buildout, amongst others. Conda and Nix are only ones of these we have the resources
to support.

Create a conda environment for development, followed by:

$ source activate <MYFIPYENV>

$ python -m pip install scikit-fmm

$ git clone https://github.com/usnistgov/fipy.git
$ cd fipy

$ python setup.py develop

2.9 Git usage

All stages of FiPy development are archived in a Git repository at GitHub. You can browse through the code at https:
//github.com/usnistgov/fipy and, using a Git client, you can download various tagged revisions of FiPy depending on
your needs.

Attention: Be sure to follow /nstallation to obtain all the prerequisites for FiPy.

12 Chapter 2. Installation

http://packages.python.org/scikit-fmm/
http://packages.python.org/scikit-fmm/
http://ktchu.serendipityresearch.org/software/lsmlib/index.html
http://ktchu.serendipityresearch.org/software/lsmlib/index.html
http://ktchu.serendipityresearch.org/software/lsmlib/index.html
https://github.com/ktchu/LSMLIB/tree/master/pylsmlib#pylsmlib
https://github.com/ktchu/LSMLIB/tree/master/pylsmlib#pylsmlib
https://conda.io
https://nixos.org/nix/
http://savannah.gnu.org/projects/stow/
https://virtualenv.pypa.io
http://pypi.python.org/pypi/zc.buildout
https://conda.io
https://nixos.org/nix/
https://github.com/usnistgov/fipy
https://github.com/usnistgov/fipy
https://github.com/usnistgov/fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

2.9.1 Git client

A git client application is needed in order to fetch files from our repository. This is provided on many operating
systems (try executing which git) but needs to be installed on many others. The sources to build Git, as well as links
to various pre-built binaries for different platforms, can be obtained from http://git-scm.com/.

2.9.2 Git branches

In general, most users will not want to download the very latest state of FiPy, as these files are subject to active
development and may not behave as desired. Most users will not be interested in particular version numbers either, but
instead with the degree of code stability. Different branches are used to indicate different stages of FiPy development.
For the most part, we follow a successful Git branching model. You will need to decide on your own risk tolerance
when deciding which stage of development to track.

A fresh copy of the FiPy source code can be obtained with:

[$ git clone https://github.com/usnistgov/fipy.git

An existing Git checkout of FiPy can be shifted to a different <branch> of development by issuing the command:

[$ git checkout <branch>

in the base directory of the working copy. The main branches for FiPy are:

master
designates the (ready to) release state of FiPy. This code is stable and should pass all of the tests (or should be
documented that it does not).

Past releases of FiPy are tagged as

X.y.z
Any released version of FiPy will be designated with a fixed tag: The current version of FiPy is
3.99+1.g7861e396d.dirty. (Legacy version-x_y_z tags are retained for historical purposes, but won’t be added
to.)

Tagged releases can be found with:

[$ git tag --list

Any other branches will not generally be of interest to most users.

Note: For some time now, we have done all significant development work on branches, only merged back to master
when the tests pass successfully. Although we cannot guarantee that master will never be broken, you can always
check our Continuous Integration status to find the most recent revision that it is running acceptably.

Historically, we merged to develop before merging tomaster. We no longer do this, although for time being, develop
is kept synchronized with master. In a future release, we will remove the develop branch altogether.

For those who are interested in learning more about Git, a wide variety of online sources are available, starting with
the official Git website. The Pro Git book [9] is particularly instructive.

2.9. Git usage 13

http://git-scm.com/
http://nvie.com/posts/a-successful-git-branching-model/
http://git-scm.com/
http://git-scm.com/book

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

2.10 Nix

2.10.1 Nix Installation
FiPy now has a Nix expression for installing FiPy using Nix. Nix is a powerful package manager for Linux and other

Unix systems that makes package management reliable and reproducible. The recipe works on both Linux and Mac
OS X. Go to nix.dev to get started with Nix.

Installing

Once you have a working Nix installation use:

[$ nix develop]

in the base FiPy directory to install FiPy with Python 3 by default. nix develop drops the user into a shell with a
working version of FiPy. To test your installation use:

[$ nix develop --command bash -c "python setup.py test"]

Note: The SciPy solvers are the only available solvers currently.

14 Chapter 2. Installation

https://nixos.org/nix/
https://nixos.org/nix/
https://nixos.org/nix/
https://nix.dev

Chapter
Using FiPy

This document explains how to use FiPy in a practical sense. To see the problems that FiPy is capable of solving, you
can run any of the scripts in the examples.

Note: We strongly recommend you proceed through the examples, but at the very least work through examples.
diffusion.meshlD to understand the notation and basic concepts of FiPy.

We exclusively use either the UNIX command line or /Python to interact with FiPy. The commands in the examples
are written with the assumption that they will be executed from the command line. For instance, from within the main
FiPy directory, you can type:

[$ python examples/diffusion/meshilD.py

A viewer should appear and you should be prompted through a series of examples.

Note: From within /Python, you would type:

[>>> run examples/diffusion/meshlD.py

In order to customize the examples, or to develop your own scripts, some knowledge of Python syntax is required. We
recommend you familiarize yourself with the excellent Python tutorial [10] or with Dive Into Python [11]. Deeper
insight into Python can be obtained from the [12].

As you gain experience, you may want to browse through the Command-line Flags and Environment Variables that
affect FiPy.

15

http://docs.python.org/tut/tut.html
http://diveintopython.org

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

3.1 Logging

Diagnostic information about a FiPy run can be obtained using the logging module. For example, at the beginning of
your script, you can add:

>>> import logging

>>> log = logging.getLogger("fipy")
>>> console = logging.StreamHandler()
>>> console.setLevel (logging.INFO)
>>> log.addHandler (console)

in order to see informational messages in the terminal. To have more verbose debugging information save to a file:

>>> logfile = logging.FileHandler(filename="fipy.log")
>>> logfile.setLevel (logging.DEBUG)
>>> log.addHandler(logfile)

>>> log.setLevel (logging.DEBUG)

To restrict logging to, e.g., information about the PE7Sc solvers:

>>> petsc = logging.Filter('fipy.solvers.petsc')
>>> logfile.addFilter(petsc)

More complex configurations can be specified by setting the FIPY_LOG_CONFIG environment variable. In this case,
it is not necessary to add any logging instructions to your own script. Example configuration files can be found in
FiPySource/fipy/tools/logging/.

If Solving in Parallel, the mpilogging package enables reporting which MPI rank each log entry comes from. For
example:

>>> from mpilogging import MPIScatteredFileHandler

>>> mpilog = MPIScatteredFileHandler(filepattern="fipy. _of_ .1log
>>> mpilog.setLevel (logging.DEBUG)

>>> log.addHandler (mpilog)

will generate a unique log file for each MPI rank.

3.2 Testing FiPy

For a general installation, FiPy can be tested by running:

[$ python -c "import fipy; fipy.test(Q)"]

This command runs all the test cases in FiPy’s modules, but doesn’t include any of the tests in FiPy’s examples. To run
the test cases in both modules and examples, use:

[$ python setup.py test J

Note: You may need to first run:

16 Chapter 3. Using FiPy

https://docs.python.org/3/library/logging.html#module-logging
https://github.com/usnistgov/mpilogging

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[$ python setup.py egg_info J

for this to work properly.

in an unpacked FiPy archive. The test suite can be run with a number of different configurations depending on which
solver suite is available and other factors. See Command-line Flags and Environment Variables for more details.

FiPy will skip tests that depend on Optional Packages that have not been installed. For example, if Mayavi and Gmsh
are not installed, 7Py will warn something like:

Skipped 131 doctest examples because “gmsh® cannot be found on the $PATH

Skipped 42 doctest examples because the “tvtk® package cannot be imported
RN RN RN R RN RN RN R R R R R RN R R RN R R RN RN RN R R RN

Although the test suite may show warnings, there should be no other errors. Any errors should be investigated or
reported on the issue tracker. Users can see if there are any known problems for the latest 7Py distribution by checking
FiPy’s Continuous Integration dashboard.

Below are a number of common Command-line Flags for testing various FiPy configurations.

3.2.1 Parallel Tests

If FiPy is configured for Solving in Parallel, you can run the tests on multiple processor cores with:

[$ mpirun -np {# of processors} python setup.py test --trilinos]
or:
[$ mpirun -np {# of processors} python -c "import fipy; fipy.test('--trilinos')" J

3.3 Command-line Flags and Environment Variables

FiPy chooses a default run time configuration based on the available packages on the system. The Command-line Flags
and Environment Variables sections below describe how to override FiPy’s default behavior.

3.3.1 Command-line Flags

You can add any of the following case-insensitive flags after the name of a script you call from the command line, e.g.:

[$ python myFiPyScript --someflag J

--inline
Causes many mathematical operations to be performed in C, rather than Python, for improved performance.
Requires the weave package.

--cache

Causes lazily evaluated FiPy Variable objects to retain their value.

3.3. Command-line Flags and Environment Variables 17

https://github.com/usnistgov/fipy/issues/new

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

--no-cache

Causes lazily evaluated FiPy Variable objects to always recalculate their value.
The following flags take precedence over the FIPY_SOLVERS environment variable:

--petsc

Forces the use of the PETSc solvers.
—--pyamgx

Forces the use of the pyamgx solvers.

--pysparse
Forces the use of the Pysparse solvers.

--scipy
Forces the use of the SciPy solvers.

--trilinos

Forces the use of the Trilinos solvers, but uses Pysparse to construct the matrices.
--no-pysparse

Forces the use of the Trilinos solvers without any use of Pysparse.

--1smlib
Forces the use of the LSMLIB level set solver.

--skfmm
Forces the use of the Scikit-finm level set solver.

3.3.2 Environment Variables

You can set any of the following environment variables in the manner appropriate for your shell. If you are not running
in a shell (e.g., you are invoking FiPy scripts from within /Python or IDLE), you can set these variables via the os.
environ dictionary, but you must do so before importing anything from the £ipy package.
FIPY_DISPLAY_MATRIX
If present, causes the graphical display of the solution matrix of each equation at each call of solve() or
sweep (). Setting the value to “terms” causes the display of the matrix for each Term that composes the equa-
tion. Requires the Matplotlib package. Setting the value to “print” causes the matrix to be printed to the
console.
FIPY_INLINE
If present, causes many mathematical operations to be performed in C, rather than Python. Requires the weave
package.
FIPY_INLINE_COMMENT
If present, causes the addition of a comment showing the Python context that produced a particular piece of
weave C code. Useful for debugging.
FIPY_LOG_CONFIG
Specifies a JSON-formatted logging configuration file, suitable for passing to logging.config.
dictConfig(). Example configuration files can be found in FiPySource/fipy/tools/logging/.
FIPY_SOLVERS
Forces the use of the specified suite of linear Solvers. Valid (case-insensitive) choices are “petsc”, “pyamgx”,

LEIT3 CEINT3

“pysparse”, “scipy”, “trilinos”, and “no-pysparse”.

18 Chapter 3. Using FiPy

https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

FIPY_DEFAULT_CRITERION

Changes the default solver Convergence criterion to the specified value. Valid choices are “legacy”,

LEIT3 ELINNT3

“unscaled”, “RHS”, “matrix”, “initial”, “solution”, “preconditioned”, “natural”, “default”. A
value of “default” is admittedly circular, but it works.

FIPY_VIEWER

Forces the use of the specified viewer. Valid values are any <viewer> from the fipy.viewers.
<viewer>Viewer modules. The special value of dummy will allow the script to run without displaying anything.

FIPY_INCLUDE_NUMERIX_ALL

If present, causes the inclusion of all functions and variables of the numerix module in the £ipy namespace.
FIPY_CACHE

If present, causes lazily evaluated FiPy Variable objects to retain their value.
PETSC_OPTIONS

PETSc configuration options. Set to “-help” and run a script with PETSc solvers in order to see what options are
possible. Ignored if solver is not PETSc.

3.4 Solver Suites

Numerical solution of partial differential equations calls for solving sparse linear algebra. FiPy supports several dif-
ferent Solvers. To the greatest extent possible, they have all been configured to do the “same thing”, but each presents
different capabilities in terms of matrix preconditioning and overall performance tuning.

3.5 Solving in Parallel

FiPy can use PETSc or Trilinos to solve equations in parallel. Most mesh classes in £fipy.meshes can solve in parallel.
This includes all “...Grid...” and “...Gmsh...” class meshes. Currently, the only remaining serial-only meshes
are Tri2D and SkewedGrid2D.

Attention: FiPy requires mpi4py to work in parallel.

Tip: You are strongly advised to force the use of only one OpenMP thread with PETSc and Trilinos:

[$ export OMP_NUM_THREADS=1

See OpenMP Threads vs. MPI Ranks for more information.

It should not generally be necessary to change anything in your script. Simply invoke:

[$ mpirun -np {# of processors} python myScript.py --petsc

or:

[$ FIPY_SOLVERS=trilinos mpirun -np {# of processors} python myScript.py J

instead of:

3.4. Solver Suites 19

https://petsc.org/main/manual/other/#runtime-options

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[$ python myScript.py J

The easiest way to confirm that FiPy is properly configured to solve in parallel is to run one of the examples, e.g.,:

[$ mpirun -np 2 examples/diffusion/meshlD.py J

You should see two viewers open with half the simulation running in one of them and half in the other. If this does not
look right (e.g., you get two viewers, both showing the entire simulation), or if you just want to be sure, you can run a
diagnostic script:

[$ mpirun -np 3 python examples/parallel.py]

which should print out:

mpidpy PyTrilinos petscdpy FiPy
processor O of 3 :: processor ® of 3 :: processor O of 3 :: 5 cells on processor 0 of 3
processor 1 of 3 :: processor 1 of 3 :: processor 1 of 3 :: 7 cells on processor 1 of 3
processor 2 of 3 :: processor 2 of 3 :: processor 2 of 3 :: 6 cells on processor 2 of 3

If there is a problem with your parallel environment, it should be clear that there is either a problem importing one of
the required packages or that there is some problem with the M P/ environment. For example:

mpidpy PyTrilinos petscdpy FiPy
processor ® of 3 :: processor ® of 1 :: processor O of 3 :: 10 cells on processor 0 of 1
[my.machine.com:69815] WARNING: There were 4 Windows created but not freed.
processor 1 of 3 :: processor ® of 1 :: processor 1 of 3 :: 10 cells on processor O of 1
[my.machine.com:69814] WARNING: There were 4 Windows created but not freed.
processor 2 of 3 :: processor O® of 1 :: processor 2 of 3 :: 10 cells on processor 0 of 1
[my.machine.com:69813] WARNING: There were 4 Windows created but not freed.

indicates mpi4py is properly communicating with M P/ and is running in parallel, but that 7rilinos is not, and is running
three separate serial environments. As a result, FiPy is limited to three separate serial operations, too. In this instance,
the problem is that although 7rilinos was compiled with MPI enabled, it was compiled against a different MPI library
than is currently available (and which mpi4py was compiled against). The solution, in this instance, is to solve with
PETSc or to rebuild Trilinos against the active MPI libraries.

When solving in parallel, 7Py essentially breaks the problem up into separate sub-domains and solves them (somewhat)
independently. FiPy generally “does the right thing”, but if you find that you need to do something with the entire
solution, you can use var.globalValue.

Note: One option for debugging in parallel is:

[$ mpirun -np {# of processors} xterm -hold -e "python -m ipdb myScript.py"]

20 Chapter 3. Using FiPy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

3.5.1 OpenMP Threads vs. MPI Ranks

By default, PETSc and Trilinos spawn as many OpenMP threads as there are cores available. This may very well be
an intentional optimization, where they are designed to have one MPI rank per node of a cluster, so each of the child
threads would help with computation but would not compete for I/O resources during ghost cell exchanges and file I/O.
However, Python’s Global Interpreter Lock (GIL) binds all of the child threads to the same core as their parent! So
instead of improving performance, each core suffers a heavy overhead from managing those idling threads.

The solution to this is to force these solvers to use only one OpenMP thread:

[$ export OMP_NUM_THREADS=1]

Because this environment variable affects all processes launched in the current session, you may prefer to restrict its
use to FiPy runs:

[$ OMP_NUM_THREADS=1 mpirun -np {# of processors} python myScript.py --trilinos]

The difference can be extreme. We have observed the FiPy test suite to run in just over two minutes when
OMP_NUM_THREADS=1, compared to over an hour and 23 minutes when OpenMP threads are unrestricted. This is-
sue is not limited to FiPy or the parallel solver suites it uses; see Can There Be Too Much Parallelism? for a deeper
look at the different threading settings available and their effects.

Conceivably, allowing these parallel solvers unfettered access to OpenMP threads with no MPI communication at all
could perform as well or better than purely M PI parallelization. The plot below demonstrates this is not the case.
We compare solution time vs number of OpenMP threads for fixed number of slots for a Method of Manufactured
Solutions Allen-Cahn problem (OpenMP threads x MPI ranks = Slurm tasks). OpenMP threading always slows down
FiPy performance.

See https://www.mail-archive.com/fipy @nist.gov/msg03393.html for further analysis.

It may be possible to configure these packages to use only one OpenMP thread, but this is not the configuration of the
version available from conda-forge and building Trilinos, at least, is NotFun™.

3.6 Meshing with Gmsh

FiPy works with arbitrary polygonal meshes generated by Gmsh. FiPy provides two wrappers classes (Gmsh2D and
Gmsh3D) enabling Gmsh to be used directly from python. The classes can be instantiated with a set of Gmsh style
commands (see examples.diffusion.circle). The classes can also be instantiated with the path to either a Gmsh
geometry file (. geo) or a Gmsh mesh file (.msh) (see examples.diffusion.anisotropy).

As well as meshing arbitrary geometries, Gmsh partitions meshes for parallel simulations. Mesh partitioning automat-
ically occurs whenever a parallel communicator is passed to the mesh on instantiation. This is the default setting for
all meshes that work in parallel including Gmsh2D and Gmsh3D.

Note: FiPy solution accuracy can be compromised with highly non-orthogonal or non-conjunctional meshes.

! Calculations are of a Method of Manufactured Solutions Allen-Cahn problem.

3.6. Meshing with Gmsh 21

https://docs.python.org/2.7/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://www.youtube.com/watch?v=hy5yDxvLCDA
https://pages.nist.gov/pfhub/benchmarks/benchmark7.ipynb
https://pages.nist.gov/pfhub/benchmarks/benchmark7.ipynb
https://slurm.schedmd.com
https://www.mail-archive.com/fipy@nist.gov/msg03393.html
https://conda-forge.github.io/
https://commons.wikimedia.org/wiki/File:Hieronymus_Bosch_-_Triptych_of_Garden_of_Earthly_Delights_(detail)_-_WGA2526.jpg#/media/File:Hieronymus_Bosch_-_Triptych_of_Garden_of_Earthly_Delights_(detail)_-_WGA2526.jpg
https://pages.nist.gov/pfhub/benchmarks/benchmark7.ipynb

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

1. ——&— petsc
———— trilinos

"speedup" (t1/ty)

threads

Fig. 1: Effect of having more OpenMP threads for each MPI rank'.

22 Chapter 3. Using FiPy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

3.7 Coupled and Vector Equations

Equations can now be coupled together so that the contributions from all the equations appear in a single system matrix.
This results in tighter coupling for equations with spatial and temporal derivatives in more than one variable. In FiPy
equations are coupled together using the & operator:

>>> eqn® = ...
>>> eqnl = ...
>>> coupledEgn = egn® & eqnl

The coupledEqgn will use a combined system matrix that includes four quadrants for each of the different variable and
equation combinations. In previous versions of FiPy there has been no need to specify which variable a given term acts
on when generating equations. The variable is simply specified when calling solve or sweep and this functionality
has been maintained in the case of single equations. However, for coupled equations the variable that a given term
operates on now needs to be specified when the equation is generated. The syntax for generating coupled equations has
the form:

>>> eqn® = Term®0(coeff=..., var=var0®) + Term®1l(coeff..., var=varl) == source®
>>> eqnl = Terml®(coeff=..., var=var®) + Termll(coeff..., var=varl) == sourcel
>>> coupledEgqn = egn® & eqnl

and there is now no need to pass any variables when solving:

[>>> coupledEgn.solve(dt=..., solver=...)

In this case the matrix system will have the form
Term00 ‘ TermO1 var0 \ [source0
Term10 | Termil varl / \ sourcel
FiPy tries to make sensible decisions regarding each term’s location in the matrix and the ordering of the variable

column array. For example, if Term01 is a transient term then Term@1 would appear in the upper left diagonal and the
ordering of the variable column array would be reversed.

The use of coupled equations is described in detail in examples.diffusion.coupled. Other examples that demon-
strate the use of coupled equations are examples.phase.binaryCoupled, examples.phase.polyxtalCoupled
and examples.cahnHilliard.mesh2DCoupled. As well as coupling equations, true vector equations can now be
written in FiPy.

Attention: Coupled equations are not compatible with Higher Order Diffusion terms. This is not a practical
limitation, as any higher order terms can be decomposed into multiple 2nd-order equations. For example, the pair
of coupled Cahn-Hilliard & Allen-Cahn 4th- and 2nd-order equations

9C _ [Mv <6f(c, 9) KCVQC)]

ot oC
can be decomposed to three 2nd-order equations
& — v (v
w= %2@ — ke V2O

3.7. Coupled and Vector Equations 23

https://pages.nist.gov/pfhub/benchmarks/benchmark2.ipynb

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

3.8 Boundary Conditions

3.8.1 Default boundary conditions

If no constraints are applied, solutions are conservative, i.e., all boundaries are zero flux. For the equation

o¢ _

5 = V(@) +V- (bV9)

the condition on the boundary S is

A (@d+bVe) =0 onS.

3.8.2 Applying fixed value (Dirichlet) boundary conditions

To apply a fixed value boundary condition use the constrain() method. For example, to fix var to have a value of 2
along the upper surface of a domain, use

[>>> var.constrain(2., where=mesh. facesTop)

Note: The old equivalent FixedValue boundary condition is now deprecated.

3.8.3 Applying fixed gradient boundary conditions (Neumann)

To apply a fixed Gradient boundary condition use the faceGrad.constrain() method. For example, to fix var to
have a gradient of (0,2) along the upper surface of a 2D domain, use

[>>> var. faceGrad.constrain(((®,),(2,)), where=mesh.facesTop)

If the gradient normal to the boundary (e.g., 7n- V¢) is to be set to a scalar value of 2, use

[>>> var. faceGrad.constrain(2 * mesh.faceNormals, where-mesh.exteriorFaces)

3.8.4 Applying fixed flux boundary conditions

Generally these can be implemented with a judicious use of faceGrad.constrain(). Failing that, an exterior flux
term can be added to the equation. Firstly, set the terms’ coefficients to be zero on the exterior faces,

>>> diffCoeff.constrain(®., mesh.exteriorFaces)
>>> convCoeff.constrain(®., mesh.exteriorFaces)

then create an equation with an extra term to account for the exterior flux,

>>> eqn = (TransientTerm() + ConvectionTerm(convCoeff)
== DiffusionCoeff(diffCoeff)
+ (mesh.exteriorFaces * exteriorFlux).divergence)

24 Chapter 3. Using FiPy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

where exteriorFlux is arank 1 FaceVariable.

Note: The old equivalent FixedFIlux boundary condition is now deprecated.

3.8.5 Applying outlet or inlet boundary conditions

Convection terms default to a no flux boundary condition unless the exterior faces are associated with a constraint, in
which case either an inlet or an outlet boundary condition is applied depending on the flow direction.

3.8.6 Applying spatially varying boundary conditions

The use of spatial varying boundary conditions is best demonstrated with an example. Given a 2D equation in the
domain 0 < z < 1 and 0 < y < 1 with boundary conditions,

5 xy onz>1/2andy >1/2
C|A-F=0 elsewhere

where F represents the flux. The boundary conditions in FiPy can be written with the following code,

>>> X, Y = mesh. faceCenters
>>> mask = (X < 0.5) | (Y < 0.5))
>>> var.faceGrad.constrain(®, where-mesh.exteriorFaces & mask)

>>> var.constrain(X * Y, where=mesh.exteriorFaces & ~mask)

then

[>>> eqn.solve(...)]

Further demonstrations of spatially varying boundary condition can be found in examples.diffusion.mesh20x20
and examples.diffusion.circle

3.8.7 Applying Robin boundary conditions
The Robin condition applied on the portion of the boundary Sr
fi- (A +bVe) =g on S

can often be substituted for the flux in an equation

0
a—(f =V (dp)+ V- (bVo)

b [.
VadV—/Sn-(aqS—i—bVqS)dS

/@dvz/ A (@) +bV) dS+/ gds
v ot S¢Sk SeSg

At faces identified by mask,

3.8. Boundary Conditions 25

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> a = FaceVariable(mesh-mesh, value=..., rank=1)

>>> a.setValue(0®., where-mask)

>>> b = FaceVariable(mesh=mesh, value=..., rank=0)

>>> b.setValue(0®., where=mask)

>>> g = FaceVariable(mesh=mesh, value=..., rank=0)

>>> eqn = (TransientTerm() == PowerLawConvectionTerm(coeff=a)

+ DiffusionTerm(coeff=b)
+ (g * mask * mesh.faceNormals) .divergence)

When the Robin condition does not exactly map onto the boundary flux, we can attempt to apply it term by term.
The Robin condition relates the gradient at a boundary face to the value on that face, however FiPy naturally calculates
variable values at cell centers and gradients at intervening faces. Using a first order upwind approximation, the boundary
value of the variable at face f can be written in terms of the value at the neighboring cell P and the normal gradient at
the boundary:

¢~ dp+ (pr'v¢)f

4 3.1)
~ o0+ (V) (dps i)

where dp 1 is the distance vector to the center of the face f from the center of the adjoining cell P. The approximation
(pr . V¢) ; ~ (1-Vo), (pr . ﬁ) ; is most valid when the mesh is orthogonal.
Substituting this expression into the Robin condition:
- (é’¢+bv¢)f =g
A- {dqﬁp +d(n-Ve), (J’Pf.ﬁ) +bv¢} ~g
f f (3.2)
R gs — (A-@); op
(- Vo) £ %
(dpf . a) + bf
f
we obtain an expression for the gradient at the boundary face in terms of its neighboring cell. We can, in turn, substitute

this back into (3.1)

g5 — (R a) ¢p >
¢f~¢P+WM<de.n>f

gy (ﬁ'JPf)f +brop G-

(d_:Df ~5:)f + by

to obtain the value on the boundary face in terms of the neighboring cell.

Substituting (3.2) into the discretization of the Di ffusionTerm:

/Vv.(rw)dvz/m.ws

Ner (7-V), A
Zf‘anqb Ap+ Y Ty(h-Ve¢), A
fESr f€SR
"d@)g ¢p
NZFf’ergb Af+ZFf f
1¢Sr f€Sr (de a) + by

26 Chapter 3. Using FiPy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

An equation of the form

[>>> eqn = TransientTerm() == DiffusionTerm(coeff=Gamma®)

can be constrained to have a Robin condition at faces identified by mask by making the following modifications

>>> Gamma = FaceVariable(mesh=mesh, value=Gamma®)

>>> Gamma.setValue(0®., where=mask)

>>> dPf = FaceVariable(mesh=mesh,

value=mesh._faceToCellDistanceRatio * mesh.cellDistanceVectors)
>>>

n = mesh.faceNormals
>>> a = FaceVariable(mesh=mesh, value=..., rank=1)
>>> b = FaceVariable(mesh=mesh, value=..., rank=0)
>>> g = FaceVariable(mesh=mesh, value=..., rank=0)
>>> RobinCoeff = mask * Gamma® * n / (dPf.dot(a) + b)
>>> eqn = (TransientTerm() == DiffusionTerm(coeff=Gamma) + (RobinCoeff * g).divergence

- ImplicitSourceTerm(coeff=(RobinCoeff * n.dot(a)).divergence)

Similarly, for a ConvectionTerm, we can substitute (3.3):

/V-(ﬁ(b)dV:/ﬁﬂ(de
Vv S
zZ(ﬁ.a)qufAf
f

gr (A-d, +bso
= Z (@), dyAs + Z (1) f(q P]:)f f PAf

I€Sr feSr (de ' a)f +by

Note: An expression like the heat flux convection boundary condition —kVT -7 = h(T — T,) can be put in the form
of the Robin condition used above by letting @ = hn, b = k, and g = hT .

3.8.8 Applying internal “boundary” conditions

Applying internal boundary conditions can be achieved through the use of implicit and explicit sources.

Internal fixed value

An equation of the form

[>>> eqn = TransientTerm() == DiffusionTerm()

can be constrained to have a fixed internal value at a position given by mask with the following alterations

>>> eqn = (TransientTerm() == DiffusionTerm()
- ImplicitSourceTerm(mask * largeValue)
+ mask * largeValue * value)

The parameter largeValue must be chosen to be large enough to completely dominate the matrix diagonal and the
RHS vector in cells that are masked. The mask variable would typically be a CellVariable Boolean constructed
using the cell center values.

3.8. Boundary Conditions 27

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Internal fixed gradient

An equation of the form

[>>> eqn = TransientTerm() == DiffusionTerm(coeff=Gamma®)

can be constrained to have a fixed internal gradient magnitude at a position given by mask with the following alter-
ations

>>> Gamma = FaceVariable(mesh-mesh, value=Gamma®)
>>> Gamma[mask.value] = 0.
>>> eqn = (TransientTerm() == DiffusionTerm(coeff=Gamma)
+ DiffusionTerm(coeff=largeValue * mask)
- ImplicitSourceTerm(mask * largeValue * gradient
* mesh.faceNormals) .divergence)

The parameter largeValue must be chosen to be large enough to completely dominate the matrix diagonal and the
RHS vector in cells that are masked. The mask variable would typically be a FaceVariable Boolean constructed
using the face center values.

Internal Robin condition

Nothing different needs to be done when applying Robin boundary conditions at internal faces.

Note: While we believe the derivations for applying Robin boundary conditions are “correct”, they often do not
seem to produce the intuitive result. At this point, we think this has to do with the pathology of “internal” boundary
conditions, but remain open to other explanations. FiPy was designed with diffuse interface treatments (phase field
and level set) in mind and, as such, internal “boundaries” do not come up in our own work and have not received much
attention.

Warning: The constraints mechanism is not designed to constrain internal values for variables that are being solved
by equations. In particular, one must be careful to distinguish between constraining internal cell values during the
solve step and simply applying arbitrary constraints to a CellVariable. Applying a constraint,

[>>> var.constrain(value, where=mask) J

simply fixes the returned value of var at mask to be value. It does not have any effect on the implicit value of
var at the mask location during the linear solve so it is not a substitute for the source term machinations described
above. Future releases of FiPy may implicitly deal with this discrepancy, but the current release does not.

A simple example can be used to demonstrate this:

>>> m = GridlD(nx=2, dx=1.) }

>>> var = CellVariable(mesh=m)

R

We wish to solve VZ¢ = 0 subject to @|rignt = 1 and ¢|<1 = 0.25. We apply a constraint to the faces for the right
side boundary condition (which works).

[>>> var.constrain(l., where=m.facesRight) J

We create the equation with the source term constraint described above

28 Chapter 3. Using FiPy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> mask = m.x < 1.

>>> largeValue = le+10

>>> value = 0.25

>>> eqn = DiffusionTerm() - ImplicitSourceTerm(largeValue * mask) + largeValue * mask..
—* value

and the expected value is obtained.

p
>>> eqn.solve(var)

>>> print var
[0.25 0.75]

However, if a constraint is used without the source term constraint an unexpected solution is obtained

>>> var.constrain(0.25, where=mask)
>>> eqn = DiffusionTerm()

>>> eqn.solve(var)

>>> print var

[0.25 1.]

although the left cell has the expected value as it is constrained.

FiPy has simply solved V?¢ = 0 with @|sigh = 1 and (by default) 7- Vi = 0, giving ¢ = 1 everywhere, and
then subsequently replaced the cells < 1 with ¢ = 0.25.

3.9 Adaptive Stepping

Step size can be controlled with the steppyngstounes package. Demonstrations of its use are found in examples.
phase.binary and examples.phase.binaryCoupled.

Note: The old fipy.steppers classes are now deprecated. They were undocumented and did not work very well.

3.10 Running under Python 2

Thanks to the future package and to the contributions of pya and woodscn, FiPy runs under both Python 3 and Python
2.7, without conversion or modification.

Because Python itself dropped support for Python 2.7 on January 1, 2020 and many of the prerequisites for FiPy pledged
to drop support for Python 2.7 no later than 2020, we prioritized adding support for better Python 3 solvers, starting
with petscdpy.

Because the faster Pysparse solvers are not available under Python 3, we have maintained Python 2.x support as long
as practical. Be aware that the conda-forge packages that FiPy depends upon are not well-maintained on Python 2.x
and our support for that configuration is rapidly becoming impractical, despite the performance benefits. Now that we
have learned how to optimize our use of PETSc and Trilinos, the performance margin of Pysparse is small and support
for Python 2.x will be dropped soon.

3.9. Adaptive Stepping 29

http://python-future.org
https://github.com/pya
https://github.com/pya
https://www.python.org/dev/peps/pep-0373/#update
https://python3statement.org
https://python3statement.org
https://conda-forge.github.io/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

3.11 Manual

You can view the manual online at <http://pages.nist.gov/fipy>. Alternatively, it may be possible to build a fresh copy
by issuing the following command in the docs/ directory:

[$ make html

or:

[$ make latexpdf

Note: This mechanism is intended primarily for the developers. At a minimum, you will need Sphinx, plus all of its
prerequisites. We are currently building with Sphinx v7.0. Python 2.7 probably won’t work.

‘We install via conda:

[$ conda install --channel conda-forge sphinx J

Bibliographic citations require the sphinxcontrib-bibtex package:

[$ python -m pip install sphinxcontrib-bibtex

Some documentation uses numpydoc styling:

[$ python -m pip install numpydoc

Some embeded figures require matplotlib, pandas, and imagemagick:

[$ conda install --channel conda-forge matplotlib pandas imagemagick

The PDF file requires Slunits.sty available, e.g., from texlive-science.

Spelling is checked automatically in the course of Continuous Integration. If you wish to check manually, you will
need pyspelling, hunspell, and the libreoffice dictionaries:

$ conda install --channel conda-forge hunspell

$ python -m pip install pyspelling

$ wget -0 en_US.aff https://cgit.freedesktop.org/libreoffice/dictionaries/plain/en/en_
—US.aff?id=a4473e06b56bfe35187e302754f6baaa8d75e54f

$ wget -0 en_US.dic https://cgit.freedesktop.org/libreoffice/dictionaries/plain/en/en_US.
—~dic?id=a4473e06b56bfe35187e302754f6baaa8d75e54f

30 Chapter 3. Using FiPy

http://pages.nist.gov/fipy
http://www.sphinx-doc.org/
https://ctan.org/pkg/siunits
https://packages.debian.org/stretch/texlive-science

Chapter

Solvers

FiPy requires either PETSc, pyamgx, Pysparse, SciPy, or Trilinos solver suites to be installed in order to solve linear
systems. PETSc and Trilinos are the most complete of the solvers due to their numerous preconditioning and solver
capabilities and they also allow FiPy to run in parallel. The Python interface for PETSc is better maintained than for
Trilinos and tends to be easier to install. The sparse linear algebra solvers from the popular SciPy package are widely
available and easy to install. Although they do not perform as well as the other suites and lack many of the features
of PETSc or Trilinos, they may be the easiest linear solver choice when first installing and testing FiPy. While the
Pysparse linear solvers offer a modest advantage in serial, be aware that they require Python 2.7, which is no longer
supported. FiPy support for Pysparse will be dropped soon. pyamgx offers the possibility of solving sparse linear
systems on the GPU; be aware that both hardware and software configuration is non-trivial.

FiPy chooses the solver suite based on system availability or based on the user supplied Command-line Flags and
Environment Variables. For example, passing --no-pysparse:

e

$ python -c "from fipy import *; print DefaultSolver" --no-pysparse
<class 'fipy.solvers.trilinos.linearGMRESSolver.LinearGMRESSolver'>

uses a Trilinos solver. Setting FIPY_SOLVERS to scipy:

$ FIPY_SOLVERS=scipy
$ python -c "from fipy import *; print DefaultSolver"
<class 'fipy.solvers.scipy.linearLUSolver.LinearLUSolver'>

uses a SciPy solver. Suite-specific solver classes can also be imported and instantiated overriding any other directives.
For example:

$ python -c "from fipy.solvers.scipy import DefaultSolver; \
> print DefaultSolver" --no-pysparse
<class 'fipy.solvers.scipy.linearLUSolver.LinearLUSolver'>

uses a SciPy solver regardless of the command line argument. In the absence of Command-line Flags and Environment
Variables, FiPy’s order of precedence when choosing the solver suite for generic solvers is PySparse followed by PETSc,
Trilinos, SciPy, and pyamgx.

31

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Table 1: Solver Suite Features

PETSc PyAMG pyamgx Pysparse SciPy Trilinos
FIPY_SOLVERS petsc pyamgx pysparse scipy trilinos
or
no-pysparse
solvers v v v v v
preconditioners v v v v v v
parallel v ‘ v
linux v v v v v v
macOS v v v v v
Windows v v v
requirements petscépy, pyamg, pyamgx, pysparse scipy PyTrilinos,
mpidpy scipy scipy, >= 1.0, mpidpy,
python >= python <3 python
27 or >= >=3.7,<3.97%,
3.5 (pysparse?)

Note: FiPy has not been designed to mix different solver suites during a given problem run

4.1 PETSc

https://www.mcs.anl.gov/petsc

PETSc (the Portable, Extensible Toolkit for Scientific Computation) is a suite of data structures and routines for the
scalable (parallel) solution of scientific applications modeled by partial differential equations. It employs the MPI
standard for all message-passing communication (see Solving in Parallel for more details).

4.2 PyAMG

https://pyamg.readthedocs.io/

The PyAMG package provides adaptive multigrid preconditioners that can be used in conjunction with the SciPy
solvers. While PyAMG also has solvers, they are not currently implemented in FiPy.

! While AMGX matrix solve takes advantage of GPU parallelism, the pyamgx library uses SciPy to build the matrix and thus suffers a significant

serial bottleneck.

2 pyTrilinos may be compatible with newer versions of Python, but these are the most recent versions we’ve been able to get to install using

conda (3.7 on linux and 3.8 on macOS).

3 There is a more actively developed PyTrilinos2 package, which may be compable with more recent versions of Pyrhon, but FiPy does not

yet work with it.

4 Trilinos parallel efficiency is somewhat improved by also installing pysparse.

32

Chapter 4. Solvers

https://petsc4py.readthedocs.io/
https://mpi4py.readthedocs.io/
https://pyamg.readthedocs.io/
https://docs.scipy.org/doc/scipy/
https://pyamgx.readthedocs.io/
https://docs.scipy.org/doc/scipy/
https://pysparse.sourceforge.net/
https://docs.scipy.org/doc/scipy/
https://trilinos.github.io/pytrilinos.html
https://mpi4py.readthedocs.io/
https://pysparse.sourceforge.net/
https://www.mcs.anl.gov/petsc
https://pyamg.readthedocs.io/
https://github.com/NVIDIA/AMGX
https://trilinos.github.io/pytrilinos.html
https://trilinos.github.io/pytrilinos2.html
https://pysparse.sourceforge.net/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

4.3 pyamgx

https://pyamgx.readthedocs.io/

The pyamgx package is a Python interface to the NVIDIA AMGX library. pyamgx can be used to construct complex
solvers and preconditioners to solve sparse sparse linear systems on the GPU.

4.4 Pysparse

http://pysparse.sourceforge.net

Pysparse is a fast serial sparse matrix library for Python. It provides several sparse matrix storage formats and conversion
methods. It also implements a number of iterative solvers, preconditioners, and interfaces to efficient factorization
packages. The only requirement to install and use Pysparse is NumPy.

Warning: Pysparse is archaic and limited to Running under Python 2. Support for Python 2.7 and, thus, for
Pysparse will be dropped soon.

4.5 SciPy

https://docs.scipy.org/doc/scipy/reference/sparse.html

The scipy.sparse module provides a basic set of serial Krylov solvers and a limited collection of preconditioners.

4.6 Trilinos

https://trilinos.github.io/

Trilinos provides a complete set of sparse matrices, solvers, and preconditioners. Trilinos preconditioning allows for
iterative solutions to some difficult problems, and it enables parallel execution of FiPy (see Solving in Parallel for more
details).

4.7 Performance Comparison

Comparing different solver suites, or even different solvers, has historically been difficult. The different suites have
different interpretations of Convergence and tolerance. FiPy 4.0 harmonizes the different suites so that, to the greatest
extent possible, all interpret Convergence and tolerance the same way. In the course of doing this, a number of inef-
ficiencies were found in the way that FiPy built sparse matrices. To see the impact of these changes, we examine the
serial and parallel scaling performance of the different solver suites for two different benchmark problems.

4.3. pyamgx 33

https://pyamgx.readthedocs.io/
https://github.com/NVIDIA/AMGX
http://pysparse.sourceforge.net
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://trilinos.github.io/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

4.7.1 Serial Performance

Serial performance is compared for the different suites.

The following plot shows the serial scaling behavior for the different solvers. We compare solution time vs number
mesh cells for a diffusion problem.

We can see:

* For sufficiently large problems, building the matrix can be expected to scale as the number of cells /V and solving
the matrix should scale as N In IN. There are not enough data points to differentiate these slopes.

* Below about 1000 cells, the time to prepare the matrix is insensitive to mesh size and this dominates the overall
elapsed time.

* There is nearly three orders of magnitude between the fastest solver/preconditioner and the slowest. This partic-
ular problem is not especially sensitive to choice of solver and preconditioner, as preparing the matrix takes the
majority of the overall time, but it can be worth optimizing the choice for more complex systems of equations.

* Matrix preparation time is terrible when older FiPy is combined with newer PETSc. PETSc 3.19 introduced
changes to “provide reasonable performance when no preallocation information is provided”. Our experience is
opposite that; FiPy did not supply preallocation information prior to version 4.0, but matrix preparation perfor-
mance was fine with older PETSc releases. FiPy 4.0 does supply preallocation information and matrix preparation
time is comparable for all tested versions of PETSc.

* There is considerable dispersion about the mean solve time for different solvers and preconditioners. On the
other hand, the time to prepare the matrix is insensitive to the choice of solver and preconditioner and shows a
high degree of consistency from run to run.

In principle, we’d like to spend as little time preparing the matrix, relative to solving it, as possible. This metric can be
deceptive. If we compare the case of unpreconditioned LinearCGSolver, one of the fastest combinations for all suites
for this problem, we see that Trilinos has the lowest ratio of prepare to elapsed time. Examination of elapsed time, the
quantity we really care about, shows that Trilinos takes three times as long to both prepare and solve as Pysparse or
SciPy and twice as long as PETSc.

For your own work, focus on identifying the solver and preconditioner with the lowest overall time to build and solve;
this will counterintuitively have the highest ratio of prepare-to-elapsed time. Prepare time to elapsed time is a more
useful metric for the FiPy developers; just as FiPy 4.0 brought considerable reductions in matrix build time, we will
continue to seek opportunities to optimize.

4.7.2 Parallel Performance

The following plot shows the scaling behavior for multiple processors. We compare solution time vs number of Slurm
tasks (available cores) for a Method of Manufactured Solutions Allen-Cahn problem.

A few things can be observed in this plot:

* PETSc, Pysparse, Trilinos, and SciPy have comparable serial performance, with SciPy edging out the other three
for this particular problem.

5 FiPy version 3.4.4 has different interpretations of Convergence for different solver suites (and even for different solvers). Benchmarks used a
patched version (371d28468) that provided more logging information and normalized interpretation of tolerance, but without any of the improvements
in matrix and solver efficiency of version 4.0.

6 Calculations are of diffusion of a binary alloy in a frozen two-phase field. Solutions are on a square Grid2D. The initial condition is sampled
from the center of a well-evolved 1024 x 1024 nucleation simulation. All available solvers and preconditioners are attempted. Solution tolerance is
le-10 using the "RHS" convergence criterion. Simulations were run on an AMD Epyc 7702 CPU with 64 cores featuring two-thread Simultaneous
Multi-Threading (SMT) and 512 GB of memory. OMP_NUM_THREADS was set to 1.

7 Calculations are of a Method of Manufactured Solutions Allen-Cahn problem. Solutions are on a 2048 x 1024 Grid2D and the
LinearCGSolver with no preconditioner is used for all solver suites. Solution tolerance is le-10 using the "RHS" convergence criterion. Five
replicates of each simulation were run on an AMD Epyc 7702 CPU with 64 cores featuring two-thread Simultaneous Multi-Threading (SMT) and
512 GB of memory. OMP_NUM_THREADS was set to 1.

34 Chapter 4. Solvers

https://petsc.org/release/changes/319/
https://slurm.schedmd.com
https://pages.nist.gov/pfhub/benchmarks/benchmark7.ipynb
https://github.com/usnistgov/fipy/tree/371d28468
https://pages.nist.gov/pfhub/benchmarks/benchmark8.ipynb/
https://pages.nist.gov/pfhub/benchmarks/benchmark7.ipynb

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(a) elapsed time (b) prepare time

102

101 .

time /s

1072 4

1073 4

—— trilinos
—8— petsc 3.18.5
petsc 3.20.2
—¥— scipy
pysparse

-©- FiPy 3.4.4 (371d28468)

—&— FiPy 4.0 (a5f233aa7)
+1 standard deviation J
~N
~NlogN

104

10! 107 103 104 10° 10°
number of cells
(c) solve time

102

time /s

1074

sparse linear system

. 4

L b initial condition

LY

n

10! 10? 103 104 10° 10°
number of cells

Fig. 1: Comparison of serial performance for different solver suites, solvers and preconditioners, and different versions
of FiPy’. (a) Total elapsed time, (b) time to prepare the matrix, and (c) time to solve the matrix as functions of mesh

SiZC.Pagc 34,6

4.7. Performance Comparison 35

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

1o (a) pysparse (c) petsc 3.18.5 (e) trilinos
W
E
= 0.8 A B E
©
(]
1%
o
£ 0.6 1 E E
()
[J]
£041 1 1
S
g
2 0.2 g _
g
o
0.0 T T T T T T T T T T T T T T T T T
10! 102 10® 10* 10° 10°
. number of cells
1o (b) scipy (d) petsc 3.20.2
o —_— == —— each solver & precoditioner
€)
5 0.8 i LinearCGSolver
s unpreconditioned
a
£ 0.6 1 b
(]
(]
£ 041 .
o
2 0.2 . -—-- FiPy 3.4.4 (3710d28468)
a —— FiPy 4.0 (a5f233aa7)
0.0

10* 102 10°® 10* 10> 10% 10! 102 103 10* 10° 10°
number of cells number of cells

Fig. 2: Ratio of time to prepare the matrix to the combined time to prepare and solve the matrix for different solver
suites, solvers and preconditioners, and different versions of FiPy "2 346 The thick lines highlight LinearCGSolver
with no preconditioner, one of the better-performing combinations available in all suites.

36 Chapter 4. Solvers

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

W trilinos -
® petsc >
V scipy
pysparse
101 i
g
b
&
&
E FiPy 3.4.4 (371d28468)
a FiPy 4.0 (a5f233aa7)
3 +1 standard deviation
g Amdahl's Law
o100 A
Gunther's Law
~N
sparse linear system
10-3 initial condition
é174*4
-1073
L b
107! . .
10° 10!
tasks

Fig. 3: Parallel scaling behavior of different solver packages and different versions of FiPy

Page 34, 5Page 34, 7

4.7. Performance Comparison

37

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

* FiPy 4.0 is roughly the same speed in serial, but more than twice as fast in parallel compared to FiPy 3.4.4 when
using the PETSc solvers. FiPy 4.0 is roughly twice as fast using the 7rilinos solvers, whether in serial or parallel.

* FiPy 4.0 exhibits better parallel scaling than FiPy 3.4.4. Amdahl’s Law, speedup = p/(1 + o(p — 1)), does
not fit the performance data nearly as well as Gunther’s Law, speedup = p/(1 + o(p — 1) + kp(p — 1)), where
p is the number of parallel tasks, o is the fraction limited by serial processes, and « is “coherency” (which is
somewhat nebulous).

Table 2: Parallel scaling fitting parameters (smaller numbers are better)

Amdahl Gunther
serial / % serial / % coherency

FiPy 3.4.4 petsc 4.7(3) 0.91(9) 0.00078(2)

trilinos 2.6(1) 0.8(1) 0.00034(2)

FiPy 4.0 petsc 1.70(8) 0.13(7) 0.00028(1)

trilinos 2.2(1) 0.4(1) 0.00032(3)
At least one source of less-than-optimal scaling is that our . ..Grid...” meshes parallelize by dividing the mesh
into slabs, which leads to more communication overhead than more compact partitions. The .. .Gmsh. . .” meshes

partition more efficiently, but carry more overhead in other ways. We’ll be making efforts to improve the partitioning
of the “...Grid. ..” meshes in a future release.

These results are likely both problem and architecture dependent. You should develop an understanding of the scaling
behavior of your own codes before doing “production” runs.

4.8 Convergence

Different solver suites take different approaches to testing convergence. We endeavor to harmonize this behavior by
allowing the strings in the “criterion” column to be passed as an argument when instantiating a Solver. Convergence
is detected if residual < tolerance * scale.

38 Chapter 4. Solvers

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://doi.org/10.48550/arXiv.0808.1431
https://learn.microsoft.com/en-us/archive/blogs/ddperf/parallel-scalability-isnt-childs-play-part-2-amdahls-law-vs-gunthers-law
https://learn.microsoft.com/en-us/archive/blogs/ddperf/parallel-scalability-isnt-childs-play-part-2-amdahls-law-vs-gunthers-law

aouabianuo) ‘g'p

6€

Table 3: Residual Criteria

criterion residual scale PETScP2se 398 pyamgx’® PySparse SciPy'° Trilinos"!
unscaled ILZ — B]|2 1 12 ABSOLUTE 12 12 AZ_noscaled
RHS ILZ — b]|2 116]]2 KSP_NORM_UNPRE(2 cgs, pcg, qmres, default AZ_rhs
or!2
matrix ILZ — b]|2 ILl o 12 12 12 12 AZ_Anorm
initial ILZ — bl Lz — B||S” 12 RELATIVE_INI_C(bicgstab, gmres, 2 AZ_T0
minres, or'2
solution ILZ — b]| o IL[oo * |IZ]l2 + AZ_sol
[16]] 00
preconditioned HP*I(LE’ - b)” Hb” KSP_NORM_PRECO]
2 2
natural \/(LZ — B)P—1(Li HE H KSP_NORM_NATUR,
2
legacy KSP_NORM_DEFAU] initial RHSor initial RHS initial
(RHS or
preconditioned
default RHS RHS RHS RHS RHS

8 https://petsc.org/release/docs/manual/ksp/#sec-convergencetests

9 AMGX REFERENCE MANUAL: 2.3 General Settings: convergence, October 2017, API Version 2, https:/github.com/NVIDIA/AMGX/blob/main/doc/ AMGX _Reference.pdf
10 https://github.com/scipy/scipy/blob/2d1d5b042a09e 13 1fe 191726aa6829b33590970/scipy/sparse/linalg/_isolve/iterative.py#L30

11 AztecOO Users Guide: 3.1 Aztec Options: options[AZ_conv], SAND REPORT SAND2004-3796, Updated August 2007, For AztecOO Version 3.6 in Trilinos Release 8.0, https:/trilinos.github.

io/pdfs/AztecOOUserGuide.pdf
12 Implemented by FiPy using intrinsic solver capabilities.

KAip'p96ca198.6°1+66°¢ @sealay ‘lenuep Adi4

https://petsc.org/main/docs/manualpages/KSP/KSP_NORM_UNPRECONDITIONED/
https://sourceforge.net/p/pysparse/git/ci/master/tree/pysparse/itsolvers/src/cgs.c#l90
https://sourceforge.net/p/pysparse/git/ci/master/tree/pysparse/itsolvers/src/pcg.c#l154
https://sourceforge.net/p/pysparse/git/ci/master/tree/pysparse/itsolvers/src/qmrs.c#l139
https://sourceforge.net/p/pysparse/git/ci/master/tree/pysparse/itsolvers/src/bicgstab.c#l287
https://sourceforge.net/p/pysparse/git/ci/master/tree/pysparse/itsolvers/src/gmres.c#l159
https://sourceforge.net/p/pysparse/git/ci/master/tree/pysparse/itsolvers/src/minres.c#l195
https://petsc.org/main/docs/manualpages/KSP/KSP_NORM_PRECONDITIONED/
https://petsc.org/main/docs/manualpages/KSP/KSP_NORM_NATURAL/
https://petsc.org/main/manualpages/KSP/KSPNormType/
https://petsc.org/release/docs/manual/ksp/#sec-convergencetests
https://github.com/NVIDIA/AMGX/blob/main/doc/AMGX_Reference.pdf
https://github.com/scipy/scipy/blob/2d1d5b042a09e131ffe191726aa6829b33590970/scipy/sparse/linalg/_isolve/iterative.py#L30
https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf
https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Note: PyAMG is a set of preconditioners applied on top of SciPy, so is not explicitly included in these tables.

4.8.1 Tolerance

The default tolerance is 10~° (the legacy tolerance, prior to FiPy 4.0, was 107 10).

e SciPy and Trilinos can fail with folerance=1e-10. (SCIPY_MAXIT or AZ_loss, respectively) because they are
unable to make the residual any smaller than O(10~7).

* tolerance=1Ie-5 is the default for PETSc and SciPy.
o pyamgx defaults to 10712
* Pysparse does not specify, but has examples that illustrate 10712,

e Trilinos does not specify, but has examples that illustrate 105,

4.8.2 default

The setting criterion="default" applies the same scaling (RHS) to all solvers. This behavior is new in FiPy 4.0;
prior to that, the default behavior was the same as criterion="1egacy".

4.8.3 legacy

The setting criterion="1egacy" restores the behavior of FiPy prior to version 4.0 and is equivalent to what the
particular suite and solver does if not specifically configured. The 1egacy row of the table is a best effort at documenting
what will happen.

Note:

All LU solvers use "initial" scaling.
* PySparse has two different groups of solvers, with different scaling.

e PETSc accepts KSP_NORM_DEFAULT in order to “use the default for the current KSPType”. Discerning the
actual behavior would require burning the code in a bowl of chicken entrails. (It is reasonable to assume
KSP_NORM_PRECONDITIONED for left-preconditioned solvers and KSP_NORM_UNPRECONDITIONED otherwise.)

* Even the PETSc documentation says that KSP_NORM_NATURAL is “‘weird”).

4.8.4 absolute_tolerance

PETSc and SciPy Krylov solvers accept an additional absolute_tolerance parameter, such that convergence is
detected if residual < max(tolerance * scale, absolute_tolerance).

40 Chapter 4. Solvers

https://petsc.org/main/manualpages/KSP/KSPNormType/
https://petsc.org/main/docs/manualpages/KSP/KSP_NORM_PRECONDITIONED/
https://petsc.org/main/docs/manualpages/KSP/KSP_NORM_UNPRECONDITIONED/
https://petsc.org/main/docs/manualpages/KSP/KSP_NORM_NATURAL/
https://petsc.org/main/manualpages/KSP/KSPCGS/#developer-note

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

4.8.5 divergence_tolerance

PETSc Krylov solvers accept a third divergence_tolerance parameter, such that a divergence is detected if
residual > divergence_tolerance * scale. Because of the way the convergence test is coded, if the initial
residual is much larger than the norm of the right-hand-side vector, PETSc will abort with KSP_DIVERGED_DTOL with-
out ever trying to solve. If this occurs, either divergence_tolerance should be increased or another convergence
criterion should be used.

Note: See examples.diffusion.meshlD, examples.diffusion.steadyState.meshlD.inputPeriodic,
examples.elphf.diffusion.meshlD, examples.elphf.phaseDiffusion, examples.phase.binary,
examples.phase.quaternary, and examples.reactivelietting.liquidVaporlD for several examples where
criterion="initial" is used to address this situation.

Note: divergence_tolerance never caused a problem in previous versions of FiPy because the default behavior of
PETSc is to zero out the initial guess before trying to solve and then never do a test against divergence_tolerance.
This resulted in behavior (number of iterations and ultimate residual) that was very different from the other solver suites
and so FiPy now directs PETSc to use the initial guess.

4.8.6 Reporting

Different solver suites also report different levels of detail about why they succeed or fail. This information is captured
as a Convergence or Divergence property of the Solver after calling solve() or sweep().

4.8. Convergence 41

https://gitlab.com/petsc/petsc/-/blob/main/src/ksp/ksp/interface/iterativ.c#L1598
https://petsc.org/main/docs/manualpages/KSP/KSP_DIVERGED_DTOL/

cb

SI9A|0S ' Jo1dey)

Table 4: Convergence Status Codes

PETSc pyamgx PySparse

SciPy Trilinos

Convergence

IterationConvergence

AbsoluteToleranceConvergence

RHSZeroConvergence

RelativeToleranceConvergence

HappyBreakdownConvergence

Convergence
criteria met.
Requested
iterations
complete
(and no
residual
calculated).
Converged,
residual is
as small as
seems rea-
sonable on
this machine.
Con-
verged,b = 0
so the exact
solution

isx = 0.
Converged,
relative error
appears to be
less than tol-
erance.
“Exact” so-
lution found
and more
iterations
will just
make things
WoOrse.

AMGX_SOLVE_SUCCESS

KSP_CONVERGED_ITS

KSP_CONVERGED_ATOL 2
1
KSP_CONVERGED_RTOL 0

KSP_CONVERGED_HAPPY_BREAKD

0 AZ_normal

continues on next page

Kip'p96ca198.6°1L+66°¢ @sealay ‘lenue Adi4

https://github.com/NVIDIA/AMGX/blob/main/doc/AMGX_Reference.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html
https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf
https://petsc.org/main/docs/manualpages/KSP/KSP_CONVERGED_ITS/
https://petsc.org/main/docs/manualpages/KSP/KSP_CONVERGED_ATOL/
http://pysparse.sourceforge.net/itsolvers.html
http://pysparse.sourceforge.net/itsolvers.html
https://petsc.org/main/docs/manualpages/KSP/KSP_CONVERGED_RTOL/
http://pysparse.sourceforge.net/itsolvers.html
https://petsc.org/main/docs/manualpages/KSP/KSPConvergedReason/

aouabianuo) ‘g'p

917

Table 4 — continued from previous page

PETSc pyamgx

PySparse

SciPy Trilinos

LossOfAccuracyConvergence

IteratingConvergence

The iterative
solver has
terminated
due to a lack
of accuracy
in the recur-
sive residual
(caused by
rounding
errors).
Solve still in
progress.

KSP_CONVERGED_ITERATING

AZ_loss

KAip'p96ca198.6°1+66°¢ @sealay ‘lenuep Adi4

https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf
https://petsc.org/main/docs/manualpages/KSP/KSP_CONVERGED_ITERATING/

147

SI9A|0S ' Jo1dey)

Table 5: Divergence Status Codes

PETSc pyamgx

PySparse

SciPy Trilinos

BreakdownDivergence

IterationDivergence

PreconditioningDivergence

I11ConditionedPreconditionerDi

IllConditionedDivergence

StagnatedDivergence

Illegal input
or the iter-
ative solver
has broken
down.
Maximum
number of
iterations
was reached.
The system
involving
the pre-
conditioner
was ill-
conditioned.
An in-
ner prod-
uct of the
formxTP~1x
not positive,
SO the
precondi-
tioning ma-
trix P does
not appear to
be positive
definite.
The matrix L
appears

to be ill-
conditioned.
The method
stagnated.

KSP_DIVERGED_BREAKDOWN AMGX_SOLVE_FATLED

KSP_DIVERGED_ITS AMGX_SOLVE_DIVERGEL

KSP_DIVERGED_PC_FAILED

KSP_DIVERGED_INDEFINITE_PC

KSP_DIVERGED_INDEFINITE_MA

<0 AZ_breakdown

>0 AZ_maxits

AZ_ill_cond

continues on next page

Kip'p96ca198.6°1L+66°¢ @sealay ‘lenue Adi4

https://petsc.org/main/docs/manualpages/KSP/KSP_DIVERGED_BREAKDOWN/
https://github.com/NVIDIA/AMGX/blob/main/doc/AMGX_Reference.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html
https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf
https://petsc.org/main/docs/manualpages/KSP/KSP_DIVERGED_ITS/
https://github.com/NVIDIA/AMGX/blob/main/doc/AMGX_Reference.pdf
http://pysparse.sourceforge.net/itsolvers.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html
https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf
https://petsc.org/main/docs/manualpages/KSP/KSP_DIVERGED_PC_FAILED/
http://pysparse.sourceforge.net/itsolvers.html
https://petsc.org/main/docs/manualpages/KSP/KSP_DIVERGED_INDEFINITE_PC/
http://pysparse.sourceforge.net/itsolvers.html
https://petsc.org/main/docs/manualpages/KSP/KSPConvergedReason/
http://pysparse.sourceforge.net/itsolvers.html
https://trilinos.github.io/pdfs/AztecOOUserGuide.pdf
http://pysparse.sourceforge.net/itsolvers.html

aouabianuo) ‘g'p

517

Table 5 - continued from previous page

PETSc pyamgx

PySparse

SciPy Trilinos

OutOfRangeDivergence

NullDivergence

ToleranceDivergence

A scalar
quantity

became too
small or
too large
to continue
computing.
Breakdown
when solving
the Hessen-
berg system
within

GMRES.
The resid-
ual norm

increased by
a factor of
divtol.

KSP_DIVERGED_NANORINF

KSP_DIVERGED_NULL

KSP_DIVERGED_DTOL

-6

KAip'p96ca198.6°1+66°¢ @sealay ‘lenuep Adi4

https://petsc.org/main/docs/manualpages/KSP/KSPConvergedReason/
http://pysparse.sourceforge.net/itsolvers.html
https://petsc.org/main/docs/manualpages/KSP/KSPConvergedReason/
https://petsc.org/main/docs/manualpages/KSP/KSP_DIVERGED_DTOL/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

46

Chapter 4. Solvers

Chapter

Viewers

A viewer is required to see the results of FiPy calculations. Matplotlib is by far the most widely used Python based
viewer and the best choice to get FiPy up and running quickly. Matplotlib is also capable of publication quality plots.
Matplotlib has only rudimentary 3D capability, which FiPy does not attempt to use. Mayavi is required for 3D viewing.

5.1 Matplotlib

http://matplotlib.sourceforge.net

Matplotlib is a Python package that displays publication quality results. It displays both 1D X-Y type plots and 2D
contour plots for both structured and unstructured data, but does not display 3D data. It works on all common platforms.

5.2 Mayavi

http://code.enthought.com/projects/mayavi/

The Mayavi Data Visualizer is a free, easy to use scientific data visualizer. It displays 1D, 2D and 3D data. It is the
only FiPy viewer available for 3D data. Matplotlib is probably a better choice for 1D or 2D viewing.

Mayavi requires VTK, which can be difficult to build from source.

Note: MayaVi 1 is no longer supported.

47

http://matplotlib.sourceforge.net
http://code.enthought.com/projects/mayavi/
http://www.vtk.org/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

48

Chapter 5. Viewers

Chapter

Frequently Asked Questions

6.1 How do | represent an equation in FiPy?

As explained in Theoretical and Numerical Background, the canonical governing equation that can be solved by FiPy

for the dependent CellVariable ¢ is

transient convection diffusion

and the individual terms are discussed in Discretization.

A physical problem can involve many different coupled governing equations, one for each variable. Numerous specific

examples are presented in Part Examples.

6.1.1 Is there a way to model an anisotropic diffusion process or more generally to
represent the diffusion coefficient as a tensor so that the diffusion term takes

the form 0,I';;0;0?

Terms of the form 9;1';;0;¢ can be posed in FiPy by using a list, tuple rank 1 or rank 2 FaceVariable to represent a
vector or tensor diffusion coefficient. For example, if we wished to represent a diffusion term with an anisotropy ratio

of 5 aligned along the x-coordinate axis, we could write the term as,

[>>> DiffusionTerm([[[5, 01, [0, 1111)

]

which represents 58§ + 85. Notice that the tensor, written in the form of a list, is contained within a list. This is because
the first index of the list refers to the order of the term not the first index of the tensor (see Higher Order Diffusion).

This notation, although succinct can sometimes be confusing so a number of cases are interpreted below.

[>>> DiffusionTerm([[5, 111)

)

This represents the same term as the case examined above. The vector notation is just a short-hand representation for

the diagonal of the tensor. Off-diagonals are assumed to be zero.

[>>> DiffusionTerm([5, 1])

This simply represents a fourth order isotropic diffusion term of the form 5 (83 + 35)

2

49

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[>>> DiffusionTerm([[1, 01, [0, 111) J

Nominally, this should represent a fourth order diffusion term of the form 6%85, but FiPy does not currently support
anisotropy for higher order diffusion terms so this may well throw an error or give anomalous results.

>>> x, y = mesh.cellCenters
>>> DiffusionTerm(CellVariable(mesh-mesh,
Value=[[x*""2, X * y], [*X % y, 7y~.':~,':2:|])

This represents an anisotropic diffusion coefficient that varies spatially so that the term has the form 9, (29, +zyd,) +
Oy (—xydy — y?8,) = 28, — yd, + 2°02 — y>0;.

Generally, anisotropy is not conveniently aligned along the coordinate axes; in these cases, it is necessary to apply a
rotation matrix in order to calculate the correct tensor values, see examples.diffusion.anisotropy for details.

6.1.2 How do | represent a... term that doesn’t involve the dependent variable?

It is important to realize that, even though an expression may superficially resemble one of those shown in Discretiza-
tion, if the dependent variable for that PDE does not appear in the appropriate place, then that term should be treated
as a source.

How do I represent a diffusive source?

If the governing equation for ¢ is

9¢
i V- (D1V¢) + V- (D2VE)

then the first term is a TransientTerm and the second term is a DiffusionTerm, but the third term is simply an
explicit source, which is written in Python as

[>>> (D2 * xi.faceGrad) .divergence J

Higher order diffusive sources can be obtained by simply nesting the references to faceGrad and divergence.

Note: We use faceGrad, rather than grad, in order to obtain a second-order spatial discretization of the diffusion
term in &, consistent with the matrix that is formed by Di ffusionTerm for ¢.

How do | represent a convective source?

The convection of an independent field £ as in

¢
V. (1
o= V- (@)
can be rendered as
[>>> (u * xi.arithmeticFaceValue).divergence]

when # is a rank-1 FaceVariable (preferred) or as

50 Chapter 6. Frequently Asked Questions

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[>>> (u * xi).divergence

if @ is arank-1 CellVariable.

How do | represent a transient source?

The time-rate-of change of an independent variable &, such as in

Ap1¢) O(p28)

ot ot

does not have an abstract form in FiPy and should be discretized directly, in the manner of Equation (8.3), as

[>>> TransientTerm(coeff=rhol) == rho2 * (xi - xi.old) / timeStep

This technique is used in examples.phase.anisotropy.

6.1.3 What if my term involves the dependent variable, but not where FiPy puts it?

Frequently, viewing the term from a different perspective will allow it to be cast in one of the canonical forms. For
example, the third term in

0¢ _

5 =V (D1Ve) + V- (D2gVE)

might be considered as the diffusion of the independent variable £ with a mobility D¢ that is a function of the dependent
variable ¢. For FiPy’s purposes, however, this term represents the convection of ¢, with a velocity D, V&, due to the
counter-diffusion of &, so

>>> eq = TransientTerm() == (DiffusionTerm(coeff=D1)
+ <Specific>ConvectionTerm(coeff=D2 * xi.faceGrad))

Note: With the advent of Coupled and Vector Equations in FiPy 3.x, it is now possible to represent both terms with
DiffusionTerm.

6.1.4 What if the coefficient of a term depends on the variable that I'm solving for?

A non-linear coefficient, such as the diffusion coefficient in V - [['1(¢) V] = V - [['9é(1 — ¢) V] is not a problem for
FiPy. Simply write it as it appears:

[>>> diffTerm = DiffusionTerm(coeff=Gamma® * phi * (1 - phi))

Note: Due to the nonlinearity of the coefficient, it will probably be necessary to “sweep” the solution to convergence
as discussed in Iterations, timesteps, and sweeps? Oh, my!.

6.1. How do | represent an equation in FiPy? 51

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

6.2 How can | see what I’'m doing?

6.2.1 How do | export data?

The way to save your calculations depends on how you plan to make use of the data. If you want to
save it for “restart” (so that you can continue or redirect a calculation from some intermediate stage), then
you’ll want to “pickle” the Pyrhon data with the dump module. This is illustrated in examples.phase.
anisotropy, examples.phase.impingement.mesh40x1, examples.phase.impingement.mesh20x20, and
examples.levelSet.electroChem.howTolWriteAScript.

On the other hand, pickled FiPy data is of little use to anything besides Python and FiPy. If you want to import
your calculations into another piece of software, whether to make publication-quality graphs or movies, or to perform
some analysis, or as input to another stage of a multiscale model, then you can save your data as an ASCII text file of
tab-separated-values with a TSVViewer. This is illustrated in examples.diffusion.circle.

6.2.2 How do | save a plot image?

Some of the viewers have a button or other mechanism in the user interface for saving an image file. Also, you can
supply an optional keyword filename when you tell the viewer to plot (), e.g.

[>>> viewer.plot(filename="myimage.ext")]

which will save a file named myimage. ext in your current working directory. The type of image is determined by the
file extension “. ext”. Different viewers have different capabilities:

Matplotlib
accepts “.eps,

29 <

.3pg” (Joint Photographic Experts Group), and “.png” (Portable Network Graphics).

Attention: Actually, Matplotlib supports different extensions, depending on the chosen backend, but our
MatplotlibViewer classes don’t properly support this yet.

What if | only want the saved file, with no display on screen?

To our knowledge, this is only supported by Matplotlib, as is explained in the Matplotlib FAQ on image backends.
Basically, you need to tell Matplotlib to use an “image backend,” such as “Agg” or “Cairo.” Backends are discussed
at http://matplotlib.sourceforge.net/backends.html.

6.2.3 How do | make a movie?

FiPy has no facilities for making movies. You will need to save individual frames (see the previous question) and then
stitch them together into a movie, using one of a variety of different free, shareware, or commercial software packages.
The guidance in the Matplotlib FAQ on movies should be adaptable to other Viewers.

52 Chapter 6. Frequently Asked Questions

http://www.jpeg.org/
http://www.w3.org/Graphics/PNG/
http://matplotlib.sourceforge.net/backends.html
http://matplotlib.sourceforge.net/faq/howto_faq.html#generate-images-without-having-a-window-popup
http://matplotlib.sourceforge.net/backends.html
http://matplotlib.sourceforge.net/faq/howto_faq.html#make-a-movie

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

6.2.4 Why doesn’t the Viewer look the way | want?

FiPy’s viewers are utilitarian. They’re designed to let you see something with a minimum of effort. Because different
plotting packages have different capabilities and some are easier to install on some platforms than on others, we have
tried to support a range of Python plotters with a minimal common set of features. Many of these packages are capable
of much more, however. Often, you can invoke the Viewer you want, and then issue supplemental commands for
the underlying plotting package. The better option is to make a “subclass” of the FiPy Viewer that comes closest
to producing the image you want. You can then override just the behavior you wan to change, while letting FiPy
do most of the heavy lifting. See examples.phase.anisotropy, examples.phase.binary, examples.phase.
binaryCoupled, and examples.phase.polyxtal for examples of creating a custom Matplotlib Viewer class; see
examples.cahnHilliard.sphere for an example of creating a custom Mayavi Viewer class.

6.3 Iterations, timesteps, and sweeps? Oh, my!

Any non-linear solution of partial differential equations is an approximation. These approximations benefit from repet-
itive solution to achieve the best possible answer. In FiPy (and in many similar PDE solvers), there are three layers of
repetition.

iterations

This is the lowest layer of repetition, which you’ll generally need to spend the least time thinking about. FiPy
solves PDEs by discretizing them into a set of linear equations in matrix form, as explained in Discretization
and Linear Equations. It is not always practical, or even possible, to exactly solve these matrix equations on a
computer. FiPy thus employs “iterative solvers”, which make successive approximations until the linear equations
have been satisfactorily solved. FiPy chooses a default number of iterations and solution tolerance, which you
will not generally need to change. If you do wish to change these defaults, you’ll need to create a new Solver
object with the desired number of iterations and solution tolerance, e.g.

>>> mySolver = LinearCGSolver(iterations=1234, tolerance=5e-6)

>>> eq.solve(..., solver=mySolver, ...)

Note: The older Solver steps=keyword is now deprecated in favor of iterations=to make the role clearer.

Solver iterations are changed from their defaults in examples.flow.stokesCavity and examples.
updating.update®_1tol_0.

sweeps
This middle layer of repetition is important when a PDE is non-linear (e.g., a diffusivity that depends on con-
centration) or when multiple PDEs are coupled (e.g., if solute diffusivity depends on temperature and thermal
conductivity depends on concentration). Even if the Solver solves the linear approximation of the PDE to
absolute perfection by performing an infinite number of iterations, the solution may still not be a very good rep-
resentation of the actual non-linear PDE. If we resolve the same equation at the same point in elapsed time, but
use the result of the previous solution instead of the previous timestep, then we can get a refined solution to the
non-linear PDE in a process known as “sweeping.”

Note: Despite references to the “previous timestep,” sweeping is not limited to time-evolving problems. Non-
linear sets of quasi-static or steady-state PDEs can require sweeping, too.

We need to distinguish between the value of the variable at the last timestep and the value of the variable at the
last sweep (the last cycle where we tried to solve the current timestep). This is done by first modifying the way

6.3. Ilterations, timesteps, and sweeps? Oh, my! 53

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

the variable is created:

[>>> myVar = CellVariable(..., hasOld=True)

and then by explicitly moving the current value of the variable into the “old” value only when we want to:

[>>> myVar.update0ld()

)

Finally, we will need to repeatedly solve the equation until it gives a stable result. To clearly distinguish that a
single cycle will not truly “solve” the equation, we invoke a different method “sweep O:

>>> for sweep in range(sweeps):
eq.sweep(var=myVar, ...)

SE—

Even better than sweeping a fixed number of cycles is to do it until the non-linear PDE has been solved satisfac-
torily:

>>> while residual > desiredResidual:
residual = eq.sweep(var=myVar, ...)

Sweeps are used to achieve better solutions in examples.diffusion.meshlD, examples.phase.simple,
examples.phase.binaryCoupled, and examples. flow.stokesCavity.

timesteps

This outermost layer of repetition is of most practical interest to the user. Understanding the time evolution of a
problem is frequently the goal of studying a particular set of PDEs. Moreover, even when only an equilibrium
or steady-state solution is desired, it may not be possible to simply solve that directly, due to non-linear coupling
between equations or to boundary conditions or initial conditions. Some types of PDEs have fundamental limits
to how large a timestep they can take before they become either unstable or inaccurate.

Note: Stability and accuracy are distinctly different. An unstable solution is often said to “blow up”, with radi-
cally different values from point to point, often diverging to infinity. An inaccurate solution may look perfectly
reasonable, but will disagree significantly from an analytical solution or from a numerical solution obtained by
taking either smaller or larger timesteps.

For all of these reasons, you will frequently need to advance a problem in time and to choose an appropriate
interval between solutions. This can be simple:

>>> timeStep = 1.234e-5
>>> for step in range(steps):
eq.solve(var=myVar, dt=timeStep, ...)

or more elaborate:

(>>> timeStep = 1.234e-5
>>> elapsedTime = 0
>>> while elapsedTime < totalElapsedTime:
eq.solve(var=myVar, dt=timeStep, ...)
elapsedTime += timeStep
timeStep = SomeFunctionOfVariablesAndTime(myVarl, myVar2, elapsedTime)

A majority of the examples in this manual illustrate time evolving behavior. Notably, boundary conditions are
made a function of elapsed time in examples.diffusion.meshiD. The timestep is chosen based on the ex-
pected interfacial velocity in examples.phase.simple. The timestep is gradually increased as the kinetics
slow down in examples.cahnHilliard.mesh2DCoupled.

54

Chapter 6. Frequently Asked Questions

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Finally, we can (and often do) combine all three layers of repetition:

>>> myVar = CellVariable(..., has0ld=1)
>>> mySolver = LinearCGSolver(iterations=1234, tolerance=5e-6)

>>> while elapsedTime < totalElapsedTime:
myVar.update0ld()
while residual > desiredResidual:
residual = eq.sweep(var=myVar, dt=timeStep, ...)
elapsedTime += timeStep

6.4 Why the distinction between CellVariable and FaceVariable co-
efficients?

FiPy solves field variables on the cell centers. Transient and source terms describe the change in the value of a field at
the cell center, and so they take a Cel1Variable coeflicient. Diffusion and convection terms involve fluxes between
cell centers, and are calculated on the face between two cells, and so they take a FaceVariable coefficient.

Note: If you supply a CellVariable var when a FaceVariable is expected, FiPy will automatically substitute
var.arithmeticFaceValue. This can have undesirable consequences, however. For one thing, the arithmetic face
average of a non-linear function is not the same as the same non-linear function of the average argument, e.g., for

fla) =22,

1+2. 9, f()+f2) 5

=17 7% =3
This distinction is not generally important for smoothly varying functions, but can dramatically affect the solution when
sharp changes are present. Also, for many problems, such as a conserved concentration field that cannot be allowed to

drop below zero, a harmonic average is more appropriate than an arithmetic average.

If you experience problems (unstable or wrong results, or excessively small timesteps), you may need to explicitly
supply the desired FaceVariable rather than letting FiPy assume one.

6.4. Why the distinction between CellVariable and FaceVariable coefficients? 55

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

6.5 How do | represent boundary conditions?

See the Boundary Conditions section for more details.

6.6 What does this error message mean?

ValueError: frames are not aligned
This error most likely means that you have provided a Cel1Variable when FiPy was expecting a FaceVariable
(or vice versa).

MA.MA.MAError: Cannot automatically convert masked array to Numeric because data is

masked in one or more locations.]] o
This not-so-helpful error message could mean a number of things, but the most likely explanation is that the

solution has become unstable and is diverging to +co. This can be caused by taking too large a timestep or by
using explicit terms instead of implicit ones.

repairing catalog by removing key
This message (not really an error, but may cause test failures) can result when using the weave package via the
--inline flag. It is due to a bug in SciPy that has been patched in their source repository: http://www.scipy.
org/mailinglists/mailman?fn=scipy-dev/2005-June/003010.html.

numerix Numeric 23.6
This is neither an error nor a warning. It’s just a sloppy message left in SciPy: http://thread.gmane.org/gmane.
comp.python.scientific.user/4349.

6.7 How do | change FiPy’s default behavior?

FiPy tries to make reasonable choices, based on what packages it finds installed, but there may be times that you wish
to override these behaviors. See the Command-line Flags and Environment Variables section for more details.

6.8 How can I tell if I'm running in parallel?

See Solving in Parallel.

6.9 Why don’t my scripts work anymore?

FiPy has experienced three major API changes. The steps necessary to upgrade older scripts are discussed in Updating
FiPy.

56 Chapter 6. Frequently Asked Questions

http://www.scipy.org/mailinglists/mailman?fn=scipy-dev/2005-June/003010.html
http://www.scipy.org/mailinglists/mailman?fn=scipy-dev/2005-June/003010.html
http://thread.gmane.org/gmane.comp.python.scientific.user/4349
http://thread.gmane.org/gmane.comp.python.scientific.user/4349

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

6.10 What if my question isn’t answered here?

Please post your question to the mailing list <http://www.ctcms.nist.gov/fipy/mail.html> or file an issue at <https:
//github.com/usnistgov/fipy/issues/new>.

6.10. What if my question isn’t answered here? 57

http://www.ctcms.nist.gov/fipy/mail.html
https://github.com/usnistgov/fipy/issues/new
https://github.com/usnistgov/fipy/issues/new

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

58

Chapter 6. Frequently Asked Questions

Chapter

Efficiency

This section will present results and discussion of efficiency evaluations with FiPy. Programming in Python allows
greater efficiency when designing and implementing new code, but it has some intrinsic inefficiencies during execution
as compared with the C or FORTRAN programming languages. These inefficiencies can be minimized by translating
sections of code that are used frequently into C.

FiPy has been tested against an in-house phase field code, written at NIST, to model grain growth and subsequent
impingement. This problem can be executed by running:

$ examples/phase/impingement/mesh20x20.py \
> --numberOfElements=10000 --numberOfSteps=1000

from the base FiPy directory. The in-house code was written by Ryo Kobayashi and is used to generate the results
presented in [13].

The raw CPU execution times for 10 time steps are presented in the following table. The run times are in seconds and
the memory usage is in kilobytes. The Kobayashi code is given the heading of FORTRAN while FiPy is run with and
without inlining. The memory usage is for FiPy simulations with the --inline. The --no-cache flag is on in all
cases for the following table.

Ele- FiPy FiPy --inline FORTRAN FiPy memory FORTRAN memory
ments (s) (s) (s) (KiB) (KiB)

100 0.77 0.30 0.0009 39316 772

400 0.87 0.37 0.0031 39664 828

1600 1.4 0.65 0.017 40656 1044

6400 3.7 2.0 0.19 46124 1880

25600 19 10 1.3 60840 5188

102400 79 43 4.6 145820 18436

The plain Python version of FiPy, which uses Numeric for all array operations, is around 17 times slower than the
FORTRAN code. Using the --inline flag, this penalty is reduced to about 9 times slower.

It is hoped that in future releases of FiPy the process of C inlining for Variable objects will be automated. This may
result in some efficiency gains, greater than we are seeing for this particular problem since all the Variable objects
will be inlined. Recent analysis has shown that a Variable with multiple operations could be up to 6 times faster at
calculating its value when inlined.

59

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

As presented in the above table, memory usage was also recorded for each FiPy simulation. From the table, once
base memory usage is subtracted, each cell requires approximately 1.4 kilobytes of memory. The measurement of the
maximum memory spike is hard with dynamic memory allocation, so these figures should only be used as a very rough
guide. The FORTRAN memory usage is exact since memory is not allocated dynamically.

7.1 Efficiency comparison between --no-cache and --cache flags

This table shows results for efficiency tests when using the caching flags. Examples with more variables involved
in complex expressions show the largest improvement in memory usage. The --no-cache option mainly prevents
intermediate variables created due to binary operations from caching their values. This results in large memory gains
while not effecting run times substantially. The table below is with --inline switched on and with 102400 elements
for each case. The --no-cache flag is the default option.

Example time per step time per step memory per cell memory per cell
--no-cache (s) --cache (s) --no-cache (KiB) --cache (KiB)

examples.phase. 4.3 4.1 1.4 2.3

impingement.mesh20x20

examples.phase.anisotropy 3.5 3.2 1.1 1.9

examples.cahnHilliard. 3.0 2.5 1.1 1.4

mesh2D

examples.levelSet. 62 62 2.0 2.8

electroChem.

simpleTrenchSystem

7.2 Efficiency discussion of Pysparse and Trilinos

Trilinos provides multigrid capabilities which are beneficial for some problems, but has significant overhead compared
to Pysparse. The matrix-building step takes significantly longer in Trilinos, and the solvers also have more overhead
costs in memory and performance than the equivalent Pysparse solvers. However, the multigrid preconditioning capa-
bilities of Trilinos can, in some cases, provide enough of a speedup in the solution step to make up for the overhead
costs. This depends greatly on the specifics of the problem, but is most likely in the cases when the problem is large
and when Pysparse cannot solve the problem with an iterative solver and must use an LU solver, while Trilinos can still
have success with an iterative method.

60 Chapter 7. Efficiency

Chapter

Theoretical and Numerical Background

This chapter describes the numerical methods used to solve equations in the FiPy programming environment. FiPy uses
the finite volume method (FVM) to solve coupled sets of partial differential equations (PDEs). For a good introduction
to the FVM see Nick Croft’s PhD thesis [14], Patankar [15] or Versteeg and Malalasekera [16].

Essentially, the FVM consists of dividing the solution domain into discrete finite volumes over which the state variables
are approximated with linear or higher order interpolations. The derivatives in each term of the equation are satisfied
with simple approximate interpolations in a process known as discretization. The (FVM) is a popular discretization
technique employed to solve coupled PDEs used in many application areas (e.g., Fluid Dynamics).

The FVM can be thought of as a subset of the Finite Element Method (FEM), just as the Finite Difference Method
(FDM) is a subset of the FVM. A system of equations fully equivalent to the FVM can be obtained with the FEM using
as weighting functions the characteristic functions of FV cells, i.e., functions equal to unity [17]. Analogously, the
discretization of equations with the FVM reduces to the FDM on Cartesian grids.

8.1 General Conservation Equation

The equations that model the evolution of physical, chemical and biological systems often have a remarkably universal
form. Indeed, PDEs have proven necessary to model complex physical systems and processes that involve variations in
both space and time. In general, given a variable of interest ¢ such as species concentration, pH, or temperature, there
exists an evolution equation of the form

o

L= H(o, N\ 8.1

o = H0.\) ®.1)
where H is a function of ¢, other state variables \;, and higher order derivatives of all of these variables. Examples of
such systems are wide ranging, but include problems that exhibit a combination of diffusing and reacting species, as
well as such diverse problems as determination of the electric potential in heart tissue, of fluid flow, stress evolution,
and even the Schrédinger equation.

A general conservation equation, solved using FiPy, can include any combination of the following terms,

———+ V. (ip) = [V- (I;V)]" o+ S,
——— —— Y

transient convection diffusion source

8.2)

where p, 1 and T'; represent coefficients in the transient, convection and diffusion terms, respectively. These coeflicients
can be arbitrary functions of any parameters or variables in the system. The variable ¢ represents the unknown quantity

61

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

in the equation. The diffusion term can represent any higher order diffusion-like term, where the order is given by the
exponent n. For example, the diffusion term can represent conventional Fickian diffusion [i.e., V- (I'V¢)] when the
exponent n = 1 or a Cahn-Hilliard term [i.e., V- (T V[V -T2V ¢)]) [18] [19] [20]] when n = 2, or a phase field
crystal term [i.e., V- (I V[V -T3V{V -T'sV¢)})]) [21]] when n = 3, although spectral methods are probably a
better approach. Higher order terms (n > 3) are also possible, but the matrix condition number becomes quite poor.

8.2 Finite Volume Method

To use the FVM, the solution domain must first be divided into non-overlapping polyhedral elements or cells. A solution
domain divided in such a way is generally known as a mesh (as we will see, a Mesh is also a FiPy object). A mesh
consists of vertices, faces and cells (see Figure Mesh). In the FVM the variables of interest are averaged over control
volumes (CVs). The CVs are either defined by the cells or are centered on the vertices.

7

vertex
Fig. 1: Mesh
A mesh consists of cells, faces and vertices. For the purposes of FiPy, the divider between two cells is known as a face for all
dimensions.

8.2.1 Cell Centered FVM (CC-FVM)

In the CC-FVM the CVs are formed by the mesh cells with the cell center “storing” the average variable value in the
CV, (see Figure CV structure for an unstructured mesh). The face fluxes are approximated using the variable values
in the two adjacent cells surrounding the face. This low order approximation has the advantage of being efficient and
requiring matrices of low band width (the band width is equal to the number of cell neighbors plus one) and thus low
storage requirement. However, the mesh topology is restricted due to orthogonality and conjunctionality requirements.
The value at a face is assumed to be the average value over the face. On an unstructured mesh the face center may not
lie on the line joining the CV centers, which will lead to an error in the face interpolation. FiPy currently only uses the
CC-FVM.

Boundary Conditions

The natural boundary condition for CC-FVM is no-flux. For (8.2), the boundary condition is

f-[ig — (I;V)"] =0

62 Chapter 8. Theoretical and Numerical Background

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

8.2.2 Vertex Centered FVM (VC-FVM)

In the VC-FVM, the CV is centered around the vertices and the cells are divided into sub-control volumes that make
up the main CVs (see Figure CV structure for an unstructured mesh). The vertices “store” the average variable values
over the CVs. The CV faces are constructed within the cells rather than using the cell faces as in the CC-FVM. The
face fluxes use all the vertex values from the cell where the face is located to calculate interpolations. For this reason,
the VC-FVM is less efficient and requires more storage (a larger matrix band width) than the CC-FVM. However, the
mesh topology does not have the same restrictions as the CC-FVM. FiPy does not have a VC-FVM capability.

8.3 Discretization

The first step in the discretization of Equation (8.2) using the CC-FVM is to integrate over a CV and then make
appropriate approximations for fluxes across the boundary of each CV. In this section, each term in Equation (8.2)
will be examined separately.

8.3.1 Transient Term 0(p¢)/0t
For the transient term, the discretization of the integral fv over the volume of a CV is given by

/ p?) gy . (PPOP = PRIOE)VP 8.3)
1%

ot At

where ¢p represents the average value of ¢ in a CV centered on a point P and the superscript “old” represents the
previous time-step value. The value Vp is the volume of the CV and At is the time step size.

This term is represented in FiPy as

[>>> TransientTerm(coeff=rho) }

8.3.2 Convection Term V - (i)

The discretization for the convection term is given by

/vu¢ /ﬁﬁ¢d$

(8.4)

where we have used the divergence theorem to transform the integral over the CV volume || v into an integral over the
CV surface [. The summation over the faces of a CV is denoted by 7 and Ay is the area of each face. The vector
71 is the normal to the face pointing out of the CV into an adjacent CV centered on point A. When using a first order
approximation, the value of ¢ must depend on the average value in adjacent cell ¢ 4 and the average value in the cell
of interest ¢ p, such that

¢y = aypp+ (1 —ay)pa.

The weighting factor o is determined by the convection scheme, described in Numerical Schemes.

This term is represented in FiPy as

[>>> <SpecificConvectionTerm>(coeff=u)

8.3. Discretization 63

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(b

(R

%
>

‘J

(@)

Fig. 2: CV structure for an unstructured mesh
(a) 2, represents a vertex-based CV and (b) €21, 22, 23 and (24 represent cell centered CVs.

64 Chapter 8. Theoretical and Numerical Background

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

where <SpecificConvectionTerm> can be any of CentralDifferenceConvectionTerm,
ExponentialConvectionTerm, HybridConvectionTerm, PowerLawConvectionTerm,
UpwindConvectionTerm, ExplicitUpwindConvectionTerm, or VanLeerConvectionTerm. The differ-
ences between these convection schemes are described in Section Numerical Schemes. The velocity coefficient u must
be arank-1 FaceVariable, or a constant vector in the form of a Python list or tuple, e.g. ((1,), (2,)) for a vector
in 2D.

8.3.3 Diffusion Term V. (I';}V¢)

The discretization for the diffusion term is given by

/V-(FV{...})dV:/F(ﬁ-V{...})dS
%4 S
erf(ﬁV{})fAf

f

(8.5)

{...} indicates recursive application of the specified operation on ¢, depending on the order of the diffusion term. The
estimation for the flux, (77- V{...})y, is obtained via

(ﬁ.V{...})fg%

where the value of d 4 p is the distance between neighboring cell centers. This estimate relies on the orthogonality of
the mesh, and becomes increasingly inaccurate as the non-orthogonality increases. Correction terms have been derived
to improve this error but are not currently included in FiPy [14].

This term is represented in FiPy as

[>>> DiffusionTerm(coeff=Gammal)]
or
[>>> ExplicitDiffusionTerm(coeff=Gammal) }

ExplicitDiffusionTerm is provided primarily for illustrative purposes, although examples.diffusion.meshlD
demonstrates its use in Crank-Nicolson time stepping. ImplicitDiffusionTerm is almost always preferred
(DiffusionTerm is a synonym for ImplicitDiffusionTerm to reinforce this preference). One can also create
an explicit diffusion term with

[>>> (Gammal * phi.faceGrad) .divergence]

Higher Order Diffusion

Higher order diffusion expressions, such as V4¢ or V- (I'1 V (V- (I';V¢))) for Cahn-Hilliard are represented as

[>>> DiffusionTerm(coeff=(Gammal, Gamma2)) J

The number of elements supplied for coeff determines the order of the term.

Note: While this multiple-coefficient form is still supported, Coupled and Vector Equations are the recommended
approach for higher order expressions.

8.3. Discretization 65

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

8.3.4 Source Term

Any term that cannot be written in one of the previous forms is considered a source S;. The discretization for the
source term is given by,

|4

Including any negative dependence of Sy on ¢ increases solution stability. The dependence can only be included in a
linear manner so Equation (8.6) becomes

Vp(So + Si¢p),

where .Sy is the source which is independent of ¢ and S is the coefficient of the source which is linearly dependent on
?.

A source term is represented in FiPy essentially as it appears in mathematical form, e.g., 3x2 4 bsin § would be written

[>>> 3 * kappa**2 + b * numerix.sin(theta)

Note: Functions like sin() can be obtained from the fipy. tools.numerix module.

Warning: Generally, things will not work as expected if the equivalent function is used from the NumPy or SciPy
library.

If, however, the source depends on the variable that is being solved for, it can be advantageous to linearize the source
and cast part of it as an implicit source term, e.g., 352 + ¢ sin 6 might be written as

[>>> 3 * kappa**2 + ImplicitSourceTerm(coeff=sin(theta))

8.4 Linear Equations

The aim of the discretization is to reduce the continuous general equation to a set of discrete linear equations that can
then be solved to obtain the value of the dependent variable at each CV center. This results in a sparse linear system
that requires an efficient iterative scheme to solve. The iterative schemes available to FiPy are encapsulated in the
suites of solvers described in Solvers and include most common solvers such as the conjugate gradient method and LU
decomposition.

Combining Equations (8.3), (8.4), (8.5) and (8.6), the complete discretization for equation (8.2) can now be written for
each CV as

pp(pp — ¢3)
At

P LSt @)p Ay lagop + (1— ay) gal
f

=y FfAfi((bAd;fP) + Vp(So + Siop).
!

Equation (8.7) is now in the form of a set of linear combinations between each CV value and its neighboring values
and can be written in the form

appp = ZQA¢A +bp, 8.7)
f

66 Chapter 8. Theoretical and Numerical Background

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

where

prVp
“P =AY

+ (aa+Fy) = VpSi,
f

aps = Df — (1 70[f)Ff,

ppVppR

bp =VpSp + Ar

The face coefficients, Iy and Dy, represent the convective strength and diffusive conductance respectively, and are
given by

Fy = Ay(a-n)y,
_ ATy

D
T dap

8.5 Numerical Schemes

The coeflicients of equation (8.7) must remain positive, since an increase in a neighboring value must result in an
increase in ¢p to obtain physically realistic solutions. Thus, the inequalities a4 > 0 and as + Fy > 0 must be
satisfied. The Péclet number Py = Fy/Dy is the ratio between convective strength and diffusive conductance. To
achieve physically realistic solutions, the inequality

1
Pr>——
1—a; > Pr > o (8.8)

must be satisfied. The parameter «; is defined by the chosen scheme, depending on Equation (8.8). The various
differencing schemes are:

the central differencing scheme,
where

1
ar =3 (8.9)

so that | Pr| < 2 satisfies Equation (8.8). Thus, the central differencing scheme is only numerically stable for a
low values of Py.

the upwind scheme,
where

1 if Py >0,
ay = Ay (8.10)
0 if Py <O0.

Equation (8.10) satisfies the inequality in Equation (8.8) for all values of Pr. However the solution over predicts
the diffusive term leading to excessive numerical smearing (“false diffusion”).

the exponential scheme,
where

(Pr—1)exp(Py)+1
Py(exp (Pr) — 1)
This formulation can be derived from the exact solution, and thus, guarantees positive coefficients while not over-

predicting the diffusive terms. However, the computation of exponentials is slow and therefore a faster scheme
is generally used, especially in higher dimensions.

ay = (8.11)

8.5. Numerical Schemes 67

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

the hybrid scheme,
where
S i Pr > 2,
af = % if |Py| < 2, (8.12)
—Pif if Py < —2.

The hybrid scheme is formulated by allowing Py — oo, Py — 0 and Py — —oo in the exponential scheme.
The hybrid scheme is an improvement on the upwind scheme, however, it deviates from the exponential scheme

at | Py| = 2.
the power law scheme,
where
i if Py > 10,
o (Pf‘l”gig‘Pf/w’E’ if0 < Py < 10, o
I G=For— if —10 < P; <0, '
—7; if Py < —10.

The power law scheme overcomes the inaccuracies of the hybrid scheme, while improving on the computational
time for the exponential scheme.

Warning: VanLeerConvectionTerm not mentioned and no discussion of explicit forms.

All of the numerical schemes presented here are available in FiPy and can be selected by the user.

68 Chapter 8. Theoretical and Numerical Background

Chapter

Design and Implementation

The goal of FiPy is to provide a highly customizable, open source code for modeling problems involving coupled sets
of PDEs. FiPy allows users to select and customize modules from within the framework. FiPy has been developed to
address model problems in materials science such as poly-crystals, dendritic growth and electrochemical deposition.
These applications all contain various combinations of PDEs with differing forms in conjunction with other unusual
physics (over varying length scales) and unique solution procedures. The philosophy of FiPy is to enable customization
while providing a library of efficient modules for common objects and data types.

9.1 Design

9.1.1 Numerical Approach

The solution algorithms given in the FiPy examples involve combining sets of PDEs while tracking an interface where
the parameters of the problem change rapidly. The phase field method and the level set method are specialized tech-
niques to handle the solution of PDEs in conjunction with a deforming interface. FiPy contains several examples of
both methods.

FiPy uses the well-known Finite Volume Method (FVM) to reduce the model equations to a form tractable to linear
solvers.

9.1.2 Object Oriented Structure

FiPy is programmed in an object-oriented manner. The benefit of object oriented programming mainly lies in encap-
sulation and inheritance. Encapsulation refers to the tight integration between certain pieces of data and methods that
act on that data. Encapsulation allows parts of the code to be separated into clearly defined independent modules that
can be re-applied or extended in new ways. Inheritance allows code to be reused, overridden, and new capabilities
to be added without altering the original code. An object is treated by its users as an abstraction; the details of its
implementation and behavior are internal.

69

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

9.1.3 Test Based Development

FiPy has been developed with a large number of test cases. These test cases are in two categories. The lower level tests
operate on the core modules at the individual method level. The aim is that every method within the core installation
has a test case. The high level test cases operate in conjunction with example solutions and serve to test global solution
algorithms and the interaction of various modules.

With this two-tiered battery of tests, at any stage in code development, the test cases can be executed and errors can be
identified. A comprehensive test base provides reassurance that any code breakages will be clearly demonstrated with
a broken test case. A test base also aids dissemination of the code by providing simple examples and knowledge of
whether the code is working on a particular computer environment.

9.1.4 Open Source

In recent years, there has been a movement to release software under open source and associated unrestricted licenses,
especially within the scientific community. These licensing terms allow users to develop their own applications with
complete access to the source code and then either contribute back to the main source repository or freely distribute
their new adapted version.

As a product of the National Institute of Standards and Technology, the FiPy framework is placed in the public domain
as a matter of U. S. Federal law. Furthermore, FiPy is built upon existing open source tools. Others are free to use FiPy
as they see fit and we welcome contributions to make FiPy better.

9.1.5 High-Level Scripting Language

Programming languages can be broadly lumped into two categories: compiled languages and interpreted (or scripting)
languages. Compiled languages are converted from a human-readable text source file to a machine-readable binary
application file by a sequence of operations generally referred to as “compiling” and “linking.” The binary application
can then be run as many times as desired, but changes will provoke a new cycle of compiling and linking. Interpreted
languages are converted from human-readable to machine-readable on the fly, each time the script is executed. Because
the conversion happens every time', interpreted code is usually slower when running than compiled code. On the other
hand, code development and debugging tends to be much easier and fluid when it’s not necessary to wait for compile
and link cycles after every change. Furthermore, because the conversion happens in real time, it is possible to have
interactive sessions in a scripting language that are not generally possible in compiled languages.

Another distinction, somewhat orthogonal, but closely related, to that between compiled and interpreted languages,
is between low-level languages and high-level languages. Low-level languages describe actions in simple terms that
are closer to the way the computer actually functions. High-level languages describe actions in more complex and
abstract terms that are closer to the way the programmer thinks about the problem at hand. This increased complexity
in the meaning of an expression renders simpler code, because the details of the implementation are hidden away in
the language internals or in an external library. For example, a low-level matrix multiplication written in C might be
rendered as

if (Acols != Brows)
error "these matrix shapes cannot be multiplied";

C = (float *) malloc(sizeof(float) * Bcols * Arows);

for (i = 0; i < Bcols; i++) {
for (j = 0; j < Arows; j++) {
CLil[j1 = 0;
for (k = 0; k < Acols; k++) {

(continues on next page)

1., neglecting such common optimizations as byte-code interpreters.

70 Chapter 9. Design and Implementation

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

Clil[j]1 += A[il[k] * BLkI[j1;

Note that the dimensions of the arrays must be supplied externally, as C provides no intrinsic mechanism for determining
the shape of an array. An equivalent high-level construction might be as simple as

(c-a-B]

All of the error checking, dimension measuring, and space allocation is handled automatically by low-level code that
is intrinsic to the high-level matrix multiplication operator. The high-level code “knows” that matrices are involved,
how to get their shapes, and to interpret “*” as a matrix multiplier instead of an arithmetic one. All of this allows the
programmer to think about the operation of interest and not worry about introducing bugs in low-level code that is not
unique to their application.

Although it needn’t be true, for a variety of reasons, compiled languages tend to be low-level and interpreted languages
tend to be high-level. Because low-level languages operate closer to the intrinsic “machine language” of the computer,
they tend to be faster at running a given task than high-level languages, but programs written in them take longer to
write and debug. Because running performance is a paramount concern, most scientific codes are written in low-level
compiled languages like FORTRAN or C.

A rather common scenario in the development of scientific codes is that the first draft hard-codes all of the problem
parameters. After a few (hundred) iterations of recompiling and relinking the application to explore changes to the
parameters, code is added to read an input file containing a list of numbers. Eventually, the point is reached where it is
impossible to remember which parameter comes in which order or what physical units are required, so code is added
to, for example, interpret a line beginning with “#” as a comment. At this point, the scientist has begun developing a
scripting language without even knowing it. Unfortunately for them, very few scientists have actually studied computer
science or actually know anything about the design and implementation of script interpreters. Even if they have the
expertise, the time spent developing such a language interpreter is time not spent actually doing research.

In contrast, a number of very powerful scripting languages, such as Tcl, Java, Python, Ruby, and even the venerable
BASIC, have open source interpreters that can be embedded directly in an application, giving scientific codes immediate
access to a high-level scripting language designed by someone who actually knew what they were doing.

We have chosen to go a step further and not just embed a full-fledged scripting language in the FiPy framework, but
instead to design the framework from the ground up in a scripting language. While runtime performance is unques-
tionably important, many scientific codes are run relatively little, in proportion to the time spent developing them. If a
code can be developed in a day instead of a month, it may not matter if it takes another day to run instead of an hour.
Furthermore, there are a variety of mechanisms for diagnosing and optimizing those portions of a code that are actually
time-critical, rather than attempting to optimize all of it by using a language that is more palatable to the computer
than to the programmer. Thus FiPy, rather than taking the approach of writing the fast numerical code first and then
dealing with the issue of user interaction, initially implements most modules in high-level scripting language and only
translates to low-level compiled code those portions that prove inefficient?.

2 A discussion of efficiency issues can be found in Efficiency.

9.1. Design 71

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

9.1.6 Python Programming Language

Acknowledging that several scripting languages offer a number, if not all, of the features described above, we have
selected Python for the implementation of FiPy. Python is

9.2

an interpreted language that combines remarkable power with very clear syntax,

freely usable and distributable, even for commercial use,

fully object oriented,

distributed with powerful automated testing tools (doctest, unittest),

actively used and extended by other scientists and mathematicians (SciPy, NumPy, PETSc, Trilinos, ...).

easily integrated with low-level languages such as C (weave, blitz, PyRex).

Implementation

The Python classes that make up FiPy are described in detail in fipy Package Documentation, but we give a brief
overview here. FiPy is based around three fundamental Python classes: Mesh, Variable, and Term. Using the
terminology of Theoretical and Numerical Background:

A Mesh object

represents the domain of interest. FiPy contains many different specific mesh classes to describe different ge-
ometries.

A Variable object

represents a quantity or field that can change during the problem evolution. A particular type of Variable,
called a CellVariable, represents ¢ at the centers of the cells of the Mesh. A CellVariable describes the
values of the field ¢, but it is not concerned with their geometry; that role is taken by the Mesh.

An important property of Variable objects is that they can describe dependency relationships, such that:

>>> a = Variable(value = 3)
>>b=a * 4

does not assign the value 12 to b, but rather it assigns a multiplication operator object to b, which depends on
the Variable object a:

>>> b

(Variable(value = 3) * 4)
>>> a.setValue(5)

>>> b

(Variable(value = 5) * 4)

The numerical value of the Variable is not calculated until it is needed (a process known as “lazy evaluation”™):

>>> print b
20

A Term object

represents any of the terms in Equation (8.2) or any linear combination of such terms. Early in the development
of FiPy, a distinction was made between Equation objects, which represented all of Equation (8.2), and Term
objects, which represented the individual terms in that equation. The Equation object has since been eliminated
as redundant. Term objects can be single entities such as a DiffusionTerm or a linear combination of other
Term objects that build up to form an expression such as Equation (8.2).

72

Chapter 9. Design and Implementation

https://docs.python.org/3/library/doctest.html#module-doctest
https://docs.python.org/3/library/unittest.html#module-unittest

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Beyond these three fundamental classes of Mesh, Variable, and Term, FiPy is composed of a number of related
classes.

Cell

T~

Mesh

Face

Vertex Solver

BoundaryCondition

SparseMatrix

Fig. 1: Primary object relationships in FiPy.

A Mesh object is composed of cells. Each cell is defined by its bounding faces and each face is defined by its bounding
vertices. A Term object encapsulates the contributions to the _SparseMatrix that defines the solution of an equation.
BoundaryCondition objects are used to describe the conditions on the boundaries of the Mesh, and each Term
interprets the BoundaryCondition objects as necessary to modify the _SparseMatrix. An equation constructed
from Term objects can apply a unique Solver to invert its _SparseMatrix in the most expedient and stable fashion.
At any point during the solution, a Viewer can be invoked to display the values of the solved Variable objects.

At this point, it will be useful to examine some of the example problems in Examples. More classes are introduced in
the examples, along with illustrations of their instantiation and use.

9.2. Implementation 73

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

74

Chapter 9. Design and Implementation

o 1)

Virtual Kinetics of Materials Laboratory

The VKML is a set of simple FiPy examples that simulate basic aspects of kinetics of materials through an interactive
Graphical User Interface. The seminal development by Michael Waters and Prof. R. Edwin Garcia of Purdue University
includes four examples:

Polycrystalline Growth and Coarsening

simulates the growth, impingement, and coarsening of a random distribution of crystallograph-
ically oriented nuclei. The user can control every aspect of the model such as the nuclei radius,
the size of the simulation cell, and whether the grains are homogeneously dispersed or only on
one wall of the simulation.

Dendritic Growth

simulates the anisotropic solidification of a single solid seed with an N-fold axis of crystallo-
graphic symmetry embedded in an undercooled liquid. The user can specify many material
aspects of the solidification process, such as the thermal diffusivity and the strength of the sur-
face tension anisotropy. Default values are physical but arbitrary. This model is based on the
phase field method and an example shown in the FiPy manual.

Two-Dimensional Spinodal Decomposition

simulates the time-dependent segregation of two chemical components and its subsequent
coarsening, as presented by John Cahn. The default values are physical but arbitrary.

Three-Dimensional Spinodal Decomposition
has the same functionality as the 2D version, but has an interactive Three-Dimensional viewer.

These modules provide a Graphical User Interface to FiPy, and allow you to perform simulations directly through your
web browser. This approach to computing removes the need to install the software on your local machine (unless you
really want to), allows you to assess current and potential FiPy applications and instead you only need a web browser
to access it and run it. In other words, you can run these simulations (and simulations like this one) from a Windows
machine, a Mac, or a Linux box, and you can also run the modules from Michigan, Boston, Japan, or England: from
wherever you are. Moreover, if you close your web browser and leave your calculation running, when you come back
a few hours later, your calculation will persist. Additionally, if there is something you want to share with a coworker,
wherever he or she might be (e.g., the other side of the planet), you can grant him temporary access to your calculation
so that the third party can directly see the output (or specify inputs directly into it, without having to travel to where
you are). It is a great way to privately (or publicly) collaborate with other people, especially if the users are in different
parts of the world.

The only requirement to run VKML is to register (registration is 100% free) in the nanoHUB.

75

http://bicephalous.ecn.purdue.edu/~edwin
http://www.purdue.edu
https://www.nanohub.org/tools/vkmlpsgg/
https://www.nanohub.org/tools/vkmlggs/
https://www.nanohub.org/tools/vkmlsd/
https://www.nanohub.org/tools/vkmlsd3d/
http://www.nanoHUB.org

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

76

Chapter 10. Virtual Kinetics of Materials Laboratory

Chapter 1 1

Contributors

Jon Guyer
is a member of the research staff of the Materials Science and Engineering Division in the Material Measurement
Laboratory at the National Institute of Standards and Technology. Jon’s computational interests are in object-
oriented design and in phase field modeling of electrochemistry.

Daniel Wheeler
is a guest researcher in the Materials Science and Engineering Division in the Material Measurement Laboratory
at the National Institute of Standards and Technology. Daniel’s interests are in numerical modeling, finite volume
techniques, and level set treatments.

Jim Warren
is the leader of the Thermodynamics and Kinetics group in the Materials Science and Engineering Division
and Director of the Center for Theoretical and Computational Materials Science of the Material Measurement
Laboratory at the National Institute of Standards and Technology. Jim is interested in a variety of problems,
including the phase field modeling of solidification, polycrystalline solids, and the electrochemical interface.

Alex Mont
developed the PyxViewer and the Gmsh import and export modules while he was a student at Montgomery Blair
High School.

Katie Travis
developed the automated --inline optimization code for Variable objects while she was a SURF student
from Smith College.

Max Gibiansky
added support for the 7rilinos solvers while he was a SURF student from Harvey Mudd College

Andrew Reeve
added support for anisotropic diffusion coefficients while he was on sabbatical from the University of Maine.

Olivia Buzek
worked on adding Trilinos parallel computations while she was a SURF student from the University of Maryland

Daniel Stiles
worked on adding 7rilinos parallel computations while he was a student at Montgomery Blair High School.

James O’Beirne
added full mesh partitioning using Gmsh. James also greatly improved the Gmsh-FiPy pipeline. Other contri-
butions include updating FiPy to use properties pervasively, deployment of a Buildbot server to automate FiPy
testing and a full refactor of the Mesh classes.

77

http://www.nist.gov/cgi-bin/wwwph/cso.nist.gov?Query=Jonathan+Guyer
http://www.nist.gov/mml/msed/
http://www.nist.gov/mml/
http://www.nist.gov/mml/
http://www.nist.gov/
http://www.nist.gov/cgi-bin/wwwph/cso.nist.gov?Query=Daniel+Wheeler
http://www.nist.gov/mml/msed/
http://www.nist.gov/mml/
http://www.nist.gov/
http://www.ctcms.nist.gov/~jwarren/
http://www.nist.gov/mml/msed/
http://www.ctcms.nist.gov/
http://www.nist.gov/mml/
http://www.nist.gov/mml/
http://www.nist.gov/
http://www.mbhs.edu/
http://www.mbhs.edu/
http://www.surf.nist.gov/surf2.htm
http://www.smith.edu/
http://www.surf.nist.gov/surf2.htm
http://www.hmc.edu/
http://www.geology.um.maine.edu/HTML-ERS/People/PeopleFSAndyReeve.htm
http://www.maryland.edu/
http://www.surf.nist.gov/surf2.htm
http://www.maryland.edu/
http://www.mbhs.edu/
https://buildbot.net/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

78

Chapter 11. Contributors

e | 2

Publications

Attention: If you use FiPy in your research, please cite:

J. E. Guyer, D. Wheeler & J. A. Warren, “FiPy: Partial Differential Equations with Python,” Computing in Science
& Engineering 11 (3) pp. 6-15 (2009), doi:10.1109/MCSE.2009.52. (pdf)

Other publications that have used FiPy. Please contact us to add your work to this list.

e D. Wheeler, and J. A. Warren & W. J. Boettinger, “Modeling the early stages of reactive wetting” Physical Review
E 82 (5) pp. 051601 (2010), doi:10.1103/PhysRevE.82.051601.

* R. R. Mohanty, J. E. Guyer & Y. H. Sohn, “Diffusion under temperature gradient: A phase-field model study”
Journal of Applied Physics 106 (3) pp. 034912 (2009), doi:10.1063/1.3190607.

e J. A. Warren, T. Pusztai, L. Kdrnyei & L. Grandsy, ‘“Phase field approach to heterogeneous crystal nucleation in
alloys,” Physical Review B 79 014204 (2009), doi:10.1103/PhysRevB.79.014204.

¢ T. P. Moffat, D. Wheeler, S.-K. Kim & D. Josell, “Curvature enhanced adsorbate coverage mechanism for bottom-
up superfilling and bump control in Damascene processing,” Electrochimica Acta 53 (1) pp. 145-154 (2007),
doi:10.1016/j.electacta.2007.03.025.

* W. J. Boettinger, J. E. Guyer, C. E. Campbell, G. B. McFadden, “Computation of the Kirkendall velocity
and displacement fields in a one-dimensional binary diffusion couple with a moving interface,” Proceedings
of the Royal Society A: Mathematical, Physical & Engineering Sciences 463 (2088) pp. 3347-3373 (2007),
doi:10.1098/rspa.2007.1904.

e T. Cickovski, K. Aras, M. Swat, R. M. H. Merks, T. Glimm, H. G. E. Hentschel, M. S. Alber, J. A.
Glazier, S. A. Newman & J. A. Izaguirre, “From Genes to Organisms Via the Cell: A Problem-Solving En-
vironment for Multicellular Development,” Computing in Science & Engineering 9 (4) pp. 50-60 (2007),
doi:10.1109/MCSE.2007.74.

e L. Grénasy, T. Pusztai, D. Saylor & J. A. Warren, “Phase Field Theory of Heterogeneous Crystal Nucleation,”
Physical Review Letters 98 035703 (2007) 10.1103/PhysRevLett.98.035703.

e J. Mazur, “Numerical Simulation of Temperature Field in Soil Generated by Solar Radiation,” Journal de
Physique 1V France 137 pp. 317-320 (2006), doi:10.1051/jp4:2006137061.

* T. P. Moffat, D. Wheeler, S. K. Kim & D. Josell, “Curvature enhanced adsorbate coverage model for electrode-
position,” Journal of The Electrochemical Society 153 (2) pp. C127-C132 (2006), 10.1149/1.2165580.

79

http://dx.doi.org/10.1109/MCSE.2009.52
http://www.nist.gov/cgi-bin/get_pdf.cgi?pub_id=854461
http://dx.doi.org/10.1103/PhysRevE.82.051601
http://dx.doi.org/10.1063/1.3190607
http://dx.doi.org/10.1103/PhysRevB.79.014204
http://dx.doi.org/10.1016/j.electacta.2007.03.025
http://dx.doi.org/10.1098/rspa.2007.1904
http://dx.doi.org/doi:10.1109/MCSE.2007.74
http://dx.doi.org/10.1103/PhysRevLett.98.035703
http://dx.doi.org/10.1051/jp4:2006137061
http://dx.doi.org/10.1149/1.2165580

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

e D. Josell, D. Wheeler & T. P. Moffat, “Gold superfill in submicrometer trenches: Experiment and prediction,”
Journal of The Electrochemical Society 153 (1) pp. C11-C18 (2006), 10.1149/1.2128765.

80 Chapter 12. Publications

http://dx.doi.org/10.1149/1.2128765

oo | 3

Presentations

We were honored to be invited to deliver a keynote presentation on “Modeling of Materials with Python” at the 2009
Python for Scientific Computing Conference at Caltech, August 2009.

Other invited talks about FiPy:

* “FiPy: An Open Source Finite Volume PDE Solver Implemented in Python” by J. E. Guyer at the George Mason
University Department of Mathematical Sciences, October 2009.

* “FiPy: An Open-Source PDE Solver for Materials Science” by J. E. Guyer at the Center for Devices and Radio-
logical Health of the Food and Drug Administration, June 2009.

* “FiPy: An Open-Source PDE Solver for Materials Science” by J. E. Guyer at GE Global Research, June 2009.

* “FiPy: A PDE Solver for Materials Science” by J. E. Guyer at the STAM Conference on Computational Science
and Engineering, March 2009.

* “FiPy: An Open Source Finite Volume PDE Solver Implemented in Python” by J. E. Guyer in the Open Source
Tools for Materials Research and Engineering session of the TMS 2009 Annual Meeting, February 2009.

* “FiPy: A Finite Volume PDE Solver Implemented in Python” by J. E. Guyer in the Computational Materials
Research and Education Luncheon Roundtable of the TMS Annual Meeting, February 2009.

* “FiPy - An Object-Oriented Tool for Phase Transformation Simulations Using Python” by J. E. Guyer at Mi-
crostructology III, Birmingham, AL, May 2005.

* “FiPy - An Object-Oriented Tool for Phase Transformation Simulations Using Python” by J. E. Guyer at the 2004
MRS Fall Meeting, November 2004.

81

http://www.archive.org/details/scipy09_day2_02-Jonathan_Guyer
http://conference.scipy.org/SciPy2009/
http://conference.scipy.org/SciPy2009/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

82

Chapter 13. Presentations

o | 4

Change Log

14.1 Version 3.99+1.97861e396d.dirty

This release harmonizes the sparse Solvers:
 Uses consistent interpretation of Convergence criteria.
* Improves efficiency at building matrices.
 Supports more preconditioners.
* Logs solver status and performance.
* Greatly expands documentation of the configuration and performance of the supported Solvers.
* Changes default tolerance to 10~°. This is adequate for most problems.

* Removes “pyamg” from FIPY_SOLVERS and --pyamg from the Command-line Flags. PyAMG is implemented
as a preconditioner for SciPy, not as a solver suite in its own right.

14.1.1 Pulls

* Reorganize Table of Contents (#1143)

* Link to proper CI for documentation (#1134)

* Improve URL check implementation (#1130) Thanks to @arpitjain099.

* Patch sphinx_readme (#1125)

* Resolve issues introduced by PETSc 3.23.0 (#1116)

* Generate root .rst files with sphinx_readme (#1105) Thanks to @obscurerichard.
» Update byte-code for Python 3.13 (#1095)

* Handle exporting anonymous conda environment (#1082)

* Fix representation of dotted variables (and other method calls) (#1074)

* Prevent setuptools 72.x (#1067)

* build(nix): update to using latest Nix master version (#1061)

83

https://github.com/usnistgov/fipy/pull/1143
https://github.com/usnistgov/fipy/pull/1134
https://github.com/usnistgov/fipy/pull/1130
https://github.com/arpitjain099
https://sphinx-readme.readthedocs.io/en/latest/
https://github.com/usnistgov/fipy/pull/1125
https://github.com/usnistgov/fipy/pull/1116
https://sphinx-readme.readthedocs.io/en/latest/
https://github.com/usnistgov/fipy/pull/1105
https://github.com/obscurerichard
https://github.com/usnistgov/fipy/pull/1095
https://github.com/usnistgov/fipy/pull/1082
https://github.com/usnistgov/fipy/pull/1074
https://github.com/usnistgov/fipy/pull/1067
https://github.com/usnistgov/fipy/pull/1061

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

¢ Harmonize solvers (#1030)

* Deprecate fipy.steppers in favor of steppyngstounes (#777)

14.1.2 Fixes

#1115

#1114:
#1087:
#1069:
#1063:
#1009:
#1002:

: “Create Anaconda environment from environments” times out on nightly CI
Vtk tests broke with vtk-base=9.4.2

Recent version of matplotlib won’t plot with colorbar. Thanks to @cgadal.
Cannot dot CellVariables

Nightly petsc build unable to load libscotcherr-6.so

Matplotlib 3.8 fails to plot irregular meshes

Setting nx, ny, nz to non-positive integer should generate an error. Thanks to @sridhar-mani.

14.2 Version 3.4.5 - 2024-06-25

This maintenance release:

* Addresses compatibility with recent releases of Python 3.12, NumPy 2.0, SciPy 1.14, and PETSc 3.20.

* Adds conda-lock environment lock files with specified compatible versions of FiPy prerequisites.

¢ Fixes numerous documentation errors.

Attention: SciPy 1.13.0 generates one test suite error for fipy.matrices.scipyMatrix._ScipyMatrix.CSR.
Either ignore the test failure or upgrade to SciPy >=1.13.1

Attention: PETSc 3.21 crashes our test suite when running in parallel (#1054). PETSc <= 3.20 is recommended,
although petsc 3.20.2_*_102 is broken on macOS.

14.2.1 Pulls

¢ Introduce Timer context manager (#995)

switch nix recipe to flake (#992)

Tweak documentation (#991)

Log much more information about FiPy environment (#990)

Fix inclusion of environments/README.rst (#988)

Environment pinning (#985)

84

Chapter 14. Change Log

https://github.com/usnistgov/fipy/pull/1030
https://pages.nist.gov/steppyngstounes/en/stable/_autosummary/steppyngstounes.html#module-steppyngstounes
https://github.com/usnistgov/fipy/pull/777
https://github.com/usnistgov/fipy/issues/1115
https://github.com/usnistgov/fipy/issues/1114
https://github.com/usnistgov/fipy/issues/1087
https://github.com/cgadal
https://github.com/usnistgov/fipy/issues/1069
https://github.com/usnistgov/fipy/issues/1063
https://github.com/usnistgov/fipy/issues/1009
https://github.com/usnistgov/fipy/issues/1002
https://github.com/sridhar-mani
https://github.com/conda/conda-lock
https://github.com/usnistgov/fipy/issues/1054
https://github.com/conda-forge/petsc-feedstock/issues/180
https://github.com/usnistgov/fipy/pull/995
https://github.com/usnistgov/fipy/pull/992
https://github.com/usnistgov/fipy/pull/991
https://github.com/usnistgov/fipy/pull/990
https://github.com/usnistgov/fipy/pull/988
https://github.com/usnistgov/fipy/pull/985

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.2.2 Fixes

e #1049: Numpy 2.0.0 breaks things

o #1010: examples.diffusion.mesh1D No-flux - steady-state doesn’t always give zero

» #1000: examples.diffusion.mesh1D constrains a gradient but calls it a flux

* #997: future.standard_library breaking python 3.12 compatibility

* #967:
e #963:
* #961:
o #952:
o #944:
o #865:
o #673:
o #512:

Sign error in Robin condition

PETSc 3.20.0 broke the world

Representation of index variables is broken

Uncaught Exception from the no-flux steady-state diffusion example
Having problem with Viewer

Sphinx search is broken on website

Deprecations don’t properly format properties

Default coefficient of ImplicitSourceTerm is O

14.3 Version 3.4.4 - 2023-06-27

This maintenance release adds Logging and resolves compatibility issues with recent builds of PETSc and NumPy.

14.3.1 Pulls

* Fix numpy 1.25 issues (#930)

Get CI working again (#925)

¢ Discourage StackOverflow (#876)
* Add Logging (#875)

Add tests for the Nix build (#791)

14.3.2 Fixes

* #896:

Poor garbage collection with petsc4py 3.18.3 (was “Memory leak in term.justErrorVector()”, but this isn’t

strictly a leak)

14.4 Version 3.4.3 - 2022-06-15

This maintenance release adds a new example contributed by @Jon83Carvalho, clarifies many points in the documenta-
tion, migrates all Continuous Integration to Azure, updates to using wheels for distribution, and substantially refactors
matrices to work more consistently across solvers.

14.3. Version 3.4.4 - 2023-06-27 85

https://github.com/usnistgov/fipy/issues/1049
https://github.com/usnistgov/fipy/issues/1010
https://github.com/usnistgov/fipy/issues/1000
https://github.com/usnistgov/fipy/issues/997
https://github.com/usnistgov/fipy/issues/967
https://github.com/usnistgov/fipy/issues/963
https://github.com/usnistgov/fipy/issues/961
https://github.com/usnistgov/fipy/issues/952
https://github.com/usnistgov/fipy/issues/944
https://github.com/usnistgov/fipy/issues/865
https://github.com/usnistgov/fipy/issues/673
https://github.com/usnistgov/fipy/issues/512
https://github.com/usnistgov/fipy/pull/930
https://github.com/usnistgov/fipy/pull/925
https://github.com/usnistgov/fipy/pull/876
https://github.com/usnistgov/fipy/pull/875
https://github.com/usnistgov/fipy/pull/791
https://github.com/usnistgov/fipy/issues/896
https://github.com/Jon83Carvalho
https://dev.azure.com
https://packaging.python.org/en/latest/specifications/binary-distribution-format/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.4.1 Pulls

Update CI documentation to refer only to Azure (#863)

Refine azure runs (#851)

Debug CIs (#848)

Collect contact information on single page (#847)

Set up CI with Azure Pipelines (#822)

Replace deprecated numpy types (#798)
Move trilinos tests to Py3k (#797)

Fix Python 2.7 conda environment (#795)

fix: stop divide by zero warning in LU solvers (#790)
Introduce SharedTemporaryFile (bis) (#769)

Raise

ImportError before trying to unpack solvers (#768)

Disable TVTK tests if its prerequisites aren’t met (#764)

Tabulate versions of FiPy dependencies when tests are run (#763)

Debug CI failures (#749)

Stokes Cavity - non-Newtonian (#748) Thanks to @Jon83Carvalho.

Refactor matrices (#721)

14.4.2 Fixes

#862:
#858:
#856:
#850:
#849:
#841:
#836:
#833:
#828:
#826:
#818:
#311:
#3801
#800:
#796:
#792:

Could not load the Qt platform plugin “xcb”

Cl issues

FaceVariable does not accumulate properly in parallel
Switch to wheels

linux-py27-pysparse fails

Matplotlib2DViewer should accept color map as string
Document that coupled and high-order diffusion terms are incompatible
fipy.tools.dump undocumented that it always gzips
colorbar=True no longer works Stokes flow example
Gmsh load issue

Document that GridND meshes are always Cartesian

In python 3.9 __repr__ throws an exception with abs

: CircleClI test-36-trilinos-serial extremely slow

CircleCI conda2_env is really slow and ends up installing FiPy 3.3
examples.phase.polyxtal freezes on CircleCI with Py3k and scipy solvers

circleQuad example fails with Gmsh > 4.4

86

Chapter 14. Change Log

https://github.com/usnistgov/fipy/pull/863
https://github.com/usnistgov/fipy/pull/851
https://github.com/usnistgov/fipy/pull/848
https://github.com/usnistgov/fipy/pull/847
https://github.com/usnistgov/fipy/pull/822
https://github.com/usnistgov/fipy/pull/798
https://github.com/usnistgov/fipy/pull/797
https://github.com/usnistgov/fipy/pull/795
https://github.com/usnistgov/fipy/pull/790
https://github.com/usnistgov/fipy/pull/769
https://github.com/usnistgov/fipy/pull/768
https://github.com/usnistgov/fipy/pull/764
https://github.com/usnistgov/fipy/pull/763
https://github.com/usnistgov/fipy/pull/749
https://github.com/usnistgov/fipy/pull/748
https://github.com/Jon83Carvalho
https://github.com/usnistgov/fipy/pull/721
https://github.com/usnistgov/fipy/issues/862
https://github.com/usnistgov/fipy/issues/858
https://github.com/usnistgov/fipy/issues/856
https://github.com/usnistgov/fipy/issues/850
https://github.com/usnistgov/fipy/issues/849
https://github.com/usnistgov/fipy/issues/841
https://github.com/usnistgov/fipy/issues/836
https://github.com/usnistgov/fipy/issues/833
https://github.com/usnistgov/fipy/issues/828
https://github.com/usnistgov/fipy/issues/826
https://github.com/usnistgov/fipy/issues/818
https://github.com/usnistgov/fipy/issues/811
https://github.com/usnistgov/fipy/issues/801
https://github.com/usnistgov/fipy/issues/800
https://github.com/usnistgov/fipy/issues/796
https://github.com/usnistgov/fipy/issues/792

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

» #781: MatplolibViewer.axes property is not documented
 #778: Binder failed build

» #762: Equations on Website don’t show right

e #742: No documentation for Variable.mag

» #735: pip install fipy fails

» #734: Document the residual

* #688: try-except not needed for circle Viewer

* #676: Default no-flux condition is not explicitly stated

e #609: Parallelizing of Gmsh meshes not clearly documented

» #400: Fix FaceVariable.globalValue method

14.5 Version 3.4.2.1 - 2020-08-01

This release fixes assorted viewer issues, fixes a problem with convection boundary conditions, and introduces spherical
meshes.

Attention: There are known failures with the VTK viewers (bitrot has started to set in since the demise of Python
2.7). There’s also a new parallel failure in NonUniformGridlD that we need to figure out.

14.5.1 Pulls

* Move mailing list (#747)

Sphericall D (Uniform and NonUniform) meshes (#732) Thanks to @klkuhlm.
* fix Neumann BCs using constraints with convection terms (#719) Thanks to @atismer.

¢ Add vertex index inversions (#716)

14.5.2 Fixes

e #726: MayaviClient not compatible with Python 3
* #663: datamin/datamax argument ignored by viewer

* #662: Issues Scaling Colorbar with Datamin and Datamax Args

14.5. Version 3.4.2.1 - 2020-08-01 87

https://github.com/usnistgov/fipy/issues/781
https://github.com/usnistgov/fipy/issues/778
https://github.com/usnistgov/fipy/issues/762
https://github.com/usnistgov/fipy/issues/742
https://github.com/usnistgov/fipy/issues/735
https://github.com/usnistgov/fipy/issues/734
https://github.com/usnistgov/fipy/issues/688
https://github.com/usnistgov/fipy/issues/676
https://github.com/usnistgov/fipy/issues/609
https://github.com/usnistgov/fipy/issues/400
https://travis-ci.com/github/usnistgov/fipy/builds/177879719
https://app.circleci.com/pipelines/github/usnistgov/fipy/248/workflows/4babcd98-aafc-4931-a353-64bbb3c93cb6
https://www.python.org/dev/peps/pep-0373/#update
https://www.python.org/dev/peps/pep-0373/#update
https://github.com/usnistgov/fipy/pull/747
https://github.com/usnistgov/fipy/pull/732
https://github.com/klkuhlm
https://github.com/usnistgov/fipy/pull/719
https://github.com/atismer
https://github.com/usnistgov/fipy/pull/716
https://github.com/usnistgov/fipy/issues/726
https://github.com/usnistgov/fipy/issues/663
https://github.com/usnistgov/fipy/issues/662

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.6 Version 3.4.1 - 2020-02-14

This release is primarily for compatibility with numpy 1.18.

14.6.1 Pulls

* Fix documentation (#711)
* build(nix): fix broken plm_rsh_agent error (#710)

* CIs error on deprecation warning (#708)

14.6.2 Fixes

» #703: FORTRAN array ordering is deprecated

14.7 Version 3.4 - 2020-02-06

This release adds support for the PETSc solvers for Solving in Parallel.

14.7.1 Pulls

* Add support for PETSc solvers (#701)

* Assorted fixes while supporting PETSc (#700) - Fix print statements for Py3k - Resolve Gmsh issues - Dump
only on processor 0 - Only write timetests on processor 0 - Fix conda-forge link - Upload PDF - Document print
option of FIPY_DISPLAY_MATRIX - Use legacy numpy formatting when testing individual modules - Switch
to matplotlib’s built-in symlog scaling - Clean up tests

» Assorted fixes for benchmark 8 (#699) - Stipulate —force option for conda remove fipy - Update Miniconda
installation url - Replace _CellVolumeAverageVariable class with Variable expression - Fix output for bad call
stack

* Make CircleCI build docs on Py3k (#698)

* Fix link to Nick Croft’s thesis (#681)

¢ Fix NIST header footer (#680)

» Use Nixpkgs version of FiPy expression (#661)
» Update the Nix recipe (#658)

14.7.2 Fixes

e #692: Can’t copy example scripts with the command line
* #669: input() deadlock on parallel runs

e #643: Automate release process

88 Chapter 14. Change Log

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://github.com/usnistgov/fipy/pull/711
https://github.com/usnistgov/fipy/pull/710
https://github.com/usnistgov/fipy/pull/708
https://github.com/usnistgov/fipy/issues/703
https://github.com/usnistgov/fipy/pull/701
https://github.com/usnistgov/fipy/pull/700
https://github.com/usnistgov/fipy/pull/699
https://github.com/usnistgov/fipy/pull/698
https://github.com/usnistgov/fipy/pull/681
https://github.com/usnistgov/fipy/pull/680
https://github.com/usnistgov/fipy/pull/661
https://github.com/usnistgov/fipy/pull/658
https://github.com/usnistgov/fipy/issues/692
https://github.com/usnistgov/fipy/issues/669
https://github.com/usnistgov/fipy/issues/643

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.8 Version 3.3 - 2019-06-28

This release brings support for Python 2 and Python 3 from the same source, without any translation. Thanks to @pya
and @woodscn for getting things started.

14.8.1 Pulls

* Automate spell check (#657)

* Fix gmsh on windows (#648)

* Fix sphinx documentation (#647)

* Migrate to Py3k (#645)

» gmshMesh.py compatibility with Gmsh > 3.0.6 (#644) Thanks to @xfong.

14.8.2 Fixes

* #655: When Python 2 and 3 are installed, Mayavi wont work. Thanks to @Hendrik410.
* #646: Deprecate develop branch

e #643: Automate release process

» #0601: contents.rst and manual.rst are a recursive mess

* #597: Use GitHub link for the compressed archive in documentation

* #557: faceGradAverage is stupid

* #552: documentation integration

e #458: Documentation wrong for precedence of Lx and dx for NonUniformGrids
 #457: Special methods are not included in Sphinx documentation

* #432: Python 3 issues

» #340: Don’t upload packages to PyPI, just add the master url

14.9 Version 3.2 - 2019-04-22

This is predominantly a DevOps release. The focus has been on making FiPy easier to install with conda. 1It’s also
possible to install a minimal set of prerequisites with pip. Further, FiPy is automatically tested on all major platforms
using cloud-based Continuous Integration (linux with CircleCI, macOS with TravisCI, and Windows with AppVeyor).

14.8. Version 3.3 - 2019-06-28 89

https://github.com/pya
https://github.com/woodscn
https://github.com/usnistgov/fipy/pull/657
https://github.com/usnistgov/fipy/pull/648
https://github.com/usnistgov/fipy/pull/647
https://github.com/usnistgov/fipy/pull/645
https://github.com/usnistgov/fipy/pull/644
https://github.com/xfong
https://github.com/usnistgov/fipy/issues/655
https://github.com/Hendrik410
https://github.com/usnistgov/fipy/issues/646
https://github.com/usnistgov/fipy/issues/643
https://github.com/usnistgov/fipy/issues/601
https://github.com/usnistgov/fipy/issues/597
https://github.com/usnistgov/fipy/issues/557
https://github.com/usnistgov/fipy/issues/552
https://github.com/usnistgov/fipy/issues/458
https://github.com/usnistgov/fipy/issues/457
https://github.com/usnistgov/fipy/issues/432
https://github.com/usnistgov/fipy/issues/340
https://en.wikipedia.org/wiki/DevOps

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.9.1 Pulls

Make badges work in GitHub and pdf (#636)

Fix Robin errors (#615)

Issue555 inclusive license (#613)

Update ClIs (#607)

Add CHANGELOG and tool to generate from issues and pull requests (#600)
Explain where to get examples (#596)

spelling corrections using en_US dictionary (#594)
Remove SmoothedAggregationSolver (#593)

Nix recipe for FiPy (#585)

Point PyPI to github master tarball (#582)

Revise Navier-Stokes expression in the viscous limit (#580)
Update stokesCavity.py (#579) Thanks to @Rowin.

Add —inline to TravisCI tests (#578)

Add support for binder (#577)

Fix epetra vector not numarray (#574)

add Codacy badge (#572)

Fix output when PyTrilinos or PyTrilinos version is unavailable (#570) Thanks to @shwina.

Fix check for PyTrilinos (#569) Thanks to @shwina.

Adding support for GPU solvers via pyamgx (#567) Thanks to @shwina.
revise dedication to the public domain (#556)

Fix tests that don’t work in parallel (#550)

add badges to index and readme (#546)

Ensure vector is dtype float before matrix multiply (#544)

Revert “Issue534 physical field mishandles compound units” (#536)
Document boundary conditions (#532)

Deadlocks and races (#524)

Make max/min global (#520)

Add a Gitter chat badge to README. rst (#516) Thanks to @gitter-badger.
Add TravisCI build recipe (#489)

90

Chapter 14. Change Log

https://github.com/usnistgov/fipy/pull/636
https://github.com/usnistgov/fipy/pull/615
https://github.com/usnistgov/fipy/pull/613
https://github.com/usnistgov/fipy/pull/607
https://github.com/usnistgov/fipy/pull/600
https://github.com/usnistgov/fipy/pull/596
https://github.com/usnistgov/fipy/pull/594
https://github.com/usnistgov/fipy/pull/593
https://github.com/usnistgov/fipy/pull/585
https://github.com/usnistgov/fipy/pull/582
https://github.com/usnistgov/fipy/pull/580
https://github.com/usnistgov/fipy/pull/579
https://github.com/Rowin
https://github.com/usnistgov/fipy/pull/578
https://github.com/usnistgov/fipy/pull/577
https://github.com/usnistgov/fipy/pull/574
https://github.com/usnistgov/fipy/pull/572
https://github.com/usnistgov/fipy/pull/570
https://github.com/shwina
https://github.com/usnistgov/fipy/pull/569
https://github.com/shwina
https://github.com/usnistgov/fipy/pull/567
https://github.com/shwina
https://github.com/usnistgov/fipy/pull/556
https://github.com/usnistgov/fipy/pull/550
https://github.com/usnistgov/fipy/pull/546
https://github.com/usnistgov/fipy/pull/544
https://github.com/usnistgov/fipy/pull/536
https://github.com/usnistgov/fipy/pull/532
https://github.com/usnistgov/fipy/pull/524
https://github.com/usnistgov/fipy/pull/520
https://github.com/usnistgov/fipy/pull/516
https://github.com/gitter-badger
https://github.com/usnistgov/fipy/pull/489

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.9.2 Fixes

o #631:
o #628:
* #627:
o #625:
o #623:
o #621:
* #617:
o #0611
e #610:
* #608:
* #603:
o #602:
o #592:
e #590:
o #584:
o #5606:
o #565:
o #564:
o #561
o #555:
o #551:
o #545:
o #543:
e #530:
* #538:
o #534:
o #533:
e #531
o #530:
o #528:
o #525:
* #513:
e #510:
o #509:
e #506:

Clean up INSTALLATION.rst
Problems with the viewer
Document OMP_NUM_THREADS
setup.py should not import fipy
Start using versioneer

Plot FaceVariable with matplotlib

Pick 1st Value and last Value of 1D CellVariable while running in parallel

: The coeflicient cannot be a FaceVariable ??

Anisotropy example: Contour plot displaying in legend of figure !?
var.mesh: Property object not callable...?

Can’t run basic test or examples

Revise build and release documentation

is resources.rst useful?

No module named pyAMGSolver

Viewers don’t animate in jupyter notebook

Support for GPU solvers using pyamgx

pip install does not work on empty env

Get green boxes across the board

: Cannot cast array data from dtype(‘int64’) to dtype(‘int32’) according to the rule safe

inclusive license

Sphinx spews many warnings:

Many Py3k failures

Epetra Vector can’t be integer
examples/diffusion/explicit/mixedElement.py is a mess
badges

PhysicalField mishandles compound units

pip or conda installation don’t make clear where to get examples

: drop_tol argument to scipy.sparse.linalg.splu is gone

conda installation instructions not explicit about python version
scipy 1.0.0 incompatibilities

conda guyer/pysparse doesn’t run on 0sx

Stokes example gives wrong equation

Weave, Scipy and —inline

Unable to use conda for installing FiPy in Windows

Error using spatially varying anisotropic diffusion coefficient

14.9. Version 3.2 - 2019-04-22 91

https://github.com/usnistgov/fipy/issues/631
https://github.com/usnistgov/fipy/issues/628
https://github.com/usnistgov/fipy/issues/627
https://github.com/usnistgov/fipy/issues/625
https://github.com/usnistgov/fipy/issues/623
https://github.com/usnistgov/fipy/issues/621
https://github.com/usnistgov/fipy/issues/617
https://github.com/usnistgov/fipy/issues/611
https://github.com/usnistgov/fipy/issues/610
https://github.com/usnistgov/fipy/issues/608
https://github.com/usnistgov/fipy/issues/603
https://github.com/usnistgov/fipy/issues/602
https://github.com/usnistgov/fipy/issues/592
https://github.com/usnistgov/fipy/issues/590
https://github.com/usnistgov/fipy/issues/584
https://github.com/usnistgov/fipy/issues/566
https://github.com/usnistgov/fipy/issues/565
https://github.com/usnistgov/fipy/issues/564
https://github.com/usnistgov/fipy/issues/561
https://github.com/usnistgov/fipy/issues/555
https://github.com/usnistgov/fipy/issues/551
https://github.com/usnistgov/fipy/issues/545
https://github.com/usnistgov/fipy/issues/543
https://github.com/usnistgov/fipy/issues/539
https://github.com/usnistgov/fipy/issues/538
https://github.com/usnistgov/fipy/issues/534
https://github.com/usnistgov/fipy/issues/533
https://github.com/usnistgov/fipy/issues/531
https://github.com/usnistgov/fipy/issues/530
https://github.com/usnistgov/fipy/issues/528
https://github.com/usnistgov/fipy/issues/525
https://github.com/usnistgov/fipy/issues/513
https://github.com/usnistgov/fipy/issues/510
https://github.com/usnistgov/fipy/issues/509
https://github.com/usnistgov/fipy/issues/506

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

#488: Gmsh 2.11 breaks GmshGrids
#435: pip install pysparse fails with “fatal error: ‘spmatrix.h’ file not found”

#434: pip install fipy fails with “ImportError: No module named ez_setup”

14.10 Version 3.1.3 - 2017-01-17

14.10.1 Fixes

#502: gmane is defunct

14.11 Version 3.1.2 - 2016-12-24

14.11.1 Pulls

remove recvobj from calls to allgather, require sendobj (#492)

restore trailing whitespace to expected output of pysparse matrix tests (#485)

Format version string for pep 440 (#483)

Provide some documentation for what _faceToCellDistanceRatio is and why it’s scalar (#481)

Strip all trailing white spaces and empty lines at EOF for .py and .r? (#479) Thanks to @pya.

e fipy/meshes/uniformGrid3D.py: fix _cellToCellIDs and more concatenate() calls (#478) Thanks to @pkgw.

Remove incorrect axis argument to concatenate (#477)

Updated to NumPy 1.10 (#472) Thanks to @pya.

Some spelling corrections (#471) Thanks to @pkgw.

Sort entry points by package name before testing. (#469)

Update import syntax in examples (#4606)

Update links to prerequisites (#465)

Correct implementation of examples.cahnHilliard.mesh2DCoupled. Fixes ? (#463)
Fix typeset analytical solution (#460)

Clear pdfiatex build errors by removing Python from heading (#459)
purge gist from viewers and optional module lists in setup.py (#456)
Remove deprecated methods that duplicate NumPy ufuncs (#454)
Remove deprecated Gmsh importers (#452)

Remove deprecated getters and setters (#450)

Update links for FiPy developers (#448)

Render appropriately if in IPython notebook (#447)

Plot contour in proper axes (#446)

Robust Gmsh version checking with distutils.version.StrictVersion (#442)

92

Chapter 14. Change Log

https://github.com/usnistgov/fipy/issues/488
https://github.com/usnistgov/fipy/issues/435
https://github.com/usnistgov/fipy/issues/434
https://github.com/usnistgov/fipy/issues/502
https://github.com/usnistgov/fipy/pull/492
https://github.com/usnistgov/fipy/pull/485
https://github.com/usnistgov/fipy/pull/483
https://github.com/usnistgov/fipy/pull/481
https://github.com/usnistgov/fipy/pull/479
https://github.com/pya
https://github.com/usnistgov/fipy/pull/478
https://github.com/pkgw
https://github.com/usnistgov/fipy/pull/477
https://github.com/usnistgov/fipy/pull/472
https://github.com/pya
https://github.com/usnistgov/fipy/pull/471
https://github.com/pkgw
https://github.com/usnistgov/fipy/pull/469
https://github.com/usnistgov/fipy/pull/466
https://github.com/usnistgov/fipy/pull/465
https://github.com/usnistgov/fipy/pull/463
https://github.com/usnistgov/fipy/pull/460
https://github.com/usnistgov/fipy/pull/459
https://github.com/usnistgov/fipy/pull/456
https://github.com/usnistgov/fipy/pull/454
https://github.com/usnistgov/fipy/pull/452
https://github.com/usnistgov/fipy/pull/450
https://github.com/usnistgov/fipy/pull/448
https://github.com/usnistgov/fipy/pull/447
https://github.com/usnistgov/fipy/pull/446
https://github.com/usnistgov/fipy/pull/442

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

» compare gmsh versions as tuples, not floats (#441)

¢ Corrected two tests (#439) Thanks to @alfrenardi.

* Issue426 fix robin example typo (#431) Thanks to @raybsmith.

¢ Issue426 fix robin example analytical solution (#429) Thanks to @raybsmith.
» Force MatplotlibViewer to display (#428)

* Allow for 2 periodic axes in 3D (#424)

* Bug with Matplotlib 1.4.0 is fixed (#419)

14.11.2 Fixes

* #498: nonlinear source term

» #496: scipy.LinearBicgstabSolver doesn’t take arguments

* #494: Gmsh call errors

 #493: Reviewable.io has read-only access, can’t leave comments

» #491: globalValue raises error from mpidpy

o #484: Pysparse tests fail

 #482: FiPy development version string not compliant with PEP 440
o #476: setuptools 18.4 breaks test suite

o #475: Grid3D broken by numpy 1.10

o #470: Mesh3D cellToCelllIDs is broken

* #467: Out-of-sequence Viewer imports

e #462: GMSH version >= 2.10 incorrectly read by gmshMesh.py

o #455: setup.py gist warning

* #445: DendriteViewer puts contours over color bar

o #443: MatplotlibViewer still has problems in IPython notebook

o #440: Use github API to get nicely formatted list of issues

» #438: Failed tests on Mac OS X

 #437: Figure misleading in examples.cahnHilliard. mesh2DCoupled
e #433: Links to prerequisites are broken

» #430: Make develop the default branch on Github

e #427: MatplotlibViewer don’t display

 #425: Links for Warren and Guyer are broken on the web page

e #421: The “limits” argument for Matplotlib2DGridViewer does not function

» #416: Updates to reflect move to Github

14.11. Version 3.1.2 - 2016-12-24 93

https://github.com/usnistgov/fipy/pull/441
https://github.com/usnistgov/fipy/pull/439
https://github.com/alfrenardi
https://github.com/usnistgov/fipy/pull/431
https://github.com/raybsmith
https://github.com/usnistgov/fipy/pull/429
https://github.com/raybsmith
https://github.com/usnistgov/fipy/pull/428
https://github.com/usnistgov/fipy/pull/424
https://github.com/usnistgov/fipy/pull/419
https://github.com/usnistgov/fipy/issues/498
https://github.com/usnistgov/fipy/issues/496
https://github.com/usnistgov/fipy/issues/494
https://github.com/usnistgov/fipy/issues/493
https://github.com/usnistgov/fipy/issues/491
https://github.com/usnistgov/fipy/issues/484
https://github.com/usnistgov/fipy/issues/482
https://github.com/usnistgov/fipy/issues/476
https://github.com/usnistgov/fipy/issues/475
https://github.com/usnistgov/fipy/issues/470
https://github.com/usnistgov/fipy/issues/467
https://github.com/usnistgov/fipy/issues/462
https://github.com/usnistgov/fipy/issues/455
https://github.com/usnistgov/fipy/issues/445
https://github.com/usnistgov/fipy/issues/443
https://github.com/usnistgov/fipy/issues/440
https://github.com/usnistgov/fipy/issues/438
https://github.com/usnistgov/fipy/issues/437
https://github.com/usnistgov/fipy/issues/433
https://github.com/usnistgov/fipy/issues/430
https://github.com/usnistgov/fipy/issues/427
https://github.com/usnistgov/fipy/issues/425
https://github.com/usnistgov/fipy/issues/421
https://github.com/usnistgov/fipy/issues/416

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.12 Version 3.1.1 - 2015-12-17

14.12.1 Fixes

o #415:
o #414:
o #413:
o #412:
o #408:
o #407:
o #404:
o #401
o #295:

MatplotlibGrid2DViewer error with Matplotlib version 1.4.0
PeriodicGrid3D supports Only 1 axes of periodicity or all 3, not 2
Remind users of different types of conservation equations
Pickling Communicators is unnecessary for Grids

Implement PeriodicGrid3D

Strange deprecation loop in reshape()

package never gets uploaded to PyPI

: Vector equations are broken when sweep is used instead of solve.

Gmsh version must be >= 2.0 errors on zizou

14.13 Version 3.1 - 2013-09-30

The significant changes since version 3.0 are:

 Level sets are now handled by LSMLIB or Scikit-fimmm solver libraries. These libraries are orders of magnitude
faster than the original, Python-only prototype.

e The Matplotlib streamplot () function can be used to display vector fields.

 Version control was switched to the Git distributed version control system. This system should make it much
easier for FiPy users to participate in development.

14.13.1 Fixes

* #398:
o #397:
e #396:
e #395:
o #393:
o #392:
e #391:
o #388:
o #384:
o #382:
o #381:
o #377:
o #376:

Home page needs out-of-NIST redirects

Switch to sphinxcontrib-bibtex

enable google analytics

Documentation change for Ubuntu install
CylindricalNonUniformGrid2D doesn’t make a FaceVariable for exteriorFaces
exit_nist.cgi deprecated

Péclet inequalities have the wrong sign

Windows 64 and numpy’s dtype=int

Add support for Matplotlib streamplot

Neumann boundary conditions not clearly documented
numpy 1.7.1 test failures with physicalField.py
VanLeerConvectionTerm MinMod slope limiter is broken

testing CommitTicketUpdater

94

Chapter 14. Change Log

https://github.com/usnistgov/fipy/issues/415
https://github.com/usnistgov/fipy/issues/414
https://github.com/usnistgov/fipy/issues/413
https://github.com/usnistgov/fipy/issues/412
https://github.com/usnistgov/fipy/issues/408
https://github.com/usnistgov/fipy/issues/407
https://github.com/usnistgov/fipy/issues/404
https://github.com/usnistgov/fipy/issues/401
https://github.com/usnistgov/fipy/issues/295
https://github.com/usnistgov/fipy
https://github.com/usnistgov/fipy/issues/398
https://github.com/usnistgov/fipy/issues/397
https://github.com/usnistgov/fipy/issues/396
https://github.com/usnistgov/fipy/issues/395
https://github.com/usnistgov/fipy/issues/393
https://github.com/usnistgov/fipy/issues/392
https://github.com/usnistgov/fipy/issues/391
https://github.com/usnistgov/fipy/issues/388
https://github.com/usnistgov/fipy/issues/384
https://github.com/usnistgov/fipy/issues/382
https://github.com/usnistgov/fipy/issues/381
https://github.com/usnistgov/fipy/issues/377
https://github.com/usnistgov/fipy/issues/376

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

* #375:
o #373:
* #372:
o #371:
* #370:
o #368:
* #367:
* #3606:
* #365:
o #364:
* #360:
* #356:
* #353:
o #352:
* #350:
o #347:
o #339:
o #337:

NumPy 1.7.0 doesn’t have _formatinteger

Bug with numpy 1.7.0

convection problem with cylindrical grid
examples/phase/binary.py has problems
FIPY_DISPLAY_MATRIX is broken

Viewers don’t inline well in [Python notebook

Change documentation to promote use of stackoverflow
unOps can’t be pickled

Rename communicator instances

Parallel bug in non-uniform grids and conflicting mesh class and factory function names
NIST CSS changed

link to mailing list is wrong

Update Ohloh to point at git repo

getVersion() fails on Py3k

Gmsh importer can’t read mesh elements with no tags
Include mailing list activity frame on front page

Fix for test failures on loki

Clean up interaction between dependencies and installation process

e #336: fipy.test() and fipy/test.py clash

o #334:
* #333:
* #331:

Make the citation links go to the DOI links
Web page links seem to be broken

Assorted errors

e #330: faceValue as FaceCenters gives inline failures

o #329:
* #326:
* #323:
e #319:
o #318:

* #311

e #2901

* #2809:
o #287:
o #275:
o #274:

Gmsh background mesh doesn’t work in parallel

Gmsh2D does not respect background mesh

getFaceCenters() should return a FaceVariable

Explicit convection terms should fail when the equation has no TransientTerm (dt=None)

FiPy will not import

: LSMLIB refactor
e #305:
e #297:

mpirun -np 2 python -Wd setup.py test —trilinos hanging on sandbox under buildbot

Remove deprecated gist and gnuplot support

: efficiency_test chokes on liquidVapor2D.py

diffusionTerm._test() requires Pysparse
move FiPy to distributed version control
mpirun -np 2 python setup.py test —no-pysparse hangs on bunter

Epetra Norm?2 failure in parallel

14.13. Version 3.1 - 2013-09-30 95

https://github.com/usnistgov/fipy/issues/375
https://github.com/usnistgov/fipy/issues/373
https://github.com/usnistgov/fipy/issues/372
https://github.com/usnistgov/fipy/issues/371
https://github.com/usnistgov/fipy/issues/370
https://github.com/usnistgov/fipy/issues/368
https://github.com/usnistgov/fipy/issues/367
https://github.com/usnistgov/fipy/issues/366
https://github.com/usnistgov/fipy/issues/365
https://github.com/usnistgov/fipy/issues/364
https://github.com/usnistgov/fipy/issues/360
https://github.com/usnistgov/fipy/issues/356
https://github.com/usnistgov/fipy/issues/353
https://github.com/usnistgov/fipy/issues/352
https://github.com/usnistgov/fipy/issues/350
https://github.com/usnistgov/fipy/issues/347
https://github.com/usnistgov/fipy/issues/339
https://github.com/usnistgov/fipy/issues/337
https://github.com/usnistgov/fipy/issues/336
https://github.com/usnistgov/fipy/issues/334
https://github.com/usnistgov/fipy/issues/333
https://github.com/usnistgov/fipy/issues/331
https://github.com/usnistgov/fipy/issues/330
https://github.com/usnistgov/fipy/issues/329
https://github.com/usnistgov/fipy/issues/326
https://github.com/usnistgov/fipy/issues/323
https://github.com/usnistgov/fipy/issues/319
https://github.com/usnistgov/fipy/issues/318
https://github.com/usnistgov/fipy/issues/311
https://github.com/usnistgov/fipy/issues/305
https://github.com/usnistgov/fipy/issues/297
https://github.com/usnistgov/fipy/issues/291
https://github.com/usnistgov/fipy/issues/289
https://github.com/usnistgov/fipy/issues/287
https://github.com/usnistgov/fipy/issues/275
https://github.com/usnistgov/fipy/issues/274

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

#272: Error adding meshes

#269: Rename GridXD

#255: numpy 1.5.1 and masked arrays

#253: Move the mail archive link to a more prominent place on web page.
#245: Fix fipy.terms._BinaryTerm test failure in parallel

#228: —pysparse configuration should never attempt MPI imports
#225: Windows interactive plotting mostly broken

#209: add Rhie-Chow correction term in stokes cavity example
#180: broken arithmetic face to cell distance calculations

#128: Trying to “solve” an integer CellVariable should raise an error
#123: numerix.dot doesn’t support tensors

#103: subscriber()._markStale() AttributeError

#61: Move ImplicitDiffusionTerm().solve(var) == “failure” from examples.phase.simple to exam-

ples.diffusion.mesh1D?

14.14 Version 3.0.1 - 2012-10-03

14.14.1 Fixes

#346: text in trunk/examples/convection/source.py is out of date
#342: sign issues for equation with transient, convection and implicit terms

#338: SvnToGit clean up

14.15 Version 3.0 - 2012-08-16

The bump in major version number reflects more on the substantial increase in capabilities and ease of use than it does
on a break in compatibility with FiPy 2.x. Few, if any, changes to your existing scripts should be necessary.

The significant changes since version 2.1 are:

Coupled and Vector Equations are now supported.

A more robust mechanism for specifying Boundary Conditions is now used.

Most Meshes can be partitioned by Meshing with Gmsh.

PyAMG and SciPy have been added to the Solvers.

FiPy is capable of running under Python 3.

“getter” and “setter” methods have been pervasively changed to Python properties.
The test suite now runs much faster.

Tests can now be run on a full install using fipy.test().

The functions of the numerix module are no longer included in the fipy namespace. See examples.
updating.update2_0to3_0 for details.

96

Chapter 14. Change Log

https://github.com/usnistgov/fipy/issues/272
https://github.com/usnistgov/fipy/issues/269
https://github.com/usnistgov/fipy/issues/255
https://github.com/usnistgov/fipy/issues/253
https://github.com/usnistgov/fipy/issues/245
https://github.com/usnistgov/fipy/issues/228
https://github.com/usnistgov/fipy/issues/225
https://github.com/usnistgov/fipy/issues/209
https://github.com/usnistgov/fipy/issues/180
https://github.com/usnistgov/fipy/issues/128
https://github.com/usnistgov/fipy/issues/123
https://github.com/usnistgov/fipy/issues/103
https://github.com/usnistgov/fipy/issues/61
https://github.com/usnistgov/fipy/issues/346
https://github.com/usnistgov/fipy/issues/342
https://github.com/usnistgov/fipy/issues/338

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

» Equations containing a TransientTerm, must specify the timestep by passing a dt= argument when calling
solve() or sweep().

Warning:

update2_

FiPy 3 brought unavoidable syntax changes from FiPy 2. Please see examples.updating.
0to3_0 for guidance on the changes that you will need to make to your FiPy 2.x scripts.

14.15.1 Fixes

o #332:
o #324:
o #317:
* #316:
* #313:
o #307:
o #306:
o #302:
e #301:
e #300:
o #299:
* #298:
o #294:
o #293:
o #292:
* #290:
o #288:
o #286:
o #285:
o #284:
o #281:
o #280:
o #277:
o #273:
o #270:
* #267:
o #264:
* #261:
o #260:

Inline failure on Ubuntu x86_64

constraining values with ImplicitSourceTerm not documented?
gmshlmport tests fail on Windows due to shared file

changes to gmshlmport.py caused —inline problems

Gmsh I/O

Failures on sandbox under buildbot

Add in parallel buildbot testing on more than 2 processors
CellVariable.min() broken in parallel

Epetra.PyComm() broken on Debian
examples/cahnHilliard/mesh2D.py broken with — trilinos

Viewers not working when plotting meshes with zero cells in parallel
Memory consumption growth with repeated meshing, especially with Gmsh
—pysparse —inline failures

python examples/cahnHilliard/sphere.py —inline segfaults on OS X
two —scipy failures

Improve test reporting to avoid inconsequential buildbot failures
gmsh importer and gmsh tests don’t clean up after themselves

get running in Py3k

remove deprecated viewers.make()

remove deprecated Variable.transpose()

remove deprecated NthOrderDiffusionTerm

remove deprecated diffusionTerm= argument to ConvectionTerm
remove deprecated steps= from Solver

Make DiffusionTermNoCorrection the default

tests take too long!!!

Reduce the run times for chemotaxis tests

HANG in parallel test of examples/chemotaxis/input2D.py on some configurations
GmshImport should read element colors

GmshImport should support all element types

14.15. Version 3.0 - 2012-08-16 97

https://github.com/usnistgov/fipy/issues/332
https://github.com/usnistgov/fipy/issues/324
https://github.com/usnistgov/fipy/issues/317
https://github.com/usnistgov/fipy/issues/316
https://github.com/usnistgov/fipy/issues/313
https://github.com/usnistgov/fipy/issues/307
https://github.com/usnistgov/fipy/issues/306
https://github.com/usnistgov/fipy/issues/302
https://github.com/usnistgov/fipy/issues/301
https://github.com/usnistgov/fipy/issues/300
https://github.com/usnistgov/fipy/issues/299
https://github.com/usnistgov/fipy/issues/298
https://github.com/usnistgov/fipy/issues/294
https://github.com/usnistgov/fipy/issues/293
https://github.com/usnistgov/fipy/issues/292
https://github.com/usnistgov/fipy/issues/290
https://github.com/usnistgov/fipy/issues/288
https://github.com/usnistgov/fipy/issues/286
https://github.com/usnistgov/fipy/issues/285
https://github.com/usnistgov/fipy/issues/284
https://github.com/usnistgov/fipy/issues/281
https://github.com/usnistgov/fipy/issues/280
https://github.com/usnistgov/fipy/issues/277
https://github.com/usnistgov/fipy/issues/273
https://github.com/usnistgov/fipy/issues/270
https://github.com/usnistgov/fipy/issues/267
https://github.com/usnistgov/fipy/issues/264
https://github.com/usnistgov/fipy/issues/261
https://github.com/usnistgov/fipy/issues/260

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

#259:
#258:
#252:
#250:
#247:
#243:
#242:
#240:
#237:
#236:
#235:

Introduce mesh.x as shorthand for mesh.cellCenters[0] etc
GmshExport is not tested and does not work

Include Benny’s improved interpolation patch

TeX is wrong in examples.phase.quaternary
diffusionTerm(var=varl).solver(var=var0) should fail sensibly
close out reconstrain branch

update documentation

Profile and merge reconstrain branch

—Trilinos —no-pysparse uses Pysparse?!?

anisotropic diffusion and constraints don’t mix

changed constraints don’t propagate

#231: factoryMeshes.py not up to date with respect to keyword arguments

#223:
#218:
#216:
#213:
#2006:
#205:
#203:
#202:

#201

mesh in FiPy name space

Absence of enthought.tvtk causes test failures
Fresh FiPy gives “ImportError: No viewers found”
PyPlI is failing

gnuplotld gives error on plot of FaceVariable
wrong cell to cell normal in periodic meshes

Give helpful error on - or / of meshes

mesh manipulation of periodic meshes leads to errors

: Use physical velocity in the manual/FAQ
#200:
#195:
#163:
#162:
#130:

FAQ gives bad guidance for anisotropic diffusion
term multiplication changes result

Default time steps should be infinite

remove ones and zeros from numerix.py

tests should be run with fipy.zests()

#86: Grids should take Lx, Ly, Lz arguments
#77: CellVariable.hasOld() should set self.old
#44: Navier-Stokes

98

Chapter 14. Change Log

https://github.com/usnistgov/fipy/issues/259
https://github.com/usnistgov/fipy/issues/258
https://github.com/usnistgov/fipy/issues/252
https://github.com/usnistgov/fipy/issues/250
https://github.com/usnistgov/fipy/issues/247
https://github.com/usnistgov/fipy/issues/243
https://github.com/usnistgov/fipy/issues/242
https://github.com/usnistgov/fipy/issues/240
https://github.com/usnistgov/fipy/issues/237
https://github.com/usnistgov/fipy/issues/236
https://github.com/usnistgov/fipy/issues/235
https://github.com/usnistgov/fipy/issues/231
https://github.com/usnistgov/fipy/issues/223
https://github.com/usnistgov/fipy/issues/218
https://github.com/usnistgov/fipy/issues/216
https://github.com/usnistgov/fipy/issues/213
https://github.com/usnistgov/fipy/issues/206
https://github.com/usnistgov/fipy/issues/205
https://github.com/usnistgov/fipy/issues/203
https://github.com/usnistgov/fipy/issues/202
https://github.com/usnistgov/fipy/issues/201
https://github.com/usnistgov/fipy/issues/200
https://github.com/usnistgov/fipy/issues/195
https://github.com/usnistgov/fipy/issues/163
https://github.com/usnistgov/fipy/issues/162
https://github.com/usnistgov/fipy/issues/130
https://github.com/usnistgov/fipy/issues/86
https://github.com/usnistgov/fipy/issues/77
https://github.com/usnistgov/fipy/issues/44

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.16 Version 2.1.3 - 2012-01-17

14.16.1 Fixes

o #282:
* #279:
o #278:
o #268:
o #262:
o #256:
o #251:
o #241:
o #238:
* #233:
o #224:
o #222:
o #221:
o #219:
o #208:
* #207:
* #196:
o #152:
o #138:
e #100:

remove deprecated getters and setters

remove deprecated fipy.meshes.numMesh submodule
remove deprecated forms of Gmsh meshes

Set up Zizou as a working slave

issue with solvers

GridlD(dx=(1,2,3)) failure

parallel is broken

Set Sandbox up as a working slave

_Binarylerm.var is not predictable

coupled convection-diffusion always treated as Upwind
“matrices are not aligned” errors in example test suite
Non-uniform Grid3D fails to __add__

Problem with fipy and gmsh

matforge css is hammer-headed

numpy 2.0: arrays have a dot method

numpy 2.0: masked arrays cast right of product to ndarray
Pysparse won’t import in Python 2.6.5 on Windows
(Re)Implement SciPy solvers

FAQ on boundary conditions

testing from the Windows dist using the ipython command line

* #80: Windows - testing - idle -ipython

e #46: Variable needs to consider boundary conditions

 #45: Slicing a vector Variable should produce a scalar Variable

14.17 Version 2.1.2 - 2011-04-20

The significant changes since version 2.1.1 are:

e Trilinos efficiency improvements

* Diagnostics of the parallel environment

14.16. Version 2.1.3 - 2012-01-17

99

https://github.com/usnistgov/fipy/issues/282
https://github.com/usnistgov/fipy/issues/279
https://github.com/usnistgov/fipy/issues/278
https://github.com/usnistgov/fipy/issues/268
https://github.com/usnistgov/fipy/issues/262
https://github.com/usnistgov/fipy/issues/256
https://github.com/usnistgov/fipy/issues/251
https://github.com/usnistgov/fipy/issues/241
https://github.com/usnistgov/fipy/issues/238
https://github.com/usnistgov/fipy/issues/233
https://github.com/usnistgov/fipy/issues/224
https://github.com/usnistgov/fipy/issues/222
https://github.com/usnistgov/fipy/issues/221
https://github.com/usnistgov/fipy/issues/219
https://github.com/usnistgov/fipy/issues/208
https://github.com/usnistgov/fipy/issues/207
https://github.com/usnistgov/fipy/issues/196
https://github.com/usnistgov/fipy/issues/152
https://github.com/usnistgov/fipy/issues/138
https://github.com/usnistgov/fipy/issues/100
https://github.com/usnistgov/fipy/issues/80
https://github.com/usnistgov/fipy/issues/46
https://github.com/usnistgov/fipy/issues/45

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.17.1 Fixes

» #232: Mayavi broken on windows because it has no SIGHUP.

o #230: factoryMeshes.py not up to date with respect to keyword arguments

#226: MatplotlibViewer fails if backend doesn’t support flush_events()

#225: Windows interactive plotting mostly broken

#217: Gmsh CellVariables can’t be unpickled
e #191: sphereDaemon.py missing in FiPy 2.1 and from trunk
» #187: Concatenated Mesh garbled by dump.write/read

14.18 Version 2.1.1 - 2010-10-05

The significant changes since version 2.1 are:
e MatplotlibViewer can display into an existing set of Matplotlib axes.

* Pysparse and Trilinos are now completely independent.

14.18.1 Fixes

e #199: dummy viewer results in “NotImplementedError: can’t instantiate abstract base class”
» #198: bug problem with CylindricalGridlD

e #197: How to tell if parallel is configured properly?

e #194: FIPY_DISPLAY_MATRIX on empty matrix with large b-vector throws ValueError

» #193: FIPY_DISPLAY MATRIX raises ImportError in FiPy 2.1 and trunk

e #192: FIPY_DISPLAY_MATRIX=terms raises TypeError in FiPy 2.1 and trunk

14.19 Version 2.1 - 2010-04-01

The relatively small change in version number belies significant advances in FiPy capabilities. This release did not
receive a “full” version increment because it is completely (er...') compatible with older scripts.

The significant changes since version 2.0.2 are:
e FiPy can use Trilinos for Solving in Parallel.

* We have switched from MayaVi 1 to Mayavi 2. This Viewer is an independent process that allows interaction
with the display while a simulation is running.

* Documentation has been switched to Sphinx, allowing the entire manual to be available on the web and for our
documentation to link to the documentation for packages such as numpy, scipy, matplotlib, and for Python
itself.

! Only two examples from FiPy 2.0 fail when run with FiPy 2.1:

* examples/phase/symmetry.py fails because Mesh no longer provides a getCells method. The mechanism for enforcing symmetry in
the updated example is both clearer and faster.

» examples.levelSet.distanceFunction.circle fails because of a change in the comparison of masked values.

Both of these are subtle issues unlikely to affect very many FiPy users.

100 Chapter 14. Change Log

https://github.com/usnistgov/fipy/issues/232
https://github.com/usnistgov/fipy/issues/230
https://github.com/usnistgov/fipy/issues/226
https://github.com/usnistgov/fipy/issues/225
https://github.com/usnistgov/fipy/issues/217
https://github.com/usnistgov/fipy/issues/191
https://github.com/usnistgov/fipy/issues/187
https://github.com/usnistgov/fipy/issues/199
https://github.com/usnistgov/fipy/issues/198
https://github.com/usnistgov/fipy/issues/197
https://github.com/usnistgov/fipy/issues/194
https://github.com/usnistgov/fipy/issues/193
https://github.com/usnistgov/fipy/issues/192
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://docs.scipy.org/doc/scipy/index.html#module-scipy
https://matplotlib.org/stable/index.html#module-matplotlib

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.19.1 Fixes

» #190: “matplotlib: list index out of range” when no title given, but only sometimes
e #182: ~binOp doesn’t work on branches/version-2_0

» #180: broken arithmetic face to cell distance calculations

* #179: easy_install instructions for Mac OS X are broken

 #177: broken setuptools url with python 2.6

» #169: The FiPy webpage seems to be broken on Internet Explorer

e #156: update the mayavi viewer to use mayavi 2

e #153: Switch documentation to use :math. directive

14.20 Version 2.0.3 - 2010-03-17

14.20.1 Fixes

o #188: SMTPSenderRefused: (553, “5.1.8 <trac@matdl-osi.org>... Domain of sender address trac @matdl-
osi.org does not exist”, u‘“FiPy” <trac@matdl-osi.org>")

o #184: gmshExport.exportAsMesh() doesn’t work

e #183: FiPy 2.0.2 LinearJORSolver.__init__ calls Solver rather than PysparseSolver
» #181: Navier-Stokes again

e #151: update mayavi viewer to use mayavi2

e #13: Mesh refactor

14.21 Version 2.0.2 - 2009-06-11

14.21.1 Fixes

* #176: Win32 distribution test error
» #175: Grid3D getFaceCenters incorrect when mesh is offset

e #170: Variable doesn’t implement __invert _

14.22 Version 2.0.1 - 2009-04-23

14.22.1 Fixes

e #154: Update manuals

14.20. Version 2.0.3 - 2010-03-17 101

https://github.com/usnistgov/fipy/issues/190
https://github.com/usnistgov/fipy/issues/182
https://github.com/usnistgov/fipy/issues/180
https://github.com/usnistgov/fipy/issues/179
https://github.com/usnistgov/fipy/issues/177
https://github.com/usnistgov/fipy/issues/169
https://github.com/usnistgov/fipy/issues/156
https://github.com/usnistgov/fipy/issues/153
https://github.com/usnistgov/fipy/issues/188
https://github.com/usnistgov/fipy/issues/184
https://github.com/usnistgov/fipy/issues/183
https://github.com/usnistgov/fipy/issues/181
https://github.com/usnistgov/fipy/issues/151
https://github.com/usnistgov/fipy/issues/13
https://github.com/usnistgov/fipy/issues/176
https://github.com/usnistgov/fipy/issues/175
https://github.com/usnistgov/fipy/issues/170
https://github.com/usnistgov/fipy/issues/154

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.23 Version 2.0 - 2009-02-09

Warning: FiPy 2 brings unavoidable syntax changes. Please see examples.updating.updatel_0to2_0 for
guidance on the changes that you will need to make to your FiPy 1.x scripts.

The significant changes since version 1.2 are:
e CellVariable and FaceVariable objects can hold values of any rank.
* Much simpler syntax for specifying Cells for initial conditions and Faces for boundary conditions.

* Automated determination of the Péclet number and partitioning of ImplicitSourceTerm coeflicients between
the matrix diagonal and the right-hand-side-vector.

» Simplified Viewer syntax.

* Support for the Trilinos solvers.

* Support for anisotropic diffusion coefficients.

* #167: example showing how to go from 1.2 to 2.0
» #166: Still references to VectorCell and VectorFace Variable in manual
» #165: Edit the what’s new section of the manual

* #149: Test viewers

 #143: Document syntax changes

* #141: enthought toolset?

* #140: easy_install fipy

* #136: Document anisotropic diffusion

* #135: Trilinos documentation

» #127: Examples can be very fragile with respect to floating point

14.24 Version 1.2.3 - 2009-01-0

14.24.1 Fixes

o #54: python setup.py test fails

14.25 Version 1.2.2 - 2008-12-30

14.25.1 Fixes

* #161: get pysparse working with python 2.4
* #160: Grid class
e #157: temp files on widows

* #155: fix some of the deprecation warnings appearing in the tests

102 Chapter 14. Change Log

http://www.nist.gov/cgi-bin/redirect.py?url=https://trilinos.github.io
https://github.com/usnistgov/fipy/issues/167
https://github.com/usnistgov/fipy/issues/166
https://github.com/usnistgov/fipy/issues/165
https://github.com/usnistgov/fipy/issues/149
https://github.com/usnistgov/fipy/issues/143
https://github.com/usnistgov/fipy/issues/141
https://github.com/usnistgov/fipy/issues/140
https://github.com/usnistgov/fipy/issues/136
https://github.com/usnistgov/fipy/issues/135
https://github.com/usnistgov/fipy/issues/127
https://github.com/usnistgov/fipy/issues/54
https://github.com/usnistgov/fipy/issues/161
https://github.com/usnistgov/fipy/issues/160
https://github.com/usnistgov/fipy/issues/157
https://github.com/usnistgov/fipy/issues/155

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

e #150:
o #148:
* #147:
o #145:
o #144:
o #142:
o #139:
* #137:
o #131:
o #126:
o #125:
o #124:
o #121:
o #120:
o #118:
o #117:
e #115:
o #113:
o #112:

o #111

e #110:
* #109:
e #108:
o #107:
* #106:
e #105:
o #102:

* #99:
* #97:
* #96:
* #95:
* #92:
o #84:
o #83:
* #79:
o #67:

PythonXY installation?

SciPy 0.7.0 solver failures on Macs

Disable CGS solver in pysparse

Viewer factory fails for rank-1 CellVariable

intermittent failure on examples/diffusion/explicit/mixedelement.py —inline
merge Viewers branch

Get a Windows Bitten build slave

Backport examples from manuscript

MatplotlibViewer doesn’t properly report the supported file extensions
Variable, float, integer

Pickled test data embeds obsolete packages

Can’t pickle a binOp

simpleTrenchSystem.py

mayavi display problems

Automatically handle casting of Variable from int to float when necessary.
getFacesBottom, getFacesTop etc. lack clear description in the reference
viewing 3D Cahn-Hilliard is broken

OS X (MacBook Pro; Intel) FiPy installation problems
stokesCavity.py doesn’t display properly with matplotlib

: Can’t display Grid2D variables with matplotlib on Linux

“Numeric array value must be dimensionless” in EIPhF examples
doctest of fipy.variables.variable.Variable.__array__

numerix.array * FaceVariable is broken

Can’t move matplotlib windows on Mac

Concatenation of GridlD objects doesn’t always work

useless broken __array__ tests should be removed

viewer limits should just be set as arguments, rather than as a dict
Matplotlib2DGridViewer cannot update multiple views

Windows does not seem to handle NaN correctly.

broken tests with version 2.0 of gmsh

attached code breaks with —inline

Pygist is dead (it’s official)

Test failures on Intel Mac

ZeroDivisionError for CellTerm when calling getOld() on its coefficient
viewers.make() to viewers.Viewer()

Mesh viewing and unstructured data.

14.25. Version 1.2.2 - 2008-12-30 103

https://github.com/usnistgov/fipy/issues/150
https://github.com/usnistgov/fipy/issues/148
https://github.com/usnistgov/fipy/issues/147
https://github.com/usnistgov/fipy/issues/145
https://github.com/usnistgov/fipy/issues/144
https://github.com/usnistgov/fipy/issues/142
https://github.com/usnistgov/fipy/issues/139
https://github.com/usnistgov/fipy/issues/137
https://github.com/usnistgov/fipy/issues/131
https://github.com/usnistgov/fipy/issues/126
https://github.com/usnistgov/fipy/issues/125
https://github.com/usnistgov/fipy/issues/124
https://github.com/usnistgov/fipy/issues/121
https://github.com/usnistgov/fipy/issues/120
https://github.com/usnistgov/fipy/issues/118
https://github.com/usnistgov/fipy/issues/117
https://github.com/usnistgov/fipy/issues/115
https://github.com/usnistgov/fipy/issues/113
https://github.com/usnistgov/fipy/issues/112
https://github.com/usnistgov/fipy/issues/111
https://github.com/usnistgov/fipy/issues/110
https://github.com/usnistgov/fipy/issues/109
https://github.com/usnistgov/fipy/issues/108
https://github.com/usnistgov/fipy/issues/107
https://github.com/usnistgov/fipy/issues/106
https://github.com/usnistgov/fipy/issues/105
https://github.com/usnistgov/fipy/issues/102
https://github.com/usnistgov/fipy/issues/99
https://github.com/usnistgov/fipy/issues/97
https://github.com/usnistgov/fipy/issues/96
https://github.com/usnistgov/fipy/issues/95
https://github.com/usnistgov/fipy/issues/92
https://github.com/usnistgov/fipy/issues/84
https://github.com/usnistgov/fipy/issues/83
https://github.com/usnistgov/fipy/issues/79
https://github.com/usnistgov/fipy/issues/67

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

#43: TSVViewer doesn’t always get the right shape for the var

#34: float(&infinity&) issue on windows

14.26 Version 1.2.1 - 2008-02-08

14.26.1 Fixes

#122: check argument types for meshes

#119: max is broken for Variables

#116: Linux: failed test, TypeError: No array interface... in solve()
#104: Syntax error in MatplotlibVectorViewer._plot()

#101: matplotlib 1D viewer autoscales when a limit is set to 0

#93: Broken examples

#91: update the examples to use from fipy import *

#76: solve() and sweep() accept dt=CellVariable

#75: installation of fipy should auto include README as a docstring
#74: Some combinations of DiffusionTerm and ConvectionTerm do not work
#51: __pos__ doesn’t work for terms

#50: Broken examples

#39: matplotlib broken on mac with version 0.72.1

#19: Péclet number

#15: Boundary conditions and Terms

14.27 Version 1.2 - 2007-02-12

The significant changes since version 1.1 are:

—inline automatically generates C code from Variable expressions.

 FiPy has been updated to use the Python NumPy module. FiPy no longer works with the older Numeric module.

14.27.1 Fixes

#98: Windows patch for some broken test cases

#94: —inline error for attached code

#90: bug in matplotlib 0.87.7: TypeError: only length-1 arrays can be converted to Python scalars.

#72: needless rebuilding of variables

#66: PDF rendering issues for the guide on various platforms
#62: fipy guide pdf bug: “an unrecognized token 13c was found”
#55: Error for internal BCs

104

Chapter 14. Change Log

https://github.com/usnistgov/fipy/issues/43
https://github.com/usnistgov/fipy/issues/34
https://github.com/usnistgov/fipy/issues/122
https://github.com/usnistgov/fipy/issues/119
https://github.com/usnistgov/fipy/issues/116
https://github.com/usnistgov/fipy/issues/104
https://github.com/usnistgov/fipy/issues/101
https://github.com/usnistgov/fipy/issues/93
https://github.com/usnistgov/fipy/issues/91
https://github.com/usnistgov/fipy/issues/76
https://github.com/usnistgov/fipy/issues/75
https://github.com/usnistgov/fipy/issues/74
https://github.com/usnistgov/fipy/issues/51
https://github.com/usnistgov/fipy/issues/50
https://github.com/usnistgov/fipy/issues/39
https://github.com/usnistgov/fipy/issues/19
https://github.com/usnistgov/fipy/issues/15
https://github.com/usnistgov/fipy/issues/98
https://github.com/usnistgov/fipy/issues/94
https://github.com/usnistgov/fipy/issues/90
https://github.com/usnistgov/fipy/issues/72
https://github.com/usnistgov/fipy/issues/66
https://github.com/usnistgov/fipy/issues/62
https://github.com/usnistgov/fipy/issues/55

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

* #52: FaceVariable * FaceVectorVariable memory

 #48: Documentation is not inherited from &hidden& classes
e #42: fipy.models.phase.phase.addOverFacesVariable is gross
e #41: EFFICIENCY. txt example fails to make viewer

» #30: periodic boundary condition support

» #25: make phase field examples more explicit

» #23: sweep control, iterator object, error norms

 #21: Update FiPy to use numpy

e #16: Dimensions

» #12: Refactor viewers

* #1: Gnuplot doesn’t display on windows

14.28 Version 1.1 - 2006-06-06

The significant changes since version 1.0 are:
* Memory efficiency has been improved in a number of ways, but most significantly by:
— not caching all intermediate Variable values.
— introducing UniformGrid classes that calculate geometric arrays on the fly.
Details of these improvements are presented in Efficiency.

* Installation on Windows has been made considerably easier by constructing executable installers for 7Py and its
dependencies.

e The arithmetic for Variable subclasses now works, and returns sensible answers. For example,
VectorCellVariable * CellVariable returns a VectorCellVariable.

* PeriodicGrid meshes have been implemented. Currently, however, there and no examples of their use in the
manual.

* Many of the examples have been completely rewritten

A basic 1D diffusion problem now serves as a general tutorial for setting up any problem in FiPy.

Several more phase field examples have been added that should make it clearer how to get from the simple
1D case to the more elaborate multicomponent, multidimensional, and anisotropic models.

The “Superfill” examples have been substantially improved with better functionality and documentation.

An example of fluid flow with the classic Stokes moving lid has been added.

A clear distinction has been made between solving an equation via solve() and iterating an non-linear equation to
solution via sweep(). An extensive explanation of the concepts involved has been added to the Frequently Asked
Questions.

* Added a MultiViewer class that automatically groups several viewers together if the variables couldn’t be dis-
played by a single viewer.

* The abbreviated syntax from fipy import Classor from fipy import * promised in version 1.0 actually
works now. The examples all still use the fully qualified names.

14.28. Version 1.1 - 2006-06-06 105

https://github.com/usnistgov/fipy/issues/52
https://github.com/usnistgov/fipy/issues/48
https://github.com/usnistgov/fipy/issues/42
https://github.com/usnistgov/fipy/issues/41
https://github.com/usnistgov/fipy/issues/30
https://github.com/usnistgov/fipy/issues/25
https://github.com/usnistgov/fipy/issues/23
https://github.com/usnistgov/fipy/issues/21
https://github.com/usnistgov/fipy/issues/16
https://github.com/usnistgov/fipy/issues/12
https://github.com/usnistgov/fipy/issues/1

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

The repository has been converted from a CVS to a Subversion repository. Details on how to check out the new
repository are given in Installation.

The FiPy repository has also been moved from Sourceforge to the Materials Digital Library Pathway.

14.29 Version 1.0 - 2005-09-16

Numerous changes have been made since FiPy 0.1 was released, but the most significant ones are:

Equation objects no longer exist. PDEs are constructed from Term objects. Term objects can be added, sub-
tracted, and equated to build up an equation.

A true 1D grid class has been added: fipy.meshes.grid1D.Grid1D.

A generic “factory” method fipy.viewers.make() has been added that will do a reasonable job of automati-
cally creating a Viewer for the supplied Variable objects. The FIPY_VIEWER environment variable allows you
to specify your preferred viewer.

A simple TSVViewer has been added to allow display or export to a file of your solution data.

It is no longer necessary to transpose() scalar fields in order to multiply them with vector fields.
Better default choice of solver when convection is present.

Better examples.

A number of NoiseVariable objects have been added.

A new viewer based on Matplotlib has been added.

The PyX viewer has been removed.

Considerably simplified the public interface to FiPy.

Support for Python 2.4.

Improved layout of the manuals.

getLaplacian() method has been removed from CellVariable objects. You can obtain the same effect with
getFaceGrad() .getDivergence (), which provides better control.

An import shorthand has been added that allows for:

Efrom fipy import Class J
instead of:
[from fipy.some.deeply.nested.module.class import Class]

This system is still experimental. Please tell us if you find situations that don’t work.

The syntax of FiPy 1.0 scripts is incompatible with earlier releases. A tutorial for updating your existing scripts can be
found in examples/updating/update®_1tol_0.py.

106

Chapter 14. Change Log

https://subversion.apache.org/
https://sourceforge.net/
https://www.kent.edu/cmi/materials-digital-library-pathway-matdl

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.29.1 Fixes

» #49: Documentation for many ConvectionTerms is wrong
* #47: Terms should throw an error on bad coeff type

* #40: broken levelset test case

» #38: multiple BCs on one face broken?

» #37: Better support for periodic boundary conditions
 #36: Gnuplot doesn’t display the ~examples/levelSet/electroChem problem on windows.
e #35: gmsh write problem on windows

» #33: DiffusionTerm(coeff = CellVariable) functionality
 #32: conflict_handler = ignore not valid in Python 2.4
* #31: Support simple import notation

* #29: periodic boundary conditions are broken

» #28: invoke the == for terms

 #26: doctest extraction with python 2.4

* #24: Pysparse windows binaries

o #22: automated efficiency_test problems

e #20: Test with Python version 2.4

 #18: Memory leak for the leveling problem

* #17: distanceVariable is broken

o #14: Testing mailing list interface

 #11: Reconcile versions of pysparse

 #10: check phase field crystal growth

* #9: implement levelling surfactant equation

* #8: merge depositionRateVar and extensionVelocity

* #7: Automate FiPy efficiency test

 #6: FiPy breaks on windows with Numeric 23.6

e #5: axisymmetric 2D mesh

* #4: Windows installation wizard

* #3: Windows installation instructions

e #2: Some tests fail on windows XP

14.29. Version 1.0 - 2005-09-16 107

https://github.com/usnistgov/fipy/issues/49
https://github.com/usnistgov/fipy/issues/47
https://github.com/usnistgov/fipy/issues/40
https://github.com/usnistgov/fipy/issues/38
https://github.com/usnistgov/fipy/issues/37
https://github.com/usnistgov/fipy/issues/36
https://github.com/usnistgov/fipy/issues/35
https://github.com/usnistgov/fipy/issues/33
https://github.com/usnistgov/fipy/issues/32
https://github.com/usnistgov/fipy/issues/31
https://github.com/usnistgov/fipy/issues/29
https://github.com/usnistgov/fipy/issues/28
https://github.com/usnistgov/fipy/issues/26
https://github.com/usnistgov/fipy/issues/24
https://github.com/usnistgov/fipy/issues/22
https://github.com/usnistgov/fipy/issues/20
https://github.com/usnistgov/fipy/issues/18
https://github.com/usnistgov/fipy/issues/17
https://github.com/usnistgov/fipy/issues/14
https://github.com/usnistgov/fipy/issues/11
https://github.com/usnistgov/fipy/issues/10
https://github.com/usnistgov/fipy/issues/9
https://github.com/usnistgov/fipy/issues/8
https://github.com/usnistgov/fipy/issues/7
https://github.com/usnistgov/fipy/issues/6
https://github.com/usnistgov/fipy/issues/5
https://github.com/usnistgov/fipy/issues/4
https://github.com/usnistgov/fipy/issues/3
https://github.com/usnistgov/fipy/issues/2

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

14.30 Version 0.1.1

14.31 Version 0.1 - 2004-11-05

Original release

108 Chapter 14. Change Log

oo 1 D

Git practices

Refer to Git usage for the current branching conventions.

15.1 Branches

Whether fixing a bug or adding a feature, all work on FiPy should be conducted on a branch and submitted as a pull
request. If there is already a reported GitHub issue, name the branch accordingly:

$ BRANCH=issuel2345-Summary_of what_branch_addresses
$ git checkout -b $BRANCH master

Edit and add to branch:

$ emacs ...

$ git commit -m "refactoring_stage_A"
$ emacs ...

$ git commit -m "refactoring_stage_B"

15.1.1 Merging changes from master to the branch

Make sure master is up to date:

[$ git fetch origin

Merge updated state of master to the branch:

$ git diff origin/master
$ git merge origin/master

Resolve any conflicts and test:

[$ python setup.py test

109

https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/pulls
https://github.com/
https://github.com/usnistgov/fipy/issues

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

15.1.2 Submit branch for code review

If necessary, fork the fipy repository.

Add a “remote” link to your fork:

[$ git remote add <MYFORK> <MYFORKURL>

Push the code to your fork on GitHub:

[$ git push <MYFORK> $BRANCH]

Now create a pull request from your $BRANCH against the master branch of usnistgov/£fipy. The pull request should
initiate automated testing. Check the Continuous Integration status. Fix (or, if absolutely necessary, document) any
failures.

Note: If your branch is still in an experimental state, but you would like to check its impact on the tests, you may
prepend “WIP:” to your pull request title. This will prevent your branch from being merged before it’s complete, but
will allow the automated tests to run.

Please be respectful of the Continuous Integration resources and do the bulk of your testing on your local machine or
against your own Continuous Integration accounts (if you have a lot of testing to do, before you create a pull request,
push your branch to your own fork and enable the Continuous Integration services there.

You can avoid testing individual commits by adding “[skip ci]” to the commit message title.

When your pull request is ready and successfully passes the tests, you can request a pull request review or send a
message to the mailing list about it if you like, but the FiPy developers should automatically see the pull request and
respond to it without further action on your part.

15.1.3 Refactoring complete: merge branch to master

Attention: Administrators Only!

Use the GitHub interface to merge the pull request.

Note: Particularly for branches with a long development history, consider doing a Squash and merge.

110 Chapter 15. Git practices

https://help.github.com/en/articles/fork-a-repo
https://github.com/usnistgov/fipy
https://github.com/
https://help.github.com/en/articles/creating-a-pull-request
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/pulls
https://help.github.com/en/articles/fork-a-repo
https://github.com/usnistgov/fipy/pulls
https://help.github.com/en/articles/requesting-a-pull-request-review
https://github.com/
https://help.github.com/en/articles/merging-a-pull-request
https://help.github.com/en/articles/about-pull-request-merges/#squash-and-merge-your-pull-request-commits

o 1 ©

Continuous Integration

o Azure Pipelines | succeeded Build Documentation i Test Nix [passing

We use the Azure and GitHub Actions cloud services for Continuous Integration (CI). These Cls are configured in
FiPySource/.azure/pipelines.yml, FiPySource/.github/workflows/Docs4NIST.yml, and FiPySource/
.github/workflows/nix.yml.

Note: In order to focus on breakages introduced by changes to FiPy, a pull request is normally built with one of
the Conda Lockfiles, whereas the nightly builds use an environment.yml in order to catch breakages introduced by
FiPy’s prerequisites.

A pull request may be tested with the latest prerequisites by setting the CONDA_ENVIRONMENT_NOT_LOCK environment
variable in Azure at queue time.

111

https://dev.azure.com/guyer/FiPy/_build?definitionId=2
https://github.com/usnistgov/fipy/actions/workflows/Docs4NIST.yml
https://github.com/usnistgov/fipy/actions/workflows/nix.yml
https://github.com/usnistgov/fipy/blob/master/.azure/pipelines.yml
https://github.com/usnistgov/fipy/blob/master/.github/workflows/Docs4NIST.yml
https://github.com/usnistgov/fipy/blob/master/.github/workflows/nix.yml
https://github.com/usnistgov/fipy/blob/master/.github/workflows/nix.yml
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/pulls
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/variables?view=azure-devops&tabs=yaml%2Cbatch#allow-at-queue-time

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

112 Chapter 16. Continuous Integration

e 1 1

Conda Lockfiles

The conda-lock lockfiles in environments/locks/ can be updated with:

$ for solver in petsc pysparse scipy trilinos
do
conda-lock lock \
--file environments/${solver}-environment.yml \
--lockfile environments/locks/conda-${solver}-lock.yml
conda-lock render \
--filename-template environments/locks/conda-${solver}-{platform}.lock \
environments/locks/conda-${solver}-lock.yml
done

Attention: Do not merge new lockfiles to master without validating that everything still works.

Attention: As of 2025-04-30, locking environment/locks/trilinos-environment.yml is extremely slow.

Attention: Due to an issue with URL encoding, it may be necessary to replace %21 with ! in the environments/
locks/conda-$solver-lock.yml files before calling conda-lock render

See conda/conda-lock#764, mamba-org/mamba#3737, conda/conda#14481.

113

https://github.com/conda/conda-lock
https://github.com/conda/conda-lock/issues/764
https://github.com/mamba-org/mamba/issues/3737
https://github.com/conda/conda/pull/14481

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

114 Chapter 17. Conda Lockfiles

e | 8

README-like documents

The contents of
e CHANGELOG.rst
e INSTALLATION.rst
e README.rst
are managed by the sphinx-readme extension. In order to make changes
* Make edits to the corresponding files in docs/source/.

¢ Run:

[$ make -C docs html

to re-render the 3 affected files.

¢ Add and commit the resulting changes.

115

https://sphinx-readme.readthedocs.io/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

116 Chapter 18. README-like documents

e 1 9

Making a Release

Attention: Administrators Only!

19.1 Source

Make sure master is ready for release:

[$ git checkout master

Check the issue list and update the Change Log:

[$ git commit CHANGELOG.txt -m "REL: update new features for release"

Note: You can use:

[$ python setup.py changelog --after=<x.y>

or:

[$ python setup.py changelog --milestone=<x.z>

to obtain a ReST-formatted list of every GitHub pull request and issue closed since the last release.

Particularly for major and feature releases, be sure to curate the output so that it’s clear what’s a big deal about this
release. Sometimes a pull request will be redundant to an issue, e.g., “Issuel23 blah blah”. If the pull request fixes
a bug, preference is given to the corresponding issue under Fixes. Alternatively, if the pull request adds a new feature,
preference is given to the item under Pulls and corresponding issue should be removed from Fixes. If appropriate, be
sure to move the “Thanks to @mention” to the appropriate issue to recognize outside contributors.

Attention: Requires PyGithub and Pandas.

117

https://github.com/usnistgov/fipy/issues
https://github.com/
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/issues
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/issues
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/issues
https://github.com/usnistgov/fipy/pulls
https://github.com/usnistgov/fipy/issues
https://github.com/usnistgov/fipy/issues
https://pygithub.readthedocs.io
https://pandas.pydata.org

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Attention: If Continuous Integration doesn’t show all green boxes for this release, make sure to add appropriate
notes in README. txt or INSTALLATION. txt!

19.2 Release from master

[$ git checkout master J

Resolve any conflicts and tag the release as appropriate (see Git practices above):

[$ git tag --annotate x.y master J

Push the tag to GitHub:

[$ git push --tags origin master]

Upon successful completion of the Continuous Integration systems, fetch the tagged build products from Azure Arti-
facts and place in FiPySource/dist/:

e dist-Linux/FiPy-x.y-none-any.whl
e dist-Linux/FiPy-x.y.tar.gz

e dist-Windows_NT/FiPy-x.y.zip

e dist-docs/FiPy-x.y.pdf

e dist-docs/html-x.y.tar.gz

From the FiPySource directory, unpack dist/html-x.y.tar.gz into docs/build with:

[$ tar -xzf dist/html-{x.y}.tar.gz -C docs/build]

19.3 Upload

Attach
¢ dist/FiPy-x.y-none-any.whl
e dist/FiPy-x.y.tar.gz
e dist/FiPy-x.y.zip
e dist/FiPy-x.y.pdf
to a GitHub release associated with tag x.y.

Upload the build products to PyPI with twine:

[$ twine upload dist/FiPy-${FIPY_VERSION}.*]

Upload the web site to CTCMS

$ export FIPY_WWWHOST=bunter:/u/WWW/wdl5/fipy
$ export FIPY_WWWACTIVATE=updatewww
$ python setup.py upload_products --html

118 Chapter 19. Making a Release

https://github.com/
https://dev.azure.com/guyer/FiPy/_build?definitionId=2
https://github.com/usnistgov/fipy/releases
https://pypi.org/project/twine

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Warning: Some versions of rsync on Mac OS X have caused problems when they try to upload erroneous \rsrc
directories. Version 2.6.2 does not have this problem.

19.4 Update conda-forge feedstock

Once you push the tag to GitHub, the fipy-feedstock should automatically receive a pull request. Review and amend
this pull request as necessary and ask the feedstock maintainers to merge it.

This automated process only runs once an hour, so if you don’t wish to wait (or it doesn’t trigger for some reason), you
can manually generate a pull request to update the fipy-feedstock with:

e revised version number
* revised sha256 (use openssl dgst -sha256 /path/to/fipy-x.y.tar.gz)

¢ reset build number to 0

19.5 Announce

Make an announcement to fipy @list.nist.gov

19.4. Update conda-forge feedstock 119

https://github.com/
https://github.com/conda-forge/fipy-feedstock
https://github.com/conda-forge/fipy-feedstock#feedstock-maintainers
https://github.com/conda-forge/fipy-feedstock
mailto:fipy@list.nist.gov

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

120 Chapter 19. Making a Release

Chapter

Glossary

AMG
Algebraic multigrid method for solving sparse matrices. AMG solves linear systems with a general
non-symmetric coefficient matrix. See https://en.wikipedia.org/wiki/Multigrid_method#Algebraic_multigrid_
(AMG).

AppVeyor
A cloud-based Continuous Integration tool. See https://www.appveyor.com.

Azure
A cloud-based Continuous Integration tool. See https://dev.azure.com.

BiCG
Biconjugate gradient method for solving sparse matrices. BiCG solves linear systems with a general non-
symmetric coefficient matrix. See https://en.wikipedia.org/wiki/Biconjugate_gradient_method.

BiCGSTAB
Biconjugate gradient (stabilized) method for solving sparse matrices. BICGSTAB solves linear systems with a
general non-symmetric coefficient matrix. See https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_
method.

CG
Conjugate Gradient method for solving sparse matrices. CG solves linear systems with a symmetric positive-
definite coefficient matrix. See https://en.wikipedia.org/wiki/Conjugate_gradient_method.

CGS
Conjugate Gradient Squared method for solving sparse matrices, a variant of BiCG. CGS solves linear sys-
tems with a general non-symmetric coefficient matrix. See https://en.wikipedia.org/wiki/Conjugate_gradient_
squared_method.

CircleCI
A cloud-based Continuous Integration tool. See https://circleci.com.

conda
An open source package management system and environment management system that runs on Windows, ma-
cOS and Linux. Conda quickly installs, runs and updates packages and their dependencies. Conda easily creates,
saves, loads and switches between environments on your local computer. It was created for Python programs,
but it can package and distribute software for any language. See https://conda.io.

Continuous Integration
The practice of frequently testing and integrating one’s new or changed code with the existing code repository.

121

https://en.wikipedia.org/wiki/Multigrid_method#Algebraic_multigrid_(AMG
https://en.wikipedia.org/wiki/Multigrid_method#Algebraic_multigrid_(AMG
https://www.appveyor.com
https://dev.azure.com
https://en.wikipedia.org/wiki/Biconjugate_gradient_method
https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_squared_method
https://en.wikipedia.org/wiki/Conjugate_gradient_squared_method
https://circleci.com
https://conda.io

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

See https://en.wikipedia.org/wiki/Continuous_integration.
FiPy

The eponymous software package. See http://www.ctcms.nist.gov/fipy.
FGMRES

Flexible Inner-Outer Preconditioned GMRES algorithm for solving sparse matrices. FGMRES solves systems
with a general non-symmetric coefficient matrix. See https://doi.org/10.1137/0914028.

GitHub Actions
A cloud-based Continuous Integration tool. See https://github.com/features/actions.

GMRES
Generalized Minimal RESidual method for solving sparse matrices. GMRES solves systems with a general
non-symmetric coefficient matrix. See https://en.wikipedia.org/wiki/Generalized_minimal_residual_method.

Gmsh
A free and Open Source 3D (and 2D!) finite element grid generator. It also has a CAD engine and post-processor
that FiPy does not make use of. See http://www.geuz.org/gmsh.

IPython
An improved Python shell that integrates nicely with Matplotlib. See http://ipython.scipy.org/.

JOR
Jacobi over-relaxation method for solving sparse matrices. JOR solves systems with a general non-symmetric
coeflicient matrix.

JSON
JavaScript Object Notation. A text format suitable for storing structured information such as dict or 1ist. See
https://www.json.org/.

linux
An operating system. See http://www.linux.org.

LU
Lower-Upper decomposition method for solving sparse matrices. LU solves systems with a general non-
symmetric coefficient matrix using partial pivoting. See https://en.wikipedia.org/wiki/LU_decomposition.

macOS
An operating system. See http://www.apple.com/macos.

Matplotlib
matplotlib Python package displays publication quality results. It displays both 1D X-Y type plots and 2D
contour plots for structured data. It does not display unstructured 2D data or 3D data. It works on all common
platforms and produces publication quality hard copies. See http://matplotlib.sourceforge.net and Matplotlib.

Mayavi
The mayavi Data Visualizer is a free, easy to use scientific data visualizer. It displays 1D, 2D and 3D data.
It is the only FiPy viewer available for 3D data. Other viewers are probably better for 1D or 2D viewing. See
http://code.enthought.com/projects/mayavi and Mayavi.

MayaVi
The predecessor to Mayavi. Yes, it’s confusing.

MPI
The Message Passing Interface is a standard that allows the use of multiple processors. See http://www.
mpi-forum.org

mpidpy
MPI for Python provides bindings of the Message Passing Interface (MPI) standard for the Python programming
language, allowing any Python program to exploit multiple processors. For Solving in Parallel, FiPy requires
this package, in addition to PETSc or Trilinos. See https://mpi4py.readthedocs.io.

122 Chapter 20. Glossary

https://en.wikipedia.org/wiki/Continuous_integration
http://www.ctcms.nist.gov/fipy
https://doi.org/10.1137/0914028
https://github.com/features/actions
https://en.wikipedia.org/wiki/Generalized_minimal_residual_method
http://www.geuz.org/gmsh
http://ipython.scipy.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://www.json.org/
http://www.linux.org
https://en.wikipedia.org/wiki/LU_decomposition
http://www.apple.com/macos
https://matplotlib.org/stable/index.html#module-matplotlib
http://matplotlib.sourceforge.net
http://code.enthought.com/projects/mayavi
http://www.mpi-forum.org
http://www.mpi-forum.org
https://mpi4py.readthedocs.io

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

numarray
An archaic predecessor to NumPy.

Numeric
An archaic predecessor to NumPy.

NumPy
The numpy Python package provides array arithmetic facilities. See http://www.scipy.org/NumPy.

OpenMP
The Open Multi-Processing architecture is a specification for a set of compiler directives, library routines, and
environment variables that can be used to specify high-level parallelism in Fortran and C/C++ programs. See
https://www.openmp.org.

pandas
“Python Data Analysis Library” provides high-performance data structures for flexible, extensible analysis. See
http://pandas.pydata.org.

PCG
Preconditioned conjugate gradient method for solving sparse matrices. PCG solves systems with a symmetric
positive definite coefficient matrix. See https://en.wikipedia.org/wiki/Conjugate_gradient_method.

petscdpy
Python wrapper for PETSc. See https://petsc4py.readthedocs.io/.

pip
“pip installs python” is a tool for installing and managing Python packages, such as those found in PyPI. See
http://www.pip-installer.org.

PyPI
The Python Package Index is a repository of software for the Python programming language. See http://pypi.
python.org/pypi.

Pyrex
A mechanism for mixing C and Python code. See http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

Python
The programming language that 7Py (and your scripts) are written in. See http://www.python.org/.

Python 3
The (likely) future of the Python programming language. Third-party packages are slowly being adapted, but
many that FiPy uses are not yet available. See http://docs.python.org/py3k/ and PEP 3000.

PyTrilinos
Python wrapper for Trilinos. See https://trilinos.github.io/pytrilinos.html.

PyxViewer
A now defunct python viewer.

ScientificPython
A collection of useful utilities for scientists. See http://dirac.cnrs-orleans.fr/plone/software/scientificpython.

SciPy
The scipy package provides a wide range of scientific and mathematical operations. FiPy can use SciPy solver
suite for linear solutions. See http://www.scipy.org/.

Sphinx
The tools used to generate the FiPy documentation. See http://sphinx.pocoo.org/.
steppyngstounes

This package provides iterators that simplify both deterministic and adaptive stepping in time (or other indepen-
dent variables). See https://pages.nist.gov/steppyngstounes/en/latest.

123

https://numpy.org/doc/stable/reference/index.html#module-numpy
http://www.scipy.org/NumPy
https://www.openmp.org
http://pandas.pydata.org
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://petsc4py.readthedocs.io/
http://www.pip-installer.org
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.python.org/
http://docs.python.org/py3k/
https://peps.python.org/pep-3000/
https://trilinos.github.io/pytrilinos.html
http://dirac.cnrs-orleans.fr/plone/software/scientificpython
https://docs.scipy.org/doc/scipy/index.html#module-scipy
http://www.scipy.org/
http://sphinx.pocoo.org/
https://pages.nist.gov/steppyngstounes/en/latest

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

TravisCI
A cloud-based Continuous Integration tool. See https://travis-ci.org.

Weave
The weave package can enhance performance with C language inlining. See https://github.com/scipy/weave.

Windows
An operating system. See http://www.microsoft.com/windows.

124 Chapter 20. Glossary

https://travis-ci.org
https://github.com/scipy/weave
http://www.microsoft.com/windows

Part 11

Examples

125

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Note: Any given module “example.something.input” can be found in the file “examples/something/input.

(L)

py .

These examples can be used in at least four ways:

» Each example can be invoked individually to demonstrate an application of FiPy:

[$ python examples/something/input.py }

» Each example can be invoked such that when it has finished running, you will be left in an interactive Python
shell:

[$ python -i examples/something/input.py J

At this point, you can enter Python commands to manipulate the model or to make queries about the example’s
variable values. For instance, the interactive Python sessions in the example documentation can be typed in
directly to see that the expected results are obtained.

¢ Alternatively, these interactive Python sessions, known as doctest blocks, can be invoked as automatic tests:

[$ python setup.py test --examples]

In this way, the documentation and the code are always certain to be consistent.

* Finally, and most importantly, the examples can be used as a templates to design your own problem scripts.

Note: The examples shown in this manual have been written with particular emphasis on serving as both docu-
mentation and as comprehensive tests of the FiPy framework. As explained at the end of examples/diffusion/
steadyState/meshlD.py, your own scripts can be much more succinct, if you wish, and include only the text
that follows the “>>>" and “. . .” prompts shown in these examples.

To obtain a copy of an example, containing just the script instructions, type:

[$ python setup.py copy_script --From x.py --To y.py J

In addition to those presented in this manual, there are dozens of other files in the examples/ directory, that demonstrate
other uses of FiPy. If these examples do not help you construct your own problem scripts, please contact us.

127

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/doc/current/lib/module-doctest.html
mailto:fipy@list.nist.gov

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

128

o 21

Selected Examples

Many FiPy examples are primarily used for integration testing. The following examples are curated to help with
understanding how FiPy is used.

21.1 Diffusion Examples

Selected illustrations of diffusion problems.
e examples.diffusion.meshlD
e examples.diffusion.coupled
e examples.diffusion.mesh20x20
e examples.diffusion.circle
e examples.diffusion.electrostatics
e examples.diffusion.nthOrder.input4thOrderlD

e examples.diffusion.anisotropy

21.2 Convection Examples

Selected illustrations of convection problems.
e examples.convection.exponentiallD.meshlD
e examples.convection.exponentiallDSource.meshlD
e examples.convection.robin

e examples.convection.source

129

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

21.3 Phase Field Examples

Selected illustrations of phase field (Allen-Cahn) moving interface problems.

examples.phase.
examples.phase.
examples.phase.
examples.phase.
examples.phase.
examples.phase.
examples.phase.
examples.phase.

examples.phase.

simple

binary

binaryCoupled
quaternary
anisotropy
impingement.mesh40x1
impingement .mesh20x20
polyxtal
polyxtalCoupled

21.4 Level Set Examples

Selected illustrations of level-set moving interface problems.

examples.levelSet.distanceFunction.meshlD

examples.levelSet.distanceFunction.circle

examples.levelSet.advection.meshlD

examples.levelSet.advection.circle

21.5 Cahn-Hilliard Examples

Selected illustrations of Cahn-Hilliard (spinodal decomposition) problems.

e examples.cahnHilliard.mesh2DCoupled

e examples.cahnHilliard. sphere

21.6 Fluid Flow Examples

Selected illustrations of fluid flow problems.

e examples.flow.stokesCavity

130

Chapter 21. Selected Examples

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

21.7 Reactive Wetting Examples

Selected illustrations of multi-phase evolution.

e examples.reactivelWetting.liquidVaporlD

21.8 Updating FiPy

Demonstrations of how to migrate from older versions of FiPy.

e examples.updating.update2_0to3_0
e examples.updating.updatel_0to2_0

e examples.updating.update®_1tol_0

21.7. Reactive Wetting Examples

131

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

132 Chapter 21. Selected Examples

Part 111

fipy Package Documentation

133

o 22

How to Read the Modules Documentation

Each chapter describes one of the main sub-packages of the fipy package. The sub-package fipy.package can be
found in the directory fipy/package/. In a few cases, there will be packages within packages, e.g. £ipy.package.
subpackage located in fipy/package/subpackage/. These sub-sub-packages will not be given their own chapters;
rather, their contents will be described in the chapter for their containing package.

package Each chapter describes one of the main sub-packages of
the fipy package.

22.1 package

Each chapter describes one of the main sub-packages of the fipy package. The sub-package fipy.package can be
found in the directory fipy/package/. In a few cases, there will be packages within packages, e.g. £ipy.package.
subpackage located in fipy/package/subpackage/. These sub-sub-packages will not be given their own chapters;
rather, their contents will be described in the chapter for their containing package.

Modules

package. subpackage Each chapter describes one of the main sub-packages of
the £ipy package.

22.1.1 package.subpackage

Each chapter describes one of the main sub-packages of the £ipy package. The sub-package fipy.package can be
found in the directory fipy/package/. In a few cases, there will be packages within packages, e.g. £ipy.package.
subpackage located in fipy/package/subpackage/. These sub-sub-packages will not be given their own chapters;
rather, their contents will be described in the chapter for their containing package.

135

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Modules

package. subpackage.base

package. subpackage.object

This module can be found in the file package/
subpackage/base.py. You make it available to your
script by either::.

package.subpackage.base

This module can be found in the file package/subpackage/base.py. You make it available to your script by either:

[import package.subpackage.base

)

in which case you refer to it by its full name of package. subpackage.base, or:

[from package.subpackage import base

in which case you can refer simply to base.

Classes

Base()

With very few exceptions, the name of a class will be the
capitalized form of the module it resides in. Depend-
ing on how you imported the module above, you will
refer to either package. subpackage.object.Object
or object.0Object. Alternatively, you can use::.

class package.subpackage.base.Base

Bases: object

With very few exceptions, the name of a class will be the capitalized form of the module it resides in. Depending
on how you imported the module above, you will refer to either package. subpackage.object.Object or

object.Object. Alternatively, you can use:

[from package.subpackage.object import Object

and then refer simply to Object. For many classes, there is a shorthand notation:

[from fipy import Object

)

Python is an object-oriented language and the FiPy framework is composed of objects or classes. Knowledge of

object-oriented programming (OOP) is not necessary to use either Python or FiPy, but a few concepts are useful.

OOP involves two main ideas:

encapsulation

an object binds data with actions or “methods”. In most cases, you will not work with an object’s data
directly; instead, you will set, retrieve, or manipulate the data using the object’s methods.

Methods are functions that are attached to objects and that have direct access to the data of those objects.

Rather than passing the object data as an argument to a function:

136 Chapter 22. How to Read the Modules Documentation

https://docs.python.org/3/library/functions.html#object

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[fn(data, argl, arg2, ...) J

you instruct an object to invoke an appropriate method:

[object.meth(argl, arg2, ...) }

If you are unfamiliar with object-oriented practices, there probably seems little advantage in this reordering.
You will have to trust us that the latter is a much more powerful way to do things.

inheritance
specialized objects are derived or inherited from more general objects. Common behaviors or data are
defined in base objects and specific behaviors or data are either added or modified in derived objects.
Objects that declare the existence of certain methods, without actually defining what those methods do,
are called “abstract”. These objects exist to define the behavior of a family of objects, but rely on their
descendants to actually provide that behavior.

Unlike many object-oriented languages, Python does not prevent the creation of abstract objects, but we
will include a notice like

Attention: This class is abstract. Always create one of its subclasses.

for abstract classes which should be used for documentation but never actually created in a FiPy script.

methodl1()
This is one thing that you can instruct any object that derives from Base to do, by calling
myObjectDerivedFromBase.methodl ()

Parameters
self (object) — This special argument refers to the object that is being created.

Attention: self is supplied automatically by the Python interpreter to all methods. You
don’t need to (and should not) specify it yourself.

method2 ()
This is another thing that you can instruct any object that derives from Base to do.

package.subpackage.object

Classes

Object(argl[, arg2, arg3]) This method, like all those whose names begin and end
with "__" are special.

class package.subpackage.object.Object (argl, arg2=None, arg3='string")
Bases: Base

This method, like all those whose names begin and end with “__" are special. You won’t ever need to call these
methods directly, but Python will invoke them for you under certain circumstances, which are described in the
Python Reference Manual: Special Method Names.

As an example, the __init__() method is invoked when you create an object, as in:

22.1. package 137

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/reference/datamodel.html#special-method-names

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[obj = Object(argl=something, arg3=somethingElse, ...) J

Parameters

* argl — this argument is required. Python supports named arguments, so you must either list
the value for arg! first:

[obj = Object(vall, val2)]

or you can specify the arguments in any order, as long as they are named:

[obj = Object(arg2=val2, argl=vall) J

* arg2 — this argument may be omitted, in which case it will be assigned a default value of
None. If you do not use named arguments (and we recommend that you do), all required
arguments must be specified before any optional arguments.

* arg3 — this argument may be omitted, in which case it will be assigned a default value of
'string’.

methodl1()
This is one thing that you can instruct any object that derives from Base to do, by calling
myObjectDerivedFromBase.methodl ()

Parameters
self (object) — This special argument refers to the object that is being created.

Attention: self is supplied automatically by the Python interpreter to all methods. You
don’t need to (and should not) specify it yourself.

method2 ()
Object provides a new definition for the behavior of method2 (), whereas the behavior of method1 () is
defined by Base.
fipy An object oriented, partial differential equation (PDE)
solver
examples Demonstration scripts and high-level tests of the fipy
package

138 Chapter 22. How to Read the Modules Documentation

https://docs.python.org/3/library/functions.html#object

Chapter

fipy

An object oriented, partial differential equation (PDE) solver

FiPy is based on a standard finite volume (FV) approach. The framework has been developed in the Materials Science
and Engineering Division (MSED) and Center for Theoretical and Computational Materials Science (CTCMS), in the
Material Measurement Laboratory (MML) at the National Institute of Standards and Technology (NIST).

The solution of coupled sets of PDEs is ubiquitous to the numerical simulation of science problems. Numerous PDE
solvers exist, using a variety of languages and numerical approaches. Many are proprietary, expensive and difficult
to customize. As a result, scientists spend considerable resources repeatedly developing limited tools for specific
problems. Our approach, combining the FV method and Pyhon, provides a tool that is extensible, powerful and freely
available. A significant advantage to Python is the existing suite of tools for array calculations, sparse matrices and
data rendering.

The FiPy framework includes terms for transient diffusion, convection and standard sources, enabling the solution of
arbitrary combinations of coupled elliptic, hyperbolic and parabolic PDEs. Currently implemented models include
phase field [1] [2] [3] treatments of polycrystalline, dendritic, and electrochemical phase transformations, as well as
drug eluting stents [4], reactive wetting [5], photovoltaics [6] and a level set treatment of the electrodeposition process

[7].

Functions
doctest_raw_input(prompt) Replacement for raw_input() that works in doctests
test(*args) Test Fipy. Equivalent to::.

fipy.doctest_raw_input (prompt)
Replacement for raw_input() that works in doctests

This routine attempts to be savvy about running in parallel.

fipy.test(*args)
Test Fipy. Equivalent to:

[$ python setup.py test --modules

Use

139

http://www.nist.gov/mml/msed/
http://www.ctcms.nist.gov/
http://www.nist.gov/mml/
http://www.nist.gov/

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> import fipy
>>> fipy.test('--help')

for a full list of options. Options can be passed in the same way as they are appended at the command line. For
example, to test FiPy with Trilinos and inlining switched on, use

[>>> fipy.test('--trilinos', '--inline')

At the command line this would be:

[$ python setup.py test --modules --trilinos --inline

Modules
fipy.boundaryConditions Boundary conditions
fipy.matrices Sparse matrices
fipy.meshes Domain geometry and topology
fipy.solvers Solving sparse linear systems
fipy.steppers (Obsolete) utilities for iterating time steps
fipy.terms Discretizations of partial differential equation expres-
sions
fipy.testFiPy Test suite for FiPy modules
fipy.tests Unit testing scripts
fipy.tools Utility modules, functions, and values
fipy.variables Collections of values supporting lazy evaluation
fipy.viewers Tools for displaying the values of Variable objects

23.1 fipy.boundaryConditions

Boundary conditions

Modules

fipy.boundaryConditions.boundaryCondition Boundary condition base class

fipy.boundaryConditions.constraint Restriction on value of a Variable
fipy.boundaryConditions. fixedFlux Boundary condition of order 1
fipy.boundaryConditions. fixedValue Boundary condition of order 0
fipy.boundaryConditions. Boundary condition of specified derivative order
nthOrderBoundaryCondition

fipy.boundaryConditions. test Test boundary conditions

140 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.1.1 fipy.boundaryConditions.boundaryCondition

Boundary condition base class

Classes

BoundaryCondition(faces, value) Generic boundary condition base class.

class fipy.boundaryConditions.boundaryCondition.BoundaryCondition (fuces, value)

Bases: object

Generic boundary condition base class.

Attention: This class is abstract. Always create one of its subclasses.

Parameters
» faces (FaceVariable of bool) — Mask of faces where this condition applies.

* value (float) — Value to impose.

—_repr__Q)
Return repr(self).

23.1.2 fipy.boundaryConditions.constraint

Restriction on value of a Variable

Classes

Constraint(value[, where]) Holds a Variable to value at where

class fipy.boundaryConditions.constraint.Constraint (value, where=None)

Bases: object
Holds a Variable to value at where
see constrain()

—_repr__Q
Return repr(self).

23.1. fipy.boundaryConditions 141

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.1.3 fipy.boundaryConditions.fixedFlux

Boundary condition of order 1

Classes

FixedFlux(faces, value) Adds a Neumann contribution to the system of equations.

class fipy.boundaryConditions. fixedFlux.FixedFlux(fuces, value)

Bases: BoundaryCondition
Adds a Neumann contribution to the system of equations.
Implements
- _]faces = value
The contribution, given by value, is only added to entries corresponding to the specified faces, and is weighted
by the face areas.
Parameters
» faces (FaceVariable of bool) — Mask of faces where this condition applies.
* value (float) — Value to impose.

—_repr__Q
Return repr(self).

23.1.4 fipy.boundaryConditions.fixedValue

Boundary condition of order 0

Classes

FixedValue(faces, value) Adds a Dirichlet contribution to the system of equations.

class fipy.boundaryConditions.fixedValue.FixedValue (faces, value)

Bases: BoundaryCondition
Adds a Dirichlet contribution to the system of equations.

Implements

¢ I faces = value

The contributions are given by —value X Giye for the RHS vector and Gi,ce for the coefficient matrix. The
parameter Gy, represents the term’s geometric coefficient, which depends on the type of term and the mesh
geometry.

Contributions are only added to entries corresponding to the specified faces.

Parameters

142

Chapter 23. fipy

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

» faces (FaceVariable of bool) — Mask of faces where this condition applies.
* value (float) — Value to impose.

—_repr__Q
Return repr(self).

23.1.5 fipy.boundaryConditions.nthOrderBoundaryCondition

Boundary condition of specified derivative order

Classes

NthOrderBoundaryCondi tion(faces, value, order) Adds an appropriate contribution to the system of equa-
tions

class fipy.boundaryConditions.nthOrderBoundaryCondition.NthOrderBoundaryCondition (faces,
value,
order)

Bases: BoundaryCondition
Adds an appropriate contribution to the system of equations
Implements
- VO | pyos = value
This boundary condition is generally used in conjunction with a ImplicitDiffusionTerm that has multiple coeffi-
cients. It does not have any direct effect on the solution matrices, but its derivatives do.
Creates an NthOrderBoundaryCondition.
Parameters
» faces (FaceVariable of bool) — Mask of faces where this condition applies.
* value (float) — Value to impose.

» order (int) — Order of the boundary condition. An order of 0 corresponds to a FixedValue
and an order of I corresponds to a FixedFlux. Even and odd orders behave like FixedValue
and FixedFlux objects, respectively, but apply to higher order terms.

——repr__Q
Return repr(self).

23.1.6 fipy.boundaryConditions.test

Test boundary conditions

23.1. fipy.boundaryConditions 143

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.2 fipy.matrices

Sparse matrices

Modules

fipy.matrices.
fipy.matrices.
fipy.matrices.
fipy.matrices.
fipy.matrices.
fipy.matrices.

fipy.matrices.

offsetSparseMatrix
petscMatrix
pysparseMatrix
scipyMatrix
sparseMatrix

test

trilinosMatrix

23.2.1 fipy.matrices.offsetSparseMatrix

Functions

OffsetSparseMatrix(SparseMatrix, ...)

Used in binary terms.

fipy.matrices.offsetSparseMatrix.0ffsetSparseMatrix(SparseMatrix, numberOfVariables,

numberOfEquations, equationlndex, varIndex)

Used in binary terms. equationlndex and varlndex need to be set statically before instantiation.

23.2.2 fipy.matrices.petscMatrix
23.2.3 fipy.matrices.pysparseMatrix
23.2.4 fipy.matrices.scipyMatrix

23.2.5 fipy.matrices.sparseMatrix

23.2.6 fipy.matrices.test

23.2.7 fipy.matrices.trilinosMatrix

23.3 fipy.meshes

Domain geometry and topology

144

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Modules

fipy.meshes.abstractMesh

fipy.meshes.builders

fipy.meshes.cylindricalGridlD

fipy.meshes.cylindricalGrid2D

fipy.meshes.cylindricalNonUniformGridlD 1D Mesh

fipy.meshes.cylindricalNonUniformGrid2D 2D rectangular Mesh

fipy.meshes.cylindricalUniformGridiD 1D Mesh

fipy.meshes.cylindricalUniformGrid2D 2D cylindrical rectangular Mesh with constant spacing
in x and constant spacing in y

fipy.meshes. factoryMeshes

fipy.meshes.gmshMesh

fipy.meshes.gridlD

fipy.meshes.grid2D

fipy.meshes.grid3D

fipy.meshes.mesh

fipy.meshes.meshlD Generic mesh class using numerix to do the calculations

fipy.meshes.mesh2D Generic mesh class using numerix to do the calculations

fipy.meshes.nonUniformGridlD 1D Mesh

fipy.meshes.nonUniformGrid2D 2D rectangular Mesh

fipy.meshes.nonUniformGrid3D

fipy.meshes.periodicGridlD Periodic 1D Mesh

fipy.meshes.periodicGrid2D 2D periodic rectangular Mesh

fipy.meshes.periodicGrid3D 3D periodic rectangular Mesh

fipy.meshes.representations

fipy.meshes. skewedGrid2D

fipy.meshes. sphericalNonUniformGridlD 1D Mesh

fipy.meshes. sphericalUniformGridlD 1D Mesh

fipy.meshes. test Test implementation of the mesh

fipy.meshes. topologies

fipy.meshes. tri2D

fipy.meshes.uniformGrid

fipy.meshes.uniformGridlD 1D Mesh

fipy.meshes.uniformGrid2D 2D rectangular Mesh with constant spacing in x and con-

stant spacing in 'y

continues on next page

23.3. fipy.meshes

145

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Table 1 - continued from previous page

fipy.meshes.uniformGrid3D

23.3.1 fipy.meshes.abstractMesh

Classes
AbstractMesh(communicator][, ...]) A class encapsulating all commonalities among meshes
in FiPy.
Exceptions
MeshAdditionError Exception raised when meshes cannot be concate-
nated.

class fipy.meshes.abstractMesh.AbstractMesh(communicator, _RepresentationClass=<class
fipy.meshes.representations.abstractRepresentation._AbstractRepresentation’
_TopologyClass=<class
fipy.meshes.topologies.abstractTopology._AbstractTopology'>)

Bases: object
A class encapsulating all commonalities among meshes in FiPy.
property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

146 Chapter 23. fipy

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

3.51]

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

23.3. fipy.meshes 147

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

148

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 .5 3.5]
5 3.5]

2
[0.5 0.5 1.5 1.5 2.5 2.5 3.]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baselMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 1.5 2.5
[6.5 0.5 1.5 1.5 0.5 0.5

28511
1.51]

1.5
1.5

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

e nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

23.3. fipy.meshes 149

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).
__sub__ (other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh
property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs
Topology properties

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

150 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

A numerix.nonzero(mesh.facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

23.3. fipy.meshes 151

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2) .x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print(Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

152 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

exception fipy.meshes.abstractMesh.MeshAdditionError
Bases: Exception
Exception raised when meshes cannot be concatenated.
__cause__
exception cause
__context__
exception context
__delattr__(name,/)
Implement delattr(self, name).
__getattribute__(name, /)
Return getattr(self, name).
__reduce__QO
Helper for pickle.
—-repr__QO
Return repr(self).
__setattr__(name, value, /)
Implement setattr(self, name, value).
__str__QO
Return str(self).
add_note()
Exception.add_note(note) — add a note to the exception

with_traceback()

Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

23.3.2 fipy.meshes.builders

23.3. fipy.meshes 153

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Modules

fipy.meshes
fipy.meshes
fipy.meshes
fipy.meshes
fipy.meshes

fipy.meshes

.builders.

.builders.

.builders.

.builders

.builders

.builders.

abstractGridBuilder
gridlDBuilder

grid2DBuilder

.grid3DBuilder

.periodicGridlDBuilder

utilityClasses

fipy.meshes.builders.abstractGridBuilder

fipy.meshes.builders.grid1DBuilder

fipy.meshes.builders.grid2DBuilder

fipy.meshes.builders.grid3DBuilder

fipy.meshes.builders.periodicGrid1DBuilder

fipy.meshes.builders.utilityClasses

23.3.3 fipy.meshes.cylindricalGrid1D

23.3.4 fipy.meshes.cylindricalGrid2D

23.3.5 fipy.meshes.cylindricalNonUniformGrid1D

1D Mesh

Classes

CylindricalNonUniformGrid1D([dx, nx, ...])

Creates a 1D cylindrical grid mesh.

class fipy.meshes.cylindricalNonUniformGrid1D.CylindricalNonUniformGridlD (dx=1.0, nx=None,

Bases: NonUniformGridlD

Creates a 1D cylindrical grid mesh.

origin=(0,),
overlap=2,
communica-
tor=DummyComm(),
*args, **kwargs)

154

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

r>>> mesh = CylindricalNonUniformGridilD(nx
>>> print(mesh.cellCenters)
[[6.5 1.5 2.5]]

3)

>>> mesh = CylindricalNonUniformGridlD(dx = (1, 2, 3))
>>> print(mesh.cellCenters)
[[0.5 2. 4.5]]

r>>> print(numerix.allclose(mesh.cellVolumes, (0.5, 4., 13.5)))
True

L

>>> mesh = CylindricalNonUniformGridlD(nx = 2, dx = (1, 2, 3))
Traceback (most recent call last):

IndexError: nx != len(dx)

L

-

>>> mesh = CylindricalNonUniformGridlD(nx=2, dx=(1., 2.)) + ((1.,),)
>>> print(mesh.cellCenters)

[[1.5 3. 1]
>>> print(numerix.allclose(mesh.cellVolumes, (1.5, 6)))
True

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[6.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

23.3. fipy.meshes 155

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.

[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 .5 3.5]
5 3.5]

2
[0.5 0.5 1.5 1.5 2.5 2.5 3.]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

156

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

Lo B e B e |
(== I—]
(O, I, IV, |
S DK
(O, I, IV, |
S~
(O, I, IV, |
S = =
(O, I, IV, |
==
(O, I, IV, |
= Q=
(O, I, IV, |
L
(O, I, IV, |
_ R
(O, I, IV, |
2N
(O I, T, |
—t e

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)

(continues on next page)

23.3. fipy.meshes 157

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
. 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
B cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

158

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

- 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d
- nx = 2, ny , hz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, d , dz = 1.0,
- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,

_
(=]

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

(continues on next page)

23.3. fipy.meshes 159

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[5 4.5 1.5 4.5]
1

[1.
[1. B 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__ (other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

160 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

A numerix.nonzero(mesh.facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

23.3. fipy.meshes 161

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2) .x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print(Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

162 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.6 fipy.meshes.cylindricalNonUniformGrid2D

2D rectangular Mesh

Classes

CylindricalNonUniformGrid2D([dx, dy, nx, ...]) Creates a 2D cylindrical grid mesh with horizontal faces
numbered first and then vertical faces.

class fipy.meshes.cylindricalNonUniformGrid2D.CylindricalNonUniformGrid2D (dx=1.0, dy=1.0,
nx=None,
ny=None,
origin=((0.0,),
(0.0,)), overlap=2,
communica-
tor=DummyComm(),
*args, **kwargs)

Bases: NonUniformGrid2D
Creates a 2D cylindrical grid mesh with horizontal faces numbered first and then vertical faces.
property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

23.3. fipy.meshes 163

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

3.51]

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

164 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

23.3. fipy.meshes 165

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
[6.5 0.5 1.5 1.5 0.5 0.5 1.

5 2.5]
5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
cas 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,

(continues on next page)

166 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, 0.5, 1.5, 1.5, 1., 1.,

>>> print (numerix.allclose(triAddedMesh.cellCenters,
A cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5 0.5]]

(01)’

0,3

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

23.3. fipy.meshes

167

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]
1. 1. 3. 3.11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-

Grid1D’

__truediv__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D

The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of

layers.

[[.5 1.5 0.5 1.5 0.5
[0.5 0.5 1.5 1.5 0.5
[0.5 0.5 0.5 0.5

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

1.5 0.5 1.5]
0.5 1.5 1.5]
1.5 1.5 1.511

N 0.16666667, 0.5,

‘—’]!

>>> from fipy.meshes.tri2D import Tri2D
>>> print(Tri2D() .extrude(layers=2).cellCenters.allclose([[©.83333333, 0.5,

0.83333333, 0.5,
0.16666667, 0.5

500 [0.5, 0.
—83333333, 0.5, 0.16666667, 0.5, 0.83333333,
noa 0.5, 0.
—16666667] ,
- [0.5, 0.5, o
o 0.5, 0.5, 1.5, 1.5, 1.5,
500 1.5 1))
True

168 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Parameters
¢ extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will

be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),
numerix.nonzero(mesh. facesFront)[0]))
(continues on next page)

23.3. fipy.meshes 169

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

170 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3. fipy.meshes 171

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.3.7 fipy.meshes.cylindricalUniformGrid1D

1D Mesh

Classes

CylindricalUniformGridlD([dx, nx, origin, ...]) Creates a 1D cylindrical grid mesh.

class fipy.meshes.cylindricalUniformGridlD.CylindricalUniformGridlD (dx=1.0, nx=1, origin=(0,),

overlap=2, communica-
tor=DummyComm(), *args,
**kwargs)

Bases: UniformGridlD

Creates a 1D cylindrical grid mesh.

>>> mesh = CylindricalUniformGridlD(nx = 3)
>>> print(mesh.cellCenters)
[[.5 1.5 2.5]]

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2
[6.5 0.5 1.5 1.5 0.5 0.5 1

3.5]

03
.5 1.51]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

172

Chapter 23. fipy

FiPy Manual, Release 3.99+1

.g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]

]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

23.3. fipy.meshes

173

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(===
(O, BNV, BT,
S D+~
(O, BNV, BT,
S = D
[0, BNV, BT,
(=R
(O, IO, BT,
= =]
(O, IO, BT,
=
(O, IO, BT,
= =
(O, IO, BT,
=
(O, BT, BT,
S 2N

L B e B |

(S, BV, |

]
]
1]

(continued from previous page)

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests.

>>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D

>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,),
>>> print(translatedMesh.cellCenters)
[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

(10,))

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,),
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5 2

2> 3J.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5

1.51]

(0,3

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5
[.5 0.5 1.5 1.5 2.5 2.5

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.5 4.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]
>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

174

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

0D
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- =2, ny =2, nz=2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q

23.3. fipy.meshes 175

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return repr(self).

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs
property exteriorFaces

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True

(continues on next page)

176 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

A numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)

(continues on next page)

23.3. fipy.meshes 177

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
[0.5 0.5 0.5 6.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):
(continues on next page)

178 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.8 fipy.meshes.cylindricalUniformGrid2D

2D cylindrical rectangular Mesh with constant spacing in x and constant spacing in y

Classes

CylindricalUniformGrid2D([dx, dy, nx, ny, ...]) Creates a 2D cylindrical grid in the radial and axial di-
rections, appropriate for axial symmetry.

class fipy.meshes.cylindricalUniformGrid2D.CylindricalUniformGrid2D (dx=1.0, dy=1.0, nx=1I,
ny=1, origin=((0,), (0,)),
overlap=2, communica-
tor=DummyComm(), *args,
**kewargs)

Bases: UniformGrid2D
Creates a 2D cylindrical grid in the radial and axial directions, appropriate for axial symmetry.
property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

23.3. fipy.meshes 179

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.
[.5 0.5 1.5 1.5 2.5 2.5 3.

3.5]

5
5 3.5]1]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]

[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,
e 1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy
500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0

1.
nx = 1,

(continues on next page)

180

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotlmplementedError
__getstate__Q)
Helper for pickle.

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]

]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

(continues on next page)

23.3. fipy.meshes 181

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

Lo B e |
(==}
vl U
S
vl
=]
vl un
=
vl
NN
vl

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

e cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
raa cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
- nx = 2, ny = 2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,
nx =1, ny = 1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

182 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).
__sub__ (other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh. facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 183

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

A numerix.nonzero(mesh.facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

184 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2) .x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print(Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

23.3. fipy.meshes 185

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[0.5

(continued from previous page)

0.5 0.5 0.5 1.5 1.5 1.5 1.5]

>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.9 fipy.meshes.factoryMeshes

Functions
CylindricalGridiD([dr, nr, Lr, dx, nx, Lx, ...]) Create a 2D cylindrical mesh
CylindricalGrid2D([dr, dz, nr, nz, Lr, Lz, ...]) Create a 2D cylindrical mesh
GridiD([dx, nx, Lx, overlap, communicator]) Create a 1D Cartesian mesh
Grid2D([dx, dy, nx, ny, Lx, Ly, overlap, ...]) Create a 2D Cartesian mesh
Grid3D([dx, dy, dz, nx, ny, nz, Lx, Ly, Lz, ...]) Create a 3D Cartesian mesh
SphericalGridlD([dr, nr, Lr, dx, nx, Lx, ...]) Create a 1D spherical mesh

fipy.meshes. factoryMeshes.CylindricalGrid1D (dr=None, nr=None, Lr=None, dx=1.0, nx=None,

Lx=None, origin=(0,), overlap=2,
communicator=DummyComm())

Create a 2D cylindrical mesh

Factory function to select between CylindricalUniformGridlD and CylindricalNonUniformGridiD. If
Lr is specified the length of the domain is always Lr regardless of dr, unless dr is a list of spacings, in which
case Lr will be the sum of dr.

Parameters

dr (float) — Grid spacing in the radial direction. Alternative: dx.
nr (int) — Number of cells in the radial direction. Alternative: nx.
Lr (float) — Domain length in the radial direction. Alternative: Lx.

overlap (int) — the number of overlapping cells for parallel simulations. Generally 2 is
adequate. Higher order equations or discretizations require more.

communicator (Commlirapper) — MPI communicator to use. Select serialComm to
create a serial mesh when running in parallel; mostly used for test purposes. (default:
parallelComm).

fipy.meshes. factoryMeshes.CylindricalGrid2D (dr=None, dz=None, nr=None, nz=None, Lr=None,

Lz=None, dx=1.0, dy=1.0, nx=None, ny=None, Lx=None,
Ly=None, origin=((0,), (0,)), overlap=2,
communicator=DummyComm())

Create a 2D cylindrical mesh

Factory function to select between CylindricalUniformGrid2D and CylindricalNonUniformGrid2D. If
Lr is specified the length of the domain is always Lr regardless of dr, unless dr is a list of spacings, in which
case Lr will be the sum of dr.

Parameters

* dr (float) — Grid spacing in the radial direction. Alternative: dx.

186

Chapter 23. fipy

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

dz (float) — grid spacing in the vertical direction. Alternative: dy.
nr (int) — Number of cells in the radial direction. Alternative: nx.

nz (int) — Number of cells in the vertical direction. Alternative: ny.
Lr (float) — Domain length in the radial direction. Alternative: Lx.
Lz (float) — Domain length in the vertical direction. Alternative: Ly.

overlap (int) — the number of overlapping cells for parallel simulations. Generally 2 is
adequate. Higher order equations or discretizations require more.

communicator (Commirapper) — MPI communicator to use. Select serialComm to
create a serial mesh when running in parallel; mostly used for test purposes. (default:
parallelComm).

fipy.meshes. factoryMeshes.Grid1D (dx=1.0, nx=None, Lx=None, overlap=2,

communicator=DummyComm())

Create a 1D Cartesian mesh

Factory function to select between UniformGridlD and NonUniformGridlD. If Lx is specified the length of

the domain is

always Lx regardless of dx, unless dx is a list of spacings, in which case Lx will be the sum of dx

and nx will be the count of dx.

Parameters

dx (float) — Grid spacing in the horizontal direction
nx (int) — Number of cells in the horizontal direction
Lx (float) — Domain length in the horizontal direction

overlap (int) — Number of overlapping cells for parallel simulations. Generally 2 is ade-
quate. Higher order equations or discretizations require more.

communicator (Commlirapper) — MPI communicator to use. Select serialComm to
create a serial mesh when running in parallel; mostly used for test purposes. (default:
parallelComm).

fipy.meshes. factoryMeshes.Grid2D (dx=1.0, dy=1.0, nx=None, ny=None, Lx=None, Ly=None, overlap=2,

communicator=DummyComm())

Create a 2D Cartesian mesh

Factory function to select between UniformGrid2D and NonUniformGrid2D. If L{x,y} is specified, the length
of the domain is always L{x,y/ regardless of d{x,y/, unless d{x,y} is a list of spacings, in which case L{x,y} will
be the sum of d{x,y} and n{x,y} will be the count of d{x,y}.

>>> print (Grid2D(Lx=3., nx=2).dx)

1.5

Parameters

dx (float) — Grid spacing in the horizontal direction
dy (float) — Grid spacing in the vertical direction

nx (int) — Number of cells in the horizontal direction
ny (int) — Number of cells in the vertical direction

Lx (float) — Domain length in the horizontal direction

Ly (float) — Domain length in the vertical direction

23.3. fipy.meshes 187

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

overlap (int) — Number of overlapping cells for parallel simulations. Generally 2 is ade-
quate. Higher order equations or discretizations require more.

communicator (Commiirapper) — MPI communicator to use. Select serialComm to
create a serial mesh when running in parallel; mostly used for test purposes. (default:
parallelComm).

fipy.meshes. factoryMeshes.Grid3D(dx=1.0, dy=1.0, dz=1.0, nx=None, ny=None, nz=None, Lx=None,

Ly=None, Lz=None, overlap=2, communicator=DummyComm())

Create a 3D Cartesian mesh

Factory function to select between UniformGrid3D and NonUniformGrid3D. If L{x,y,z} is specified, the length
of the domain is always L{x,y,z} regardless of d{x,y,z}, unless d{x,y,z/} is a list of spacings, in which case L{x,y,z}
will be the sum of dfx,y,z} and n{x,y,z} will be the count of d{fx,y,z/.

Parameters

dx (float) — Grid spacing in the horizontal direction
dy (float) — Grid spacing in the vertical direction

dz (float) — Grid spacing in the depth direction

nx (int) — Number of cells in the horizontal direction
ny (int) — Number of cells in the vertical direction

nz (int) — Number of cells in the depth direction

Lx (float) — Domain length in the horizontal direction
Ly (float) — Domain length in the vertical direction
Lz (float) — Domain length in the depth direction

overlap (int) — Number of overlapping cells for parallel simulations. Generally 2 is ade-
quate. Higher order equations or discretizations require more.

communicator (Commlirapper) — MPI communicator to use. Select serialComm to
create a serial mesh when running in parallel; mostly used for test purposes. (default:
parallelComm).

fipy.meshes. factoryMeshes.SphericalGridlD (dr=None, nr=None, Lr=None, dx=1.0, nx=None, Lx=None,

origin=(0,), overlap=2, communicator=DummyComm())

Create a 1D spherical mesh

Factory function to select between SphericalUniformGridlD and SphericalNonUniformGridlD. If Lr is
specified the length of the domain is always Lr regardless of dr, unless dr is a list of spacings, in which case Lr
will be the sum of dr.

Parameters

dr (float) — Grid spacing in the radial direction. Alternative: dx.
nr (int) — Number of cells in the radial direction. Alternative: nx.
Lr (float) — Domain length in the radial direction. Alternative: Lx.

overlap (int) — the number of overlapping cells for parallel simulations. Generally 2 is
adequate. Higher order equations or discretizations require more.

communicator (Commiirapper) — MPI communicator to use. Select serialComm to
create a serial mesh when running in parallel; mostly used for test purposes. (default:
parallelComm).

188

Chapter 23. fipy

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.3.10 fipy.meshes.gmshMesh

Functions

gmshVersion([communicator])
openMSHF1ile(name[, dimensions, ...])
openPOSFile(name[, communicator, mode])

Determine the version of Gmsh.
Open a Gmsh MSH file
Open a Gmsh POS post-processing file

Classes

Gmsh2D(arg[, coordDimensions, communicator, ...])
Gmsh2DIn3DSpace(arg[, communicator, ...])

Gmsh3D(arg[, communicator, overlap, background])
GmshFile(filename, communicator, mode][, ...])
GmshGrid2D([dx, dy, nx, ny, ...])
GmshGrid3D([dx, dy, dz, nx, ny, nz, ...])
MSHF1i1e(filename, dimensions|, ...])
POSF1ile(filename, communicator, modef[, ...])

Construct a 2D Mesh using Gmsh

Create a topologically 2D Mesh in 3D coordinates using
Gmsh

Create a 3D Mesh using Gmsh

Base class for Gmsh mesh storage files.

Should serve as a drop-in replacement for Grid2D
Should serve as a drop-in replacement for Grid3D
Wrapper for Gmsh MSH storage files.

Wrapper for Gmsh POS mesh storage files.

Exceptions
GmshException Exception raised for Gmsh error conditions.
MeshExportError Exception raised when FiPy mesh cannot be exported

to Gmsh.

class fipy.meshes.gmshMesh.Gmsh2D (arg, coordDimensions=2, communicator=DummyComm(), overlap=1,
background=None)

Bases: Mesh2D
Construct a 2D Mesh using Gmsh

If called in parallel, the mesh will be partitioned based on the value of parallelComm.Nproc. If an MSH file is
supplied, it must have been previously partitioned with the number of partitions matching parallelComm.Nproc.

>>> radius = 5.
>>> side = 4.
>>> squaredCircle = Gmsh2D('''

. cellSize = 1;
. radius = ;
. side = ;

. // A mesh consisting of a square inside a circle inside a circle

. // define the basic dimensions of the mesh

. // define the compass points of the inner circle

(continues on next page)

23.3. fipy.meshes

189

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

.. Point(1)
.. Point(2)
.. Point(3)
.. Point(4)

. Point(5)

.. Point(6)
. Point(7)
.. Point(8)
. Point(9)

. // define

. Point(10)
.. Point(11)
.. Point(12)

. Point(13)

. // define

.. Circle(l)
.. Circle(2)
.. Circle(3)

. Circle(4)

. // define
.. Circle(5)
.. Circle(6)

. Circle(7)

. Circle(8)

. // define

.. Line(10)
.. Line(11)
. Line(12)

. Line Loop(l)
. Line Loop(2)
. Line Loop(3)

.. Plane Surface(l)
.. Plane Surface(2)
. Plane Surface(3) = {3};

{0, 0, 0, cellSize};

{-radius, 0, 0, cellSize};
{0, radius, 0, cellSize};
{radius, 0, 0, cellSize};
{0, -radius, 0, cellSize};

. // define the compass points of the outer circle

{-2*radius, 0, 0, cellSize};
{0, 2*radius, 0, cellSize};
{2*radius, 0, 0, cellSize};
{0, -2*radius, 0, cellSize};

the corners of the square

{side/2, side/2, 0, cellSize/2};

{-side/2, side/2, 0, cellSize/2};
{-side/2, -side/2, 0O, cellSize/2};
{side/2, -side/2, 0, cellSize/2};

the inner circle

= {2, 1, 3};
= {3, 1, 4};
= {4, 1, 5};
= {5, 1, 2};

the outer circle

= {6, 1, 73};
= {7, 1, 8};
= {8, 1, 9};
= {9, 1, 6};

the square

-: Line(9) = {10, 13};

{13, 123};
{12, 11};
{11, 10};

. // define the three boundaries

{1, 2, 3, 4};
{5, 6, 7, 8};
{9, 10, 11, 12};

. // define the three domains

2, ke
{1, 33};

(continued from previous page)

(continues on next page)

190

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

. // label the three domains

. // attention: if you use any "Physical" labels, you *must® label

. // all elements that correspond to FiPy Cells (Physical Surface in 2D
. // and Physical Volume in 3D) or Gmsh will not include them and FiPy
. // will not be able to include them in the Mesh.

. // note: if you do not use any labels, all Cells will be included.

. Physical Surface("Outer") = {1};
.. Physical Surface("Middle") = {2};
. Physical Surface("Inner") = {3};

. // label the "north-west" part of the exterior boundary

. // note: you only need to label the Face elements

. // (Physical Line in 2D and Physical Surface in 3D) that correspond
. // to boundaries you are interested in. FiPy does not need them to
. // construct the Mesh.

. Physical Line("NW") = {5};
""" % locals(Q))

.

It can be easier to specify certain domains and boundaries within Gmsh than it is to define the same domains and
boundaries with FiPy expressions.

Here we compare obtaining the same Cells and Faces using FiPy’s parametric descriptions and Gmsh’s labels.

[>>> X, y = squaredCircle.cellCenters

r>>> middle = ((x**2 + y**2 <= radius**2)
& ~((x > -side/2) & (x < side/2)
& (y > -side/2) & (y < side/2)))

.

r>>> print((middle == squaredCircle.physicalCells["Middle"]).all())
True

&

{>>> X, Y = squaredCircle.faceCenters

(>>> NW = ((X**2 + Y**2 > (1.99*radius)**2)
& (X**2 + Y**2 < (2.01%radius)**2)
& X <=0) & (Y >= 0))

(>>> print ((NW == squaredCircle.physicalFaces["NW"]).all())
True

.

It is possible to direct Gmsh to give the mesh different densities in different locations

-

>>> geo = '''
... // A mesh consisting of a square

(continues on next page)

23.3. fipy.meshes 191

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

.. Point(1)
.. Point(2)
.. Point(3)

. Point(4)

. // define

. Line(1l)
.. Line(2)
.. Line(3)

. Line(4) =

. // define

. // define the corners of the square

{1, 1, 0, 1};
{0, 1, 0, 1};
{0, 0, 0, 1};
{1, 0, 0, 1};

the square

{1, 2};
{2, 3};
{3, 4};
{4, 13};

the boundary

. Line Loop(1) = {1, 2, 3, 4};
. // define the domain

. Plane Surface(l) = {1};

(continued from previous page)

[>>> from fipy import CellVariable, numerix

>>> error = [

]

>>> bkg = None
>>> from builtins import range
>>> for refine in range(4):
square = Gmsh2D(geo, background=bkg)
X, y = square.cellCenters
bkg = CellVariable(mesh=square, value=abs(x / 4) + 0.01)
- error.append(((2 * numerix.sqrt(square.cellVolumes) / bkg - 1)%%2).
—-cellVolumeAverage)

Check that the mesh is (semi)monotonically approaching the desired density (the first step may increase, depend-
ing on the number of partitions)

True

>>> print(numerix.greater(error[:-1], error[1:]).all())

and that the final density is close enough to the desired density

True

.

>>> print(error[-1] < 0.02)

The initial mesh doesn’t have to be from Gmsh

[>>> from fipy import Tri2D

192

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> trisquare = Tri2D(nx=1, ny=1)
>>> X, y = trisquare.cellCenters
>>> bkg = CellVariable(mesh=trisquare, value=abs(x / 4) + 0.01)
>>> stdl = (numerix.sqrt(2 * trisquare.cellVolumes) / bkg).std(

>>> square = Gmsh2D(geo, background=bkg)

>>> X, y = square.cellCenters

>>> bkg = CellVariable(mesh=square, value=abs(x / 4) + 0.01)
>>> std2 = (numerix.sqrt(2 * square.cellVolumes) / bkg).std()

>>> print(stdl > std2)
True

Parameters

* arg (str) — (i) the path to an MSH file, (ii) a path to a Gmsh geometry (.geo) file, or (iii) a
Gmsh geometry script

» coordDimensions (int) — Dimension of shapes

e overlap (int) — The number of overlapping cells for parallel simulations. Generally 1 is
adequate. Higher order equations or discretizations require more. If overlap is greater than
one, communication reverts to serial, as Gmsh only provides one layer of ghost cells.

* background (CellVariable) — Specifies the desired characteristic lengths of the mesh
cells

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

23.3. fipy.meshes 193

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.
[.5 0.5 1.5 1.5 2.5 2.5 3.

3.5]

5
5 3.5]1]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]

[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,
e 1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy
500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0

1.
nx = 1,

(continues on next page)

194

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baselMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

23.3. fipy.meshes 195

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

196

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

B 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

23.3. fipy.meshes 197

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells
property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print(Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, o

o 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 o
-1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
166666677,
[0.5, 0.5, =
. 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 110
True

Parameters

198 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

* extrudeFunc (function) — Takes the vertex coordinates and returns the displaced values
¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh.facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

23.3. fipy.meshes 199

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

. numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (humerix.allequal ((12, 16),

Ja0 numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True

(continues on next page)

200 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.gmshMesh.Gmsh2DIn3DSpace (arg, communicator=DummyComm(), overlap=1,
background=None)

Bases: Gmsh2D
Create a topologically 2D Mesh in 3D coordinates using Gmsh

If called in parallel, the mesh will be partitioned based on the value of parallelComm.Nproc. If an MSH file is
supplied, it must have been previously partitioned with the number of partitions matching parallelComm.Nproc.

Parameters

* arg (str) — (i) the path to an MSH file, (ii) a path to a Gmsh geometry (.geo) file, or (iii) a
Gmsh geometry script

» coordDimensions (int) — Dimension of shapes

» overlap (int) — The number of overlapping cells for parallel simulations. Generally 1 is
adequate. Higher order equations or discretizations require more. If overlap is greater than
one, communication reverts to serial, as Gmsh only provides one layer of ghost cells.

23.3. fipy.meshes 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

» background (CellVariable) — Specifies the desired characteristic lengths of the mesh
cells

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

202

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[60.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
- nx = 2, ny =2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

__mul__(factor)
Dilate a Mesh by factor.

23.3. fipy.meshes 203

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

204

Chapter 23. fipy

FiPy Manual, Release 3.99+1

.g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]

]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

23.3. fipy.meshes

205

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(===
(O, BNV, BT,
S D+~
(O, BNV, BT,
S = D
[0, BNV, BT,
(=R
(O, IO, BT,
= =]
(O, IO, BT,
=
(O, IO, BT,
= =
(O, IO, BT,
=
(O, BT, BT,
S 2N
(O, IO, BT,

]
]
]

]

L B e B |

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells
property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print(Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, .

. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 ar
=71,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
- 16666667] ,
[0.5, 0.5, o
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11))
True
Parameters

¢ extrudeFunc (function) — Takes the vertex coordinates and returns the displaced values
* layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

. numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)

(continues on next page)

23.3. fipy.meshes 207

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

cas numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(humerix.allequal ((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

. numerix.nonzero(mesh.facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

cas numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

208 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

A numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

. numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

23.3. fipy.meshes 209

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z

Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.gmshMesh.Gmsh3D(arg, communicator=DummyComm(), overlap=1, background=None)

Bases: Mesh
Create a 3D Mesh using Gmsh

If called in parallel, the mesh will be partitioned based on the value of parallelComm.Nproc. If an MSH file is
supplied, it must have been previously partitioned with the number of partitions matching parallelComm.Nproc.

Parameters

* arg (str) — (i) the path to an MSH file, (ii) a path to a Gmsh geometry (.geo) file, or (iii) a
Gmsh geometry script

» overlap (int) — The number of overlapping cells for parallel simulations. Generally 1 is
adequate. Higher order equations or discretizations require more. If overlap is greater than
one, communication reverts to serial, as Gmsh only provides one layer of ghost cells.

* background (CellVariable) — Specifies the desired characteristic lengths of the mesh
cells

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

—_add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

210

Chapter 23. fipy

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baselMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
A 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

(continues on next page)

23.3. fipy.meshes 211

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[@5 @by 105y 105y Loy oy

>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

0,), 0,2

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

(continues on next page)

212

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[5 4.5 1.5 4.5]
1

[1.
[1. B 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.5 4.5]
[.5 ©®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 1.5 2.5
[0.5 0.5 1.5 1.5 0.5 0.5

2.5]

1.5
1.5 1.5]]

Different Mesh classes can be concatenated

23.3. fipy.meshes 213

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[60.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx = 2, ny:2,nz:2)

>>> threeDSecondMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
(continues on next page)

214 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[0.5 1.5
[0.5 0.5

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True

>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 215

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

216 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

23.3. fipy.meshes 217

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

exception fipy.meshes.gmshMesh.GmshException
Bases: Exception

Exception raised for Gmsh error conditions.

—-cause__
exception cause

——context__
exception context

__delattr__(name,/)
Implement delattr(self, name).

__getattribute__(name, /)
Return getattr(self, name).

__reduce__QO

Helper for pickle.

—_repr__Q
Return repr(self).
__setattr__(name, value, /)

Implement setattr(self, name, value).

_str__Q
Return str(self).

add_note()
Exception.add_note(note) — add a note to the exception

with_traceback()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

218

Chapter 23. fipy

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

class fipy.meshes.gmshMesh.GmshFile (filename, communicator, mode, filelsTemporary=False)
Bases: object
Base class for Gmsh mesh storage files.

class fipy.meshes.gmshMesh.GmshGrid2D (dx=1.0, dy=1.0, nx=1, ny=None, coordDimensions=2,
communicator=DummyComm(), overlap=1)

Bases: Gmsh2D
Should serve as a drop-in replacement for Grid2D
property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

—_add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2
[.5 0.5 1.5 1.5 2.5 2.5 3

.5 3.5]
-5 3511

No provision is made to avoid or consolidate overlapping Mesh objects

23.3. fipy.meshes 219

https://docs.python.org/3/library/functions.html#object

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 .5
5

1 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.

1.5711

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

e cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx .0, dy = 1.0, dz = 1.0,

A nx = 1, ny = 1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

(=]

<

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

220

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

(continues on next page)

23.3.

fipy.meshes 221

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(==}

v n
=)

[E R

Lo B e |
S =
v n
v n
v n
S N
v n
S w
v n

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 5

Ao
3o 3.5]11

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

85
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

222

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

23.3. fipy.meshes 223

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh
property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print (Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, o

. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 ar
=1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
-16666667] ,
[0.5, 0.5, -
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11))
True

Parameters

» extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack)[0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

224

Chapter 23. fipy

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

23.3. fipy.meshes 225

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

226 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.gmshMesh.GmshGrid3D(dx=1.0, dy=1.0, dz=1.0, nx=1, ny=None, nz=None,
communicator=DummyComm(), overlap=1)

Bases: Gmsh3D
Should serve as a drop-in replacement for Grid3D
property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

23.3. fipy.meshes 227

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.
[.5 0.5 1.5 1.5 2.5 2.5 3.

3.5]

5
5 3.5]1]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]

[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,
e 1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy
500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0

1.
nx = 1,

(continues on next page)

228

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baselMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

23.3. fipy.meshes 229

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

230

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

B 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

23.3. fipy.meshes 231

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack)[0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

232

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh.facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

23.3. fipy.meshes 233

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

A numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

234 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[.5 6.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.gmshMesh.MSHFile (filename, dimensions, coordDimensions=None,

communicator=DummyComm(), gmshOutput="", mode="r',
filelsTemporary=False)

Bases: GmshFile

Wrapper for Gmsh MSH storage files.

Class responsible for parsing a Gmsh file and then readying its contents for use by a Mesh constructor.

Can handle a partitioned mesh based on parallelComm.Nproc. If partitioning, the .msh file must either be pre-
viously partitioned with the number of partitions matching Nproc, or the mesh must be specified with a .geo file
or multiline string.

Does not support gmsh versions < 2. If partitioning, gmsh version must be >= 2.5.

TODO: Refactor face extraction functions.

Parameters

» filename (str)— Gmsh output file
e dimensions (int) — Dimension of mesh
» coordDimensions (int) — Dimension of shapes

e communicator (CommWrapper) - Generally, fipy.tools.serial Comm or
fipy.tools.parallelComm. Select ~fipy.tools.serialComm to create a serial mesh when
running in parallel; mostly used for test purposes.

» gmshOutput (str) — Output (if any) from Gmsh run that created .msh file

* mode (str) — Beginning with r for reading and w for writing. The file will be created if it
doesn’t exist when opened for writing; it will be truncated when opened for writing. Add a
b to the mode for binary files.

o fileIsTemporary (bool) — If True, filename should be cleaned up on deletion

makeMapVariables (mesh)

Utility function to make MeshVariables that define different domains in the mesh

read()

0.
1.
2.
3.
4,

Build cellsToVertices

Recover needed vertexCoords and mapping from file using cellsToVertices
Build cellsToVertIDs proper from vertexCoords and vertex map

Build faces

Build cellsToFaces

Isolate relevant data into three files, store in self.nodesPath for $Nodes, self.elemsPath for $Elements.
self.namesFile for $PhysicalNames.

Returns vertexCoords, facesToVertexID, cellsToFacelD,

cellGloballDMap, ghostCellGloballDMap.

23.3. fipy.meshes 235

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

exception fipy.meshes.gmshMesh.MeshExportError
Bases: GmshException

Exception raised when FiPy mesh cannot be exported to Gmsh.

__cause__
exception cause

__context__
exception context

__delattr__(name,/)
Implement delattr(self, name).

__getattribute__(name,/)

Return getattr(self, name).
__reduce__QO

Helper for pickle.

—_repr__Q)
Return repr(self).

__setattr__(name, value, /)
Implement setattr(self, name, value).

__str__QO
Return str(self).

add_note()
Exception.add_note(note) — add a note to the exception

with_traceback()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

class fipy.meshes.gmshMesh.POSFile (filename, communicator, mode, filelsTemporary=False)
Bases: GmshFile

Wrapper for Gmsh POS mesh storage files.

fipy.meshes.gmshMesh.gmshVersion(communicator=DummyComm())

Determine the version of Gmsh.

We can’t trust the generated .msh file for the correct version number, so we have to retrieve it from the gmsh
binary.

fipy.meshes.gmshMesh.openMSHFile (name, dimensions=None, coordDimensions=None,
communicator=DummyComm(), overlap=1, mode="r",
background=None)

Open a Gmsh MSH file
Parameters
» filename (str)— Gmsh output file
e dimensions (int) — Dimension of mesh
» coordDimensions (int) — Dimension of shapes

» overlap (int) — The number of overlapping cells for parallel simulations. Generally 1 is
adequate. Higher order equations or discretizations require more. If overlap is greater than
one, communication reverts to serial, as Gmsh only provides one layer of ghost cells.

236 Chapter 23. fipy

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

» mode (str) — Beginning with r for reading and w for writing. The file will be created if it
doesn’t exist when opened for writing; it will be truncated when opened for writing. Add a
b to the mode for binary files.

* background (CellVariable) — Specifies the desired characteristic lengths of the mesh
cells

fipy.meshes.gmshMesh.openPOSFile (name, communicator=DummyComm(), mode="w")

Open a Gmsh POS post-processing file

23.3.11 fipy.meshes.grid1D
23.3.12 fipy.meshes.grid2D
23.3.13 fipy.meshes.grid3D
23.3.14 fipy.meshes.mesh

Classes

Mesh (vertexCoords, faceVertexIDs, cellFacelDs) Generic mesh class using numerix to do the calculations

Exceptions

MeshAdditionError

class fipy.meshes.mesh.Mesh(vertexCoords, faceVertexIDs, cellFacelDs, communicator=DummyCommy(),
_RepresentationClass=<class
'fipy.meshes.representations.meshRepresentation._MeshRepresentation'>,
_TopologyClass=<class
'fipy.meshes.topologies.meshTopology._MeshTopology'>)

Bases: AbstractMesh

Generic mesh class using numerix to do the calculations
Meshes contain cells, faces, and vertices.

This is built for a non-mixed element mesh.

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh
__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

23.3. fipy.meshes 237

https://docs.python.org/3/library/stdtypes.html#str

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

238

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

B 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

__mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[6.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

23.3. fipy.meshes 239

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
(continues on next page)

240

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

Lo B e |
(==}
vl »n
S
vl »n
=]
vl »n
_
vl »n
S
vl n
S N
vl »n
_
vl n
= N
vl n
—_

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

e cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,
. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

>>> print(numerix.allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

e nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

23.3. fipy.meshes 241

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[6.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3o 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh. facesBack.value

242

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh. facesLeft.value

23.3. fipy.meshes 243

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

- numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

244 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

exception fipy.meshes.mesh.MeshAdditionError
Bases: Exception

__cause__

exception cause
__context__

exception context
__delattr__(name,/)

Implement delattr(self, name).
__getattribute__(name, /)

Return getattr(self, name).
__reduce__QO

Helper for pickle.
—-repr__QO

Return repr(self).
__setattr__(name, value, /)

Implement setattr(self, name, value).
__str__QO

Return str(self).
add_note()

Exception.add_note(note) — add a note to the exception

with_traceback()

Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

23.3. fipy.meshes 245

https://docs.python.org/3/library/exceptions.html#Exception

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.3.15 fipy.meshes.mesh1D

Generic mesh class using numerix to do the calculations
Meshes contain cells, faces, and vertices.

This is built for a non-mixed element mesh.

Classes

Mesh1D(vertexCoords, faceVertexIDs, cellFacelDs)

class fipy.meshes.mesh1D.MeshlD (vertexCoords, faceVertexIDs, cellFacelDs,
communicator=DummyComm(), _RepresentationClass=<class
fipy.meshes.representations.meshRepresentation._MeshRepresentation'>,
_TopologyClass=<class
'fipy.meshes.topologies.meshTopology._Mesh1DTopology'>)

Bases: Mesh

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

246 Chapter 23. fipy

FiPy Manual, Release 3.99+1

.g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]

]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

23.3. fipy.meshes

247

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

Lo B e B e |
(== I—]
(O, I, IV, |
S DK
(O, I, IV, |
S~
(O, I, IV, |
S = =
(O, I, IV, |
==
(O, I, IV, |
= Q=
(O, I, IV, |
L
(O, I, IV, |
_ R
(O, I, IV, |
2N
(O I, T, |
—t e

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)

(continues on next page)

248 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
. 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
B cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

23.3. fipy.meshes 249

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[.5, 0.5, 1.5, 1.5, 1., 1.,

>>> print(numerix.allclose(triAddedMesh.cellCenters,
Ja0 cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d
- nx = 2, ny , hz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, d , dz = 1.0,
nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,

_
(=]

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

©,), 0,23

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

(continues on next page)

250

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[5 4.5 1.5 4.5]
1

[1.
[1. B 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__ (other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 251

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

A numerix.nonzero(mesh.facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

252 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2) .x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print(Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

23.3. fipy.meshes 253

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[.5 6.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.16 fipy.meshes.mesh2D

Generic mesh class using numerix to do the calculations

Meshes contain cells, faces, and vertices.

This is built for a non-mixed element mesh.

Classes

Mesh2D(vertexCoords, faceVertexIDs, cellFacelDs)

class fipy.meshes.mesh2D.Mesh2D (vertexCoords, faceVertexIDs, cellFacelDs,

communicator=DummyComm(), _RepresentationClass=<class

'fipy.meshes.representations.meshRepresentation._MeshRepresentation>,

_TopologyClass=<class
'fipy.meshes.topologies.meshTopology._Mesh2DTopology'>)

Bases: Mesh
property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

254

Chapter 23

. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

3.51]

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

23.3. fipy.meshes 255

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =

>>> threeDSecondMesh = Grid3D(dx = 1.0,
nx =1, ny =1, nz = 1)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

256 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
[6.5 0.5 1.5 1.5 0.5 0.5 1.

5 2.5]
5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
cas 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,

(continues on next page)

23.3. fipy.meshes 257

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, 0.5, 1.5, 1.5, 1., 1.,

>>> print (numerix.allclose(triAddedMesh.cellCenters,
A cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5 0.5]]

0,), 0,22

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

258

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m

Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh
property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print(Tri2D() .extrude(layers=2).cellCenters.allclose([[©.83333333, 0.5, o

. 0.16666667, 0.5, 0.83333333, 0.5,

hao 0.16666667, 0.5 ar
=1,

500 [0.5, 0.
—83333333, 0.5, 0.16666667, 0.5, 0.83333333,

raa 0.5, 0.
-,16666667],

e [0.5, 0.5, o
. 0.5, 0.5, 1.5, 1.5, 1.5,

500 1.5 11))

True

23.3. fipy.meshes 259

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Parameters
¢ extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will

be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),
numerix.nonzero(mesh. facesFront)[0]))
(continues on next page)

260 Chapter 23. fipy

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 261

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

262 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.3.17 fipy.meshes.nonUniformGrid1D

1D Mesh

Classes

NonUni formGrid1D([dXx, nx, overlap, ...]) Creates a 1D grid mesh.

class fipy.meshes.nonUniformGridlD.NonUniformGridlD (dx=1.0, nx=None, overlap=2,
communicator=DummyComm(),
_BuilderClass=<class
'fipy.meshes.builders.grid1 DBuilder._NonuniformGridl DBuilder'>
_RepresentationClass=<class
'fipy.meshes.representations.gridRepresentation._Gridl DRepresent
_TopologyClass=<class
'fipy.meshes.topologies.gridTopology._GridlDTopology'>)

Bases: Mesh1D

Creates a 1D grid mesh.

-

>>> mesh = NonUniformGridlD(nx = 3)

>>> print(mesh.cellCenters)

[[.5 1.5 2.5]]

(>>> mesh = NonUniformGridlD(dx = (1, 2, 3))

>>> print(mesh.cellCenters)
[[0.5 2. 4.5]1]

>>> mesh = NonUniformGridlD(nx = 2, dx = (1, 2, 3))
Traceback (most recent call last):

IndexError: nx != len(dx)

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

23.3. fipy.meshes 263

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baselMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
A 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

(continues on next page)

264

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
[0.5, .5, 1.5, 1.5, 1., 1.,
- 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

(continues on next page)

23.3. fipy.meshes 265

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[5 4.5 1.5 4.5]
1

[1.
[1. B 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.5 4.5]
[.5 ©®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 1.5 2.5
[0.5 0.5 1.5 1.5 0.5 0.5

2.5]

1.5
1.5 1.5]]

Different Mesh classes can be concatenated

266

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[60.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx = 2, ny:2,nz:2)

>>> threeDSecondMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
(continues on next page)

23.3. fipy.meshes 267

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[0.5 1.5
[0.5 0.5

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True

>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

268

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

23.3. fipy.meshes 269

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

270 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.18 fipy.meshes.nonUniformGrid2D

2D rectangular Mesh

Classes

NonUni formGrid2D([dx, dy, nx, ny, overlap, ...]) Creates a 2D grid mesh with horizontal faces numbered
first and then vertical faces.

class fipy.meshes.nonUniformGrid2D.NonUniformGrid2D (dx=1.0, dy=1.0, nx=None, ny=None, overlap=2,
communicator=DummyComm(),
_RepresentationClass=<class
'fipy.meshes.representations.gridRepresentation._Grid2DRepresent
_TopologyClass=<class
'fipy.meshes.topologies.gridTopology._Grid2DTopology'>)

Bases: Mesh2D
Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces.
property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
(continues on next page)

23.3. fipy.meshes 271

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[0.5 1.5
[0.5 0.5

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
500 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

272

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

- 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)

Helper for pickle.

_mul__(factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

23.3. fipy.meshes 273

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baselMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[.5 .5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1.

274

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

cas 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

23.3. fipy.meshes 275

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells
property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]]

276

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes.tri2D import Tri2D
>>> print (Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, o
. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 o
=1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
1666666717,
[0.5, 0.5, =
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11
True

Parameters

» extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
* layers (int) — Number of layers in the extruded mesh (number of times extrude Func will
be called)

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
numerix.nonzero(mesh. facesBottom) [0]))
(continues on next page)

23.3. fipy.meshes 277

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

True

>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh.facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

278 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

e numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

A numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print(Grid3D(nx=2, ny=2, nz=2).z)
[0.5 0.5 0.5 6.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):
(continues on next page)

23.3. fipy.meshes 279

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.19 fipy.meshes.nonUniformGrid3D

Classes

NonUni formGrid3D([dx, dy, dz, nx, ny, nz, ...]) 3D rectangular-prism Mesh

class fipy.meshes.nonUniformGrid3D.NonUniformGrid3D(dx=1.0, dy=1.0, dz=1.0, nx=None, ny=None,

nz=None, overlap=2,

communicator=DummyComm(),
_RepresentationClass=<class
'fipy.meshes.representations.gridRepresentation._Grid3DRepresent

_TopologyClass=<class

'fipy.meshes.topologies.gridTopology._Grid3DTopology'>)

Bases: Mesh

3D rectangular-prism Mesh
Numbering System:

Vertices: Numbered in the usual way. X coordinate changes most quickly, then Y, then Z.

Cells: Same numbering system as vertices.

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

X axis runs from left to right. Y axis runs from bottom to top. Z axis runs from front to back.

Faces: XY faces numbered first, then XZ faces, then YZ faces. Within each subcategory, it is numbered in the
usual way.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

280

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

3.51]

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

23.3. fipy.meshes 281

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =

>>> threeDSecondMesh = Grid3D(dx = 1.0,
nx =1, ny =1, nz = 1)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

282 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
[6.5 0.5 1.5 1.5 0.5 0.5 1.

5 2.5]
5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
cas 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,

(continues on next page)

23.3. fipy.meshes 283

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, 0.5, 1.5, 1.5, 1., 1.,

>>> print (numerix.allclose(triAddedMesh.cellCenters,
A cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5 0.5]]

0,), 0,22

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

284

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

23.3. fipy.meshes 285

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh.facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

286 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

A numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

23.3. fipy.meshes 287

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

[0.5 0.5 0

55

(continued from previous page)

0.5 1.5 1.5 1.5 1.5]

>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z

attribute.

23.3.20 fipy.meshes.periodicGrid1D

Periodic 1D Mesh

Classes

PeriodicGridlD([dx, nx, overlap])

Creates a Periodic grid mesh.

class fipy.meshes.periodicGridlD.PeriodicGridlD (dx=1.0, nx=None, overlap=2, *args, **kwargs)

Bases: NonUniformGridlD

Creates a Periodic grid mesh.

£>>> mesh = PeriodicGridiD(dx = (1, 2, 3))

True

.

g
>>> print(numerix.

allclose(numerix.nonzero(mesh.exteriorFaces) [0],

[31>

True

g
>>> print(numerix.

allclose(mesh.faceCellIDs.filled(-999),
[z, o, 1, 21,
[0, 1, 2, -99911))

True

g
>>> print(numerix.

allclose(mesh._cellDistances,
[2., 1.5, 2.5, 1.5]))

True

g
>>> print(numerix.

allclose(mesh._cellToCellDistances,
[[2., 1.5, 2.5],
[1.5, 2.5, 2. 11»

True

p
>>> print(numerix.

allclose(mesh.faceNormals,

(c1, 1., 1., 1.]11»

p
>>> print (numerix

True

.allclose(mesh._cellVertexIDs,

(e, 2, 27,
o, 1, 011

288

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2
[6.5 0.5 1.5 1.5 0.5 0.5 1

3.5]

03
.5 1.51]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 3.5 4.5 3.5 4.5]
[.5 ®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 1.5 2.5
[0.5 0.5 1.5 1.5 0.5 0.5

2.5]

1.5
1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))

(continues on next page)

23.3. fipy.meshes 289

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
Ja0 cellCenters))
True

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
nx = 2, ny =2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny = 1, nz = 1)

>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5 0.5]]

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),

©,), 0,22

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters)

[[0.25]] >>> Ab-

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

290

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

—_radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

23.3. fipy.meshes 291

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.

[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 .5 3.5]
5 3.5]

2
[0.5 0.5 1.5 1.5 2.5 2.5 3.]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

292

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(===
(O, BNV, BT,
S D+~
(O, BNV, BT,
S = D
[0, BNV, BT,
(=R
(O, IO, BT,
= =]
(O, IO, BT,
=
(O, IO, BT,
= =
(O, IO, BT,
=
(O, BT, BT,
S 2N
(O, IO, BT,

]
]
]

L B e B |

]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q

Return repr(self).

__rmul__ (factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

23.3. fipy.meshes 293

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Defined outside of a geometry class since we need the CellVariable version of cellCenters; that is, the cell-
Centers defined in fipy.meshes.mesh and not in any geometry (since a CellVariable requires a reference
to a mesh).

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh. facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

294 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront)[0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

23.3. fipy.meshes 295

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

296 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.3.21 fipy.meshes.periodicGrid2D

2D periodic rectangular Mesh

Classes

PeriodicGrid2D([dx, dy, nx, ny, overlap, ...])

Creates a periodic 2D grid mesh with horizontal faces

numbered first and then vertical faces.

PeriodicGrid2DLeftRight([dx, dy, nx, ny, ...])

PeriodicGrid2DTopBottom([dx, dy, nx, ny, ...])

class fipy.meshes.periodicGrid2D.PeriodicGrid2D (dx=1.0, dy=1.0, nx=None, ny=None, overlap=2,
communicator=DummyComm(), *args, **kwargs)

Bases: _BasePeriodicGrid2D

Creates a periodic 2D grid mesh with horizontal faces numbered first and then vertical faces. Vertices and cells

are numbered in the usual way.

[>>> from fipy import numerix

[>>> mesh = PeriodicGrid2D(dx =

>>> print (numerix

True

.allclose(numerix.nonzero(mesh.exteriorFaces)[0],

[4, 5, 8, 111))

True

L

>>> print(numerix.

allclose(mesh.faceCellIDs.filled(-1),
[[2! 3, 01 1’ 21 3! 1’ ®! 1! 3, 2! 3]!

©, 1, 2y 3y =y =1y @y 1, =1, 2, 3y =LJIDD

>>> print (numerix

~51))
True

L

.allclose(mesh._cellDistances,

[.5, ©:5; @5y 05y @25y ®u2Sy Loy Loy O5; Loy Loy O

True

>>> print(numerix.

allclose(mesh.cellFaceIDs,

[[e, 1, 2, 31,
[7, 6, 10, 91,
[2, 3, 0, 11,
[6, 7, 9, 1011))

p
>>> print (numerix.

allclose(mesh._cellToCellDistances,
[[0.5, 6.5, 6.5, 0.5],
ri1., 1., 1., 1. 1,
[.5, 0.5, 0.5, 0.5],

(continues on next page)

23.3. fipy.meshes

297

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
o [1., 1., 1., 1. 11»
True

L

>>> normals = [[0, ®, O, O, ®, O, 1, 1, 1, 1, 1, 1],
[1)]'! 17 1l 1! 1’ ®! ®7 ®’ ®! 07 ®]]

>>> print(numerix.allclose(mesh. faceNormals, normals))
True

>>> print(numerix.allclose(mesh._cellVertexIDs,

[C4, s, 7, 81,
[3, 4, 6, 71,
[1, 2, 4, 51,
o, 1, 3, 4110

True

L

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

298 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 .5 3.5]
5 3.5]

2
[0.5 0.5 1.5 1.5 2.5 2.5 3.]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baselMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 1.5 2.5
[6.5 0.5 1.5 1.5 0.5 0.5

28511
1.51]

1.5
1.5

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

e nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

23.3. fipy.meshes 299

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

300 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baselMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
A 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

(continues on next page)

23.3. fipy.meshes 301

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[@5 @by 105y 105y Loy oy

>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

0,), 0,2

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[6.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

302

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__ (other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh
property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print (Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, =

< 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 r
=1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
- 16666667],
[0.5, 0.5, .
- 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11
True
Parameters

» extrudeFunc (function) — Takes the vertex coordinates and returns the displaced values

¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

23.3. fipy.meshes 303

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

A numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

304 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

cas numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((6, 7, 8),

(continues on next page)

23.3. fipy.meshes 305

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print(GridlD(nx=2) .x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print(Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid2D.PeriodicGrid2DLeftRight (dx=1.0, dy=1.0, nx=None, ny=None,
overlap=2,
communicator=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid2D

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

306 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 2.5 3.5 2
[.5 0.5 1.5 1.5 2.5 2.5 3

.5 3.5]
25 3511

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

(continues on next page)

23.3. fipy.meshes 307

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
noa cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
nx = 2, ny =2, nz = 2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,

nx = 1 ny = 1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), 0,), ©,))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

308

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baselMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[.5 .5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1.

23.3. fipy.meshes 309

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))

True

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, .5, 1.5, 1.5, 1., 1.,

>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]1]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

©,), 0,5

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

310

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells
property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]]

23.3. fipy.meshes 311

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes.tri2D import Tri2D
>>> print (Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, o
. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 o
=1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
1666666717,
[0.5, 0.5, =
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11
True

Parameters

» extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
* layers (int) — Number of layers in the extruded mesh (number of times extrude Func will
be called)

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
numerix.nonzero(mesh. facesBottom) [0]))
(continues on next page)

312 Chapter 23. fipy

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

True

>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh.facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

- numerix.nonzero(mesh. facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 313

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

e numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

A numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print(Grid3D(nx=2, ny=2, nz=2).z)
[0.5 0.5 0.5 6.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):
(continues on next page)

314 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid2D.PeriodicGrid2DTopBottom(dx=1.0, dy=1.0, nx=None, ny=None,
overlap=2,
communicator=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid2D
property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

—_add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]

]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

23.3. fipy.meshes 315

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 .5
5

1 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.

1.5711

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

e cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx .0, dy = 1.0, dz = 1.0,

A nx = 1, ny = 1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

(=]

<

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

316

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

(continues on next page)

23.3.

fipy.meshes 317

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(==}

v n
=)

[E R

Lo B e |
S =
v n
v n
v n
S N
v n
S w
v n

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 5

Ao
3o 3.5]11

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

85
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

318

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

23.3. fipy.meshes 319

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh
property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print (Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, o

. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 ar
=1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
-16666667] ,
[0.5, 0.5, -
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11))
True

Parameters

» extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack)[0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

320

Chapter 23. fipy

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

23.3. fipy.meshes 321

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

322 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.22 fipy.meshes.periodicGrid3D

3D periodic rectangular Mesh

Classes

PeriodicGrid3D([dx, dy, dz, nx, ny, nz, ...]) Creates a periodic 3D grid mesh with horizontal faces
numbered first and then vertical faces.

PeriodicGrid3DFrontBack([dx, dy, dz, nx, ...])

PeriodicGrid3DLeftRight([dx, dy, dz, nx, ...])

PeriodicGrid3DLeftRightFrontBack([dx, dy, ...])

PeriodicGrid3DLeftRightTopBottom([dx, dy, ...])

PeriodicGrid3DTopBottom([dx, dy, dz, nX, ...])

PeriodicGrid3DTopBottomFrontBack([dx, dy, ...])

class fipy.meshes.periodicGrid3D.PeriodicGrid3D(dx=1.0, dy=1.0, dz=1.0, nx=None, ny=None,
nz=None, overlap=2,
communicator=DummyComm(), *args, **kwargs)

Bases: _BasePeriodicGrid3D

Creates a periodic 3D grid mesh with horizontal faces numbered first and then vertical faces. Vertices and cells
are numbered in the usual way.

[>>> from fipy import numerix

23.3. fipy.meshes 323

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> mesh = PeriodicGrid3D(dx=1., dy=0.5, dz=2., nx=2, ny=2, nz=1)
>>> print(numerix.allclose(numerix.nonzero(mesh.exteriorFaces)[0],
Joc [4, 5, 6, 7, 12, 13, 16, 19]1))

True

faceCellIDs.filled(-1),
1’ 21 3’ ®’ 1! 2’ 3!

>>> print(numerix.allclose(mesh.
L[O,

2y 3y
o, 1, 2, 3, 1, 0, 1, 3, 2, 3],
e, 1, 2, 3, -1, -1, -1, -1, 0, 1,
2, 3, -1, -1, 0, 1, -1, 2, 3, -111))

True

.

>>> print(numerix.allclose(mesh._cellDistances,

2., 2., 2., 2., 1., 1., 1., 1., 0.5, 0.5,
e 0.5, 0.5, 0.25, 0.25, 1., 1., 0.5, 1., 1., 0.5]))
True
>>> print(numerix.allclose(mesh.cellFacelDs,
[[14, 15, 17, 18],
[15, 14, 18, 17],
[8, 9, 10, 11],
[10, 11, 8, 9],
[6, 1, 2, 3],
o, 1, 2, 311
True
(>>> print (numerix.allclose(mesh._cellToCellDistances,
[fr., 1., 1., 1.1,
(1., 1., 1., 1.1,
[0.5, 0.5, 0.5, 0.5],
[0.5, 0.5, 0.5, 0.5],
[2., 2., 2., 2.],
e [2., 2., 2., 2.11)
True
(>>> normals = [[0, O, ®, O, O, ©®, O, O, ©®, ©®, 0, 6, ®, 0, 1, 1, 1, 1, 1, 1],
[6, 0, 0, 0, 0, ©®, 06, O, 1, 1, 1, 1, 1, 1, O, O, O, O, O, 0],
f, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

>>> print(numerix.allclose(mesh. faceNormals, normals))
True

>>> print(numerix.allclose(mesh._cellVertexIDs,
[[13, 14, 16, 17],
[12, 13, 15, 16],
[16, 11, 13, 14],
[9, 10, 12, 137,

[4,
(3,
(1,
(o,

5, 7’ 8]!

4, 6,
2, 4,

71,
51,

1, 3, 4110

(continues on next page)

324

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

{True

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ®.5 1.5 1.5 2.5 2.5 3.5 3.5]

]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

23.3. fipy.meshes 325

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[60.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,
- nx = 2, ny =2, nz = 2)
>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)

Helper for pickle.

__mul__(factor)

Dilate a Mesh by factor.

326

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

—_radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

23.3. fipy.meshes 327

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.

[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 .5 3.5]
5 3.5]

2
[0.5 0.5 1.5 1.5 2.5 2.5 3.]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

328

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(===
(O, BNV, BT,
S D+~
(O, BNV, BT,
S = D
[0, BNV, BT,
(=R
(O, IO, BT,
= =]
(O, IO, BT,
=
(O, IO, BT,
= =
(O, IO, BT,
=
(O, BT, BT,
S 2N
(O, IO, BT,

]
]
]

L B e B |

]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q

Return repr(self).

__rmul__ (factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

23.3. fipy.meshes 329

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack)[0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

cas numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),
(continues on next page)

330 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
- numerix.nonzero(mesh.facesFront) [0]))
True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.faceslLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 331

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid3D.PeriodicGrid3DFrontBack(dx=1.0, dy=1.0, dz=1.0, nx=None,
ny=None, nz=None, overlap=2,
communicator=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid3D

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

332 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
[6.5 0.5 1.5 1.5 0.5 0.5 1.

5 2.5]
5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
cas 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,

(continues on next page)

23.3. fipy.meshes 333

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,

- = 2, y 2, nz = 2)

>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx—l,ny—l,nz:l)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)

Helper for pickle.

_mul__(factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

334

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

23.3. fipy.meshes 335

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

0D
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- =2, ny =2, nz=2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q

336 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

(continues on next page)

23.3. fipy.meshes 337

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
- numerix.nonzero(mesh. facesBack) [0]))
True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((12, 13, 14),

. numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

cas numerix.nonzero(mesh.facesLeft)[0]))

True

(continues on next page)

338 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.faceslLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

. numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

23.3. fipy.meshes 339

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid3D.PeriodicGrid3DLeftRight (dx=1.0, dy=1.0, dz=1.0, nx=None,
ny=None, nz=None, overlap=2,
communicator=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid3D
property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

(continues on next page)

340 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[5.5 6.5 5.5 5]
[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 3.5 4.5 3.5 4.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
[.5 ®.5 1.5 1.5 0.5 0.5 1.5 1.5]

]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
. 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, .5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

(continues on next page)

23.3. fipy.meshes 341

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

342

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[.5 .5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 ©®.5 1.5 1.5 2.5

1.5 2Z.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]

]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

(continues on next page)

23.3. fipy.meshes 343

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
. 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy =
- nx = 2, ny 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 1, ny = 1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

I <

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__repr__QO

Return repr(self).

__rmul__ (factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
(continues on next page)

344

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[0.5 1.5
[0.5 0.5

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True

>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

23.3. fipy.meshes 345

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

346 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

23.3. fipy.meshes 347

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z

Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid3D.PeriodicGrid3DLeftRightFrontBack(dx=1.0, dy=1.0, dz=1.0,

nx=None, ny=None, nz=None,
overlap=2, communica-
tor=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid3D

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

348

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.
[.5 0.5 1.5 1.5 2.5 2.5 3.

3.5]
3.5]11

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]

[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,
.. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]

>>> print(numerix.allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx = 1.0, dy
500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0

nx = 1,

(continues on next page)

23.3. fipy.meshes 349

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q

Helper for pickle.

_mul__(factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baselMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

350

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]

]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
cellCenters))

True

23.3. fipy.meshes 351

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[.5, 0.5, 1.5, 1.5, 1., 1.,

>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]1]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

0,), (0,0

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__repr__Q
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

352

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack)[0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

23.3. fipy.meshes 353

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh.facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

354 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

A numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
(continues on next page)

23.3. fipy.meshes 355

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid3D.PeriodicGrid3DLeftRightTopBottom(dx=1.0, dy=1.0, dz=1.0,

nx=None, ny=None, nz=None,
overlap=2, communica-
tor=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid3D

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

356

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

0D
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- =2, ny =2, nz=2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

23.3. fipy.meshes 357

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotlmplementedError

__getstate__Q)
Helper for pickle.

__mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[0.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

358 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

3.51]

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

23.3. fipy.meshes 359

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

©,), 0,23

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-

Grid1D’

360

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

23.3. fipy.meshes 361

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront)[0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

362 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid3D.PeriodicGrid3DTopBottom(dx=1.0, dy=1.0, dz=1.0, nx=None,
ny=None, nz=None, overlap=2,
communicator=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid3D

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

23.3. fipy.meshes 363

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
[6.5 0.5 1.5 1.5 0.5 0.5 1.

5 2.5]
5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
cas 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,

(continues on next page)

364 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,

- = 2, y 2, nz = 2)

>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx—l,ny—l,nz:l)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

23.3. fipy.meshes 365

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

366

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

0D
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- =2, ny =2, nz=2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q

23.3. fipy.meshes 367

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

(continues on next page)

368 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
- numerix.nonzero(mesh. facesBack) [0]))
True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((12, 13, 14),

. numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

cas numerix.nonzero(mesh.facesLeft)[0]))

True

(continues on next page)

23.3. fipy.meshes 369

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.faceslLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

. numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

370 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property x

Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y

Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z

Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

class fipy.meshes.periodicGrid3D.PeriodicGrid3DTopBottomFrontBack(dx=1.0, dy=1.0, dz=1.0,

nx=None, ny=None, nz=None,
overlap=2, communica-
tor=DummyComm(), *args,
**kwargs)

Bases: _BasePeriodicGrid3D

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

23.3. fipy.meshes 371

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baselMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
A 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

(continues on next page)

372

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
[0.5, .5, 1.5, 1.5, 1., 1.,
- 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

(continues on next page)

23.3. fipy.meshes 373

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[5 4.5 1.5 4.5]
1

[1.
[1. B 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[160.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.5 4.5]
[.5 ©®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 1.5 2.5
[0.5 0.5 1.5 1.5 0.5 0.5

2.5]

1.5
1.5 1.5]]

Different Mesh classes can be concatenated

374

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[60.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

. cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
cellCenters))

True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx = 2, ny:2,nz:2)

>>> threeDSecondMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
(continues on next page)

23.3. fipy.meshes 375

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[0.5 1.5
[0.5 0.5

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True

>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

376

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

23.3. fipy.meshes 377

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

378 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)
[0.5 0.5 0.5 0.5 1.5 1.5 1.5
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

1

AttributeError: 1D and 2D meshes do not have a

.5]

z" attribute.

23.3.23 fipy.meshes.representations

Modules

fipy.meshes.representations.
abstractRepresentation
fipy.meshes.representations.
gridRepresentation
fipy.meshes.representations.
meshRepresentation

fipy.meshes.representations.abstractRepresentation
fipy.meshes.representations.gridRepresentation
fipy.meshes.representations.meshRepresentation

23.3.24 fipy.meshes.skewedGrid2D

Classes

SkewedGrid2D([dx, dy, nx, ny, rand])

Creates a 2D grid mesh with horizontal faces numbered

first and then vertical faces.

class fipy.meshes.skewedGrid2D.SkewedGrid2D (dx=1.0, dy=1.0, nx=None, ny=1, rand=0, *args,
*rkwargs)

Bases: Mesh2D

23.3. fipy.meshes

379

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces. The points are skewed by a
random amount (between rand and -rand) in the X and Y directions.

Note: This Mesh only operates in serial

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 3.5 4.5 3.5 4.5]
[.5 ®.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 1.5 2.5
[0.5 0.5 1.5 1.5 0.5 0.5

2.5]

1.5
1.5 1.5]1]

380

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

cas 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotlmplementedError
__getstate__Q)
Helper for pickle.

23.3. fipy.meshes 381

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

_mul__(factor)

Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

382

Chapter 23. fipy

FiPy Manual, Release 3.99+1

.g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]

]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

23.3. fipy.meshes

383

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(===
(O, BNV, BT,
S D+~
(O, BNV, BT,
S = D
[0, BNV, BT,
(=R
(O, IO, BT,
= =]
(O, IO, BT,
=
(O, IO, BT,
= =
(O, IO, BT,
=
(O, BT, BT,
S 2N
(O, IO, BT,

]
]
]

]

L B e B |

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__ (factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells
property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print(Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, .

. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 ar
=71,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
- 16666667] ,
[0.5, 0.5, o
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11))
True
Parameters

¢ extrudeFunc (function) — Takes the vertex coordinates and returns the displaced values
* layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

. numerix.nonzero(mesh.facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)

(continues on next page)

23.3. fipy.meshes 385

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

cas numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(humerix.allequal ((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((21, 25),

. numerix.nonzero(mesh.facesLeft)[0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

cas numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

386 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

. numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property physicalShape

Return physical dimensions of Grid2D.
property x

Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print(GridlD(nx=2) .x)
[.5 1.5]

property y
Equivalent to using cellCenters[1].

23.3. fipy.meshes 387

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.25 fipy.meshes.sphericalNonUniformGrid1D

1D Mesh

Classes

SphericalNonUniformGrid1D([dx, nx, origin, ...]) Creates a 1D spherical grid mesh.

class fipy.meshes.sphericalNonUniformGridiD.SphericalNonUniformGrid1D (dx=1.0, nx=None,
origin=(0,), overlap=2,
communica-
tor=DummyComm(),
*args, **kwargs)

Bases: NonUniformGridlD

Creates a 1D spherical grid mesh.

(>>> mesh = SphericalNonUniformGridlD(nx = 3)
>>> print(mesh.cellCenters)
[[6.5 1.5 2.5]]

(>>> mesh = SphericalNonUniformGridlD(dx a, 2, 3))
>>> print(mesh.cellCenters)

[[0.5 2. 4.5]1]

>>> print(numerix.allclose(mesh.cellVolumes, (0.5, 13., 94.5)))
True

388 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> mesh = SphericalNonUniformGridlD(nx = 2, dx = (1, 2, 3))
Traceback (most recent call last):

IndexError: nx != len(dx)

>>> mesh = SphericalNonUniformGridlD(nx=2, dx=(1., 2.)) + ((1.,),)
>>> print(mesh.cellCenters)

[[1.5 3. 1]
>>> print(numerix.allclose(mesh.cellVolumes, (3.5, 28)))
True

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[l 5.5 6.5 5.5 6.5]

[10.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 3.5 4.5 3.5 4.5]
[.5 ©.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

23.3. fipy.meshes 389

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 .5
5

1 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.

1.5711

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

e cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx .0, dy = 1.0, dz = 1.0,

A nx = 1, ny = 1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

(=]

<

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

390

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

(continues on next page)

23.3.

fipy.meshes 391

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(==}

v n
=)

[E R

Lo B e |
S =
v n
v n
v n
S N
v n
S w
v n

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 5

Ao
3o 3.5]11

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

85
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

392

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

23.3. fipy.meshes 393

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal((12, 13),

A numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront)[0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight)[0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

23.3. fipy.meshes 395

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

396 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

23.3.26 fipy.meshes.sphericalUniformGrid1D

1D Mesh

Classes

SphericalUniformGridlD([dx, nX, origin, ...]) Creates a 1D spherical grid mesh.

class fipy.meshes.sphericalUniformGridlD.SphericalUniformGridlD (dx=1.0, nx=1, origin=(0,),
overlap=2,
communicator=DummyComm(),
*args, **kwargs)
Bases: UniformGridlD

Creates a 1D spherical grid mesh.

>>> mesh = SphericalUniformGridlD(nx = 3)
>>> print(mesh.cellCenters)
[[.5 1.5 2.5]]

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2
[6.5 0.5 1.5 1.5 0.5 0.5 1

3.5]

03
.5 1.51]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

23.3. fipy.meshes 397

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 3.5 4.5 3.

[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 .5 3.5]
5 3.5]

2
[0.5 0.5 1.5 1.5 2.5 2.5 3.]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 .5

1.51]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333,

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D
>>> threeDBaseMesh = Grid3D(dx =1.0, dy = 1.0, dz = 1.0,
=2, ny =2, nz=2)
>>> threeDSecondMesh = Gr1d3D(dx =1.0, dy = 1.0, dz = 1.0,
nx =1, ny =1, nz = 1)
>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,),
>>> print(threeDAddedMesh.cellCenters)

0,), (0,0

(continues on next page)

398

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(===
(O, BNV, BT,
S D+~
(O, BNV, BT,
S = D
[0, BNV, BT,
(=R
(O, IO, BT,
= =]
(O, IO, BT,
=
(O, IO, BT,
= =
(O, IO, BT,
=
(O, BT, BT,
S 2N
(O, IO, BT,

]
]
]

L B e B |

]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5
[.5 ©®.5 1.5 1.5 2.5 2.5

23.3. fipy.meshes 399

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

0D
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- =2, ny =2, nz=2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q

400 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return repr(self).

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs
property exteriorFaces

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True

(continues on next page)

23.3. fipy.meshes 401

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft)[0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight
Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

A numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)

(continues on next page)

402 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

. numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *
>>> print (Grid3D(nx=2, ny=2, nz=2).z)
[0.5 0.5 0.5 6.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):
(continues on next page)

23.3. fipy.meshes 403

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.27 fipy.meshes.test

Test implementation of the mesh

23.3.28 fipy.meshes.topologies

Modules

fipy.meshes. topologies.abstractTopology
fipy.meshes. topologies.gridTopology

fipy.meshes. topologies.meshTopology

fipy.meshes.topologies.abstractTopology
fipy.meshes.topologies.gridTopology
fipy.meshes.topologies.meshTopology

23.3.29 fipy.meshes.tri2D

Classes

Tri2D([dx, dy, nx, ny, ...]) This class creates a mesh made out of triangles.

class fipy.meshes.tri2D.Tri2D(dx=1.0, dy=1.0, nx=1, ny=1, _RepresentationClass=<class
fipy.meshes.representations.gridRepresentation._Grid2DRepresentation'>,
_TopologyClass=<class
'fipy.meshes.topologies.meshTopology._Mesh2DTopology'>)

Bases: Mesh2D

This class creates a mesh made out of triangles. It does this by starting with a standard Cartesian mesh (Grid2D)
and dividing each cell in that mesh (hereafter referred to as a “box”) into four equal parts with the dividing lines
being the diagonals.

Creates a 2D triangular mesh with horizontal faces numbered first then vertical faces, then diagonal faces. Ver-
tices are numbered starting with the vertices at the corners of boxes and then the vertices at the centers of boxes.
Cells on the right of boxes are numbered first, then cells on the top of boxes, then cells on the left of boxes, then
cells on the bottom of boxes. Within each of the “sub-categories” in the above, the vertices, cells and faces are
numbered in the usual way.

Parameters

404 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

* dx (float) — The X and Y dimensions of each “box”. If dx <> dy, the line segments con-
necting the cell centers will not be orthogonal to the faces.

e dy (float) — The X and Y dimensions of each “box”. If dx <> dy, the line segments con-
necting the cell centers will not be orthogonal to the faces.

e nx (int)— The number of boxes in the X direction and the Y direction. The total number of
boxes will be equal to nx * ny, and the total number of cells will be equal to 4 * nx * ny.

e ny (int) — The number of boxes in the X direction and the Y direction. The total number of
boxes will be equal to nx * ny, and the total number of cells will be equal to 4 * nx * ny.

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

23.3. fipy.meshes 405

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 .5
5

1 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.

1.5711

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

e cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx .0, dy = 1.0, dz = 1.0,

A nx = 1, ny = 1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

(=]

<

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

406

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q
Helper for pickle.

_mul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3.1]

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[1.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

(continues on next page)

23.3.

fipy.meshes 407

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(==}

v n
=)

[E R

Lo B e |
S =
v n
v n
v n
S N
v n
S w
v n

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 5

Ao
3o 3.5]11

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

85
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

408

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d

500 nx = 2, ny =
>>> threeDSecondMesh = Grid3D(dx = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

1.0, dz = 1.0,
, Nz

= 2)
dy = 1.0, dz = 1.0,

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q)
Return repr(self).

__rmul__(factor)
Dilate a Mesh by factor.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

The factor can be a scalar

>>> dilatedMesh = baseMesh * 3
>>> print(dilatedMesh.cellCenters)
[[1.5 4.5 1.5 4.5]

[1.5 1.5 4.5 4.5]]

or a vector

>>> dilatedMesh = baseMesh * ((3,), (2,))
>>> print(dilatedMesh.cellCenters)

[[1.5 4.5 1.5 4.5]

[1. 1. 3. 3. 11

but the vector must have the same dimensionality as the Mesh

>>> dilatedMesh = baseMesh * ((3,), (2,), (1,))
Traceback (most recent call last):

ValueError: shape mismatch: objects cannot be broadcast to a single shape

__sub__(other)

Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’

23.3. fipy.meshes 409

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

__truediv__ (other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

property aspect2D
The physical y vs x aspect ratio of a 2D mesh
property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

extrude (extrudeFunc=<function Mesh2D.<lambda>>, layers=1)

This function returns a new 3D mesh. The 2D mesh is extruded using the extrudeFunc and the number of
layers.

>>> from fipy.meshes.nonUniformGrid2D import NonUniformGrid2D
>>> print (NonUniformGrid2D(nx=2, ny=2).extrude(layers=2).cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]
[0.5 0.5 6.5 0.5 1.5 1.5 1.5 1.5]]

>>> from fipy.meshes.tri2D import Tri2D
>>> print (Tri2D() .extrude(layers=2).cellCenters.allclose([[0.83333333, 0.5, o

. 0.16666667, 0.5, 0.83333333, 0.5,
0.16666667, 0.5 ar
=1,
[0.5, 0.
83333333, 0.5, 0.16666667, 0.5, 0.83333333,
0.5, 0.
-16666667] ,
[0.5, 0.5, -
-~ 0.5, 0.5, 1.5, 1.5, 1.5,
1.5 11))
True

Parameters

» extrudeFunc (function)— Takes the vertex coordinates and returns the displaced values
¢ layers (int) — Number of layers in the extruded mesh (number of times extrudeFunc will
be called)

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack)[0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

410

Chapter 23. fipy

https://docs.python.org/3/library/functions.html#int

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

23.3. fipy.meshes 411

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property physicalShape

Return physical dimensions of Grid2D.
property x

Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

412 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property y
Equivalent to using cellCenters[1].

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[6.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print (Grid3D(nx=2, ny=2, nz=2).z)

[.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.30 fipy.meshes.uniformGrid

Classes

UniformGrid(communicator][, ...]) Wrapped scaled geometry properties

class fipy.meshes.uniformGrid.UniformGrid(communicator, _RepresentationClass=<class
'fipy.meshes.representations.abstractRepresentation._AbstractRepresentation',
_TopologyClass=<class
'fipy.meshes.topologies.abstractTopology._AbstractTopology'>)

Bases: AbstractMesh
Wrapped scaled geometry properties
property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh
property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

23.3. fipy.meshes 413

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baselMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]

[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.
1.

5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
A 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

(continues on next page)

414

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
[0.5, .5, 1.5, 1.5, 1., 1.,
- 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.
__radd__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

(continues on next page)

23.3. fipy.meshes 415

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

(==}

v n
=)

[E R

Lo B e |
S =
v n
v n
v n
S N
v n
S w
v n

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh

may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[6.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 5

Ao
3o 3.5]11

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 1.5 2.5 1
[6.5 0.5 1.5 1.5 0.5 0.5 1

2.5]

85
.5 1.5]1]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,

0.5, 0.5, 0.16666667, 0.16666667]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + triMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333,
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
- cellCenters))
True

0.33333333]]

Mesh concatenation is not limited to 2D meshes

416

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d 1.0, dz = 1.0,

e nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 0.5]]

< Nl

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
(continues on next page)

23.3. fipy.meshes 417

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft)[0]))
True
>>> ignore = mesh. facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

418 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

A numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

. numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

23.3. fipy.meshes 419

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.31 fipy.meshes.uniformGrid1D

1D Mesh

Classes

UniformGridlD([dx, nx, origin, overlap, ...]) Creates a 1D grid mesh.

class fipy.meshes.uniformGridlD.UniformGrid1D (dx=1.0, nx=1, origin=(0,), overlap=2,
communicator=DummyComm(),
_RepresentationClass=<class
‘fipy.meshes.representations.gridRepresentation._Gridl DRepresentation'>,
_TopologyClass=<class
'fipy.meshes.topologies.gridTopology._Gridl DTopology'>)

Bases: UniformGrid

Creates a 1D grid mesh.

>>> mesh = UniformGridlD(nx = 3)
>>> print(mesh.cellCenters)
[[.5 1.5 2.5]]

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet
Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

420 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]

]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[®.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 6.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

5
5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
cellCenters))

True

23.3. fipy.meshes 421

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

B 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 2, ny =2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-

stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

__radd__ (other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[6.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

422

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
[.5 ©®.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

B 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

Mesh concatenation is not limited to 2D meshes

23.3. fipy.meshes 423

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d 1.0, dz = 1.0,

e nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

< Nl

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells
property cellFaceIDs
property exteriorFaces

Geometry set and calc

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

424

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh. facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print (numerix.allequal ((12, 13),

cas numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

A numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

A numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh. facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh. facesLeft) [0]))
True
>>> ignore = mesh.facesLeft.value

property facesRight

23.3. fipy.meshes 425

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

Ja0 numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal ((12, 16),

A numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

426 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z

23.3.32

Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

fipy.meshes.uniformGrid2D

2D rectangular Mesh with constant spacing in x and constant spacing in y

Classes

UniformGrid2D([dx, dy, nx, ny, origin, ...]) Creates a 2D grid mesh with horizontal faces numbered

first and then vertical faces.

class fipy.meshes.uniformGrid2D.UniformGrid2D (dx=1.0, dy=1.0, nx=1, ny=1, origin=((0,), (0,)),

overlap=2, communicator=DummyCommy(),
_RepresentationClass=<class

‘fipy.meshes.representations.gridRepresentation._Grid2DRepresentation'>,

_TopologyClass=<class
'fipy.meshes.topologies.gridTopology._Grid2DTopology'>)

Bases: UniformGrid

Creates a 2D grid mesh with horizontal faces numbered first and then vertical faces.

property VIKCellDataSet

Returns a TVTK DataSet representing the cells of this mesh

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
(continues on next page)

23.3. fipy.meshes 427

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[[0.5 1.5
[0.5 0.5

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 2.5 3.5 2.5 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.5 3.5]]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, .5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
500 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

428

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

- 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print (numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx = 1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
__getstate__Q)
Helper for pickle.
__radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

23.3. fipy.meshes 429

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 0.5 1.5 3.5 4.5 3.
1.

5 4.5]
[0.5 0.5 1.5 1.5 0.5 0.5 5 511

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 2.5 3.5

2. 3.5]
[0.5 0.5 1.5 1.5 2.5 2.5 3.

3.51]

5
5

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 1.5 2.5 1.5 2.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
- cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + trilMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[0.5, .5, 1.5, 1.5, 1., 1.,

. 1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

430 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, d 1.0, dz = 1.0,

e nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print (threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 0.5]]

< Nl

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baselMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

—_repr__Q
Return repr(self).

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__ (other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters

Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack
Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((6, 7, 8, 9, 10, 11),

- numerix.nonzero(mesh. facesBack) [0]))

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),
(continues on next page)

23.3. fipy.meshes 431

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

e numerix.nonzero(mesh. facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront

Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft

Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((9, 13),

- numerix.nonzero(mesh.facesLeft)[0]))
True
>>> ignore = mesh. facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

432 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight)[0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal ((12, 16),

. numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

A numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz =1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

. numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh.facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x
Equivalent to using cellCenters[0].

>>> from fipy import *
>>> print (GridlD(nx=2).x)
[0.5 1.5]

property y
Equivalent to using cellCenters[1].

23.3. fipy.meshes 433

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *

>>> print (Grid2D(nx=2, ny=2).y)

[0.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.3.33 fipy.meshes.uniformGrid3D

Classes

UniformGrid3D([dx, dy, dz, nx, ny, nz, ...]) 3D rectangular-prism Mesh with uniform grid spacing in
each dimension.

class fipy.meshes.uniformGrid3D.UniformGrid3D(dx=1.0, dy=1.0, dz=1.0, nx=1, ny=1, nz=1, origin=[[0],
[0], [0]], overlap=2, communicator=DummyCommy(),
_RepresentationClass=<class

‘fipy.meshes.representations.gridRepresentation._Grid3DRepresentation'>,

_TopologyClass=<class
‘fipy.meshes.topologies.gridTopology._Grid3DTopology'>)

Bases: UniformGrid

3D rectangular-prism Mesh with uniform grid spacing in each dimension.

X axis runs from left to right. Y axis runs from bottom to top. Z axis runs from front to back.
Numbering System:

Vertices: Numbered in the usual way. X coordinate changes most quickly, then Y, then Z.

* arrays are arranged Z, Y, X because in numerix, the final index is the one that changes the most quickly
*

Cells: Same numbering system as vertices.

Faces: XY faces numbered first, then XZ faces, then YZ faces. Within each subcategory, it is numbered in the
usual way.

property VIKCellDataSet
Returns a TVTK DataSet representing the cells of this mesh

434 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

property VIKFaceDataSet

Returns a TVTK DataSet representing the face centers of this mesh

__add__(other)

Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))
>>> print(addedMesh.cellCenters)

[[6.5 1.5 0.5 1.5 2.5 3.5 2
[6.5 0.5 1.5 1.5 0.5 0.5 1

3.5]

03
.5 1.51]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 3.5 4.5 3.5 4.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
3.5 3.5]

[0.5 0.5 1.5 1.5 2.5 2.5]

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)
[[.5 1.5 0.5 1.5 1.5 2.5
[0.5 0.5 1.5 1.5 0.5 0.5

2.5]

1.5
1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D

>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

(continues on next page)

23.3. fipy.meshes 435

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

[6.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
0.5, 0.5, 0.16666667, 0.16666667]]

>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,

- cellCenters))

True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],

[.5, 0.5, 1.5, 1.5, 1., 1.,

1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> prlnt(numerlx allclose(triAddedMesh.cellCenters,
Ja0 cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]1]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__div__(other)

Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError

__getstate__Q)
Helper for pickle.

—_radd__(other)
Either translate a Mesh or concatenate two Mesh objects.

>>> from fipy.meshes import Grid2D
>>> baseMesh = Grid2D(dx = 1.0, dy = 1.0, nx = 2, ny = 2)
>>> print(baseMesh.cellCenters)
[[6.5 1.5 0.5 1.5]
[0.5 0.5 1.5 1.5]]

436

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

If a vector is added to a Mesh, a translated Mesh is returned

>>> translatedMesh = baseMesh + ((5,), (10,))
>>> print(translatedMesh.cellCenters)

[[5.5 6.5 5.5 6.5]

[16.5 10.5 11.5 11.5]]

If a Mesh is added to a Mesh, a concatenation of the two Mesh objects is returned

>>> addedMesh = baseMesh + (baseMesh + ((2,), (0,)))

>>> print(addedMesh.cellCenters)

[[.5 1.5 ®.5 1.5 2.5 3.5 2.5 3.5]
1.5 1.5]

[0.5 0.5 1.5 1.5 0.5 0.5]

The two Mesh objects need not be properly aligned in order to concatenate them but the resulting mesh
may not have the intended connectivity

>>> addedMesh = baseMesh + (baseMesh + ((3,), (0,)))
>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 3.5 4.5 3.
[0.5 0.5 1.5 1.5 0.5 0.5 1

>>> addedMesh = baseMesh + (baseMesh + ((2,), (2,)))

>>> print(addedMesh.cellCenters)
[[6.5 1.5 0.5 1.5 2.5 3.5 2
[.5 0.5 1.5 1.5 2.5 2.5 3

.5 3.5]
25 3511

No provision is made to avoid or consolidate overlapping Mesh objects

>>> addedMesh = baseMesh + (baseMesh + ((1,), (0,)))
>>> print(addedMesh.cellCenters)

[[.5 1.5 6.5 1.5 1.5 2.5 1.5 2.5]
[6.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5]]

Different Mesh classes can be concatenated

>>> from fipy.meshes import Tri2D
>>> triMesh = Tri2D(dx = 1.0, dy = 1.0, nx = 2, ny = 1)
>>> triMesh = triMesh + ((2,), (0,))
>>> triAddedMesh = baseMesh + triMesh
>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,
2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 0.83333333, 0.83333333,
- 0.5, 0.5, 0.16666667, 0.16666667]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
. cellCenters))
True

again, their faces need not align, but the mesh may not have the desired connectivity

>>> triMesh = Tri2D(dx = 1.0, dy = 2.0, nx = 2, ny = 1)

>>> triMesh = triMesh + ((2,), (0,))

>>> triAddedMesh = baseMesh + trilMesh

>>> cellCenters = [[0.5, 1.5, 0.5, 1.5, 2.83333333, 3.83333333,

(continues on next page)

23.3. fipy.meshes 437

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

2.5, 3.5, 2.16666667, 3.16666667, 2.5, 3.5],
[.5, 0.5, 1.5, 1.5, 1., 1.,
1.66666667, 1.66666667, 1., 1., 0.33333333, 0.33333333]]
>>> print(numerix.allclose(triAddedMesh.cellCenters,
e cellCenters))
True

Mesh concatenation is not limited to 2D meshes

>>> from fipy.meshes import Grid3D

>>> threeDBaseMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

A nx = 2, ny = 2, nz = 2)

>>> threeDSecondMesh = Grid3D(dx = 1.0, dy = 1.0, dz = 1.0,

- nx =1, ny =1, nz = 1)

>>> threeDAddedMesh = threeDBaseMesh + (threeDSecondMesh + ((2,), (0,), (0,)))
>>> print(threeDAddedMesh.cellCenters)

[[.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 2.5]
[0.5 0.5 1.5 1.5 0.5 0.5 1.5 1.5 0.5]
[0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 0.5]]

but the different Mesh objects must, of course, have the same dimensionality.

>>> InvalidMesh = threeDBaseMesh + baseMesh
Traceback (most recent call last):

MeshAdditionError: Dimensions do not match

__repr__Q
Return repr(self).

__sub__{(other)
Tests. >>> from fipy import * >>> m = Grid1D() >>> print((m - ((1,))).cellCenters) [[-0.5]] >>> ((1,)) - m
Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: ‘tuple’ and ‘Uniform-
Grid1D’
__truediv__(other)
Tests. >>> from fipy import * >>> print((GridlD(nx=1) / 2.).cellCenters) [[0.25]] >>> Ab-
stractMesh(communicator=None) / 2. Traceback (most recent call last): ... NotImplementedError
property aspect2D
The physical y vs x aspect ratio of a 2D mesh

property cellCenters
Coordinates of geometric centers of cells

property cellFaceIDs

property facesBack

Return list of faces on back boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix
>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((6, 7, 8, 9, 10, 11),
numerix.nonzero(mesh. facesBack)[0]))
(continues on next page)

438

Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)

True
>>> ignore = mesh.facesBack.value

property facesBottom
Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> X, y, z = mesh.faceCenters

>>> print(numerix.allequal ((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesDown

Return list of faces on bottom boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((12, 13, 14),

- numerix.nonzero(mesh.facesBottom) [0]))
True
>>> ignore = mesh.facesBottom.value

>>> x, y, z = mesh.faceCenters

>>> print (numerix.allequal((12, 13),

- numerix.nonzero(mesh.facesBottom & (x < 1))[0]))
True
>>> ignore = mesh.facesBottom.value

property facesFront
Return list of faces on front boundary of 3D Mesh with the z-axis running from front to back.

>>> from fipy import Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((®, 1, 2, 3, 4, 5),

- numerix.nonzero(mesh. facesFront) [0]))

True
>>> ignore = mesh.facesFront.value

property facesLeft
Return face on left boundary of Mesh as list with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((21, 25),

- numerix.nonzero(mesh.facesLeft) [0]))

True
>>> ignore = mesh.facesLeft.value

(continues on next page)

23.3. fipy.meshes 439

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

(continued from previous page)
>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)
>>> print(numerix.allequal((9, 13),
- numerix.nonzero(mesh.facesLeft) [0]))
True
>>> ignore = mesh. facesLeft.value

property facesRight

Return list of faces on right boundary of Mesh with the x-axis running from left to right.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal ((24, 28),

- numerix.nonzero(mesh.facesRight) [0]))

True
>>> ignore = mesh.facesRight.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((12, 16),

- numerix.nonzero(mesh.facesRight) [0]))
True
>>> ignore = mesh.facesRight.value

property facesTop
Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print (numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh. facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print (numerix.allequal((6, 7, 8),

A numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property facesUp

Return list of faces on top boundary of 2D or 3D Mesh with the y-axis running from bottom to top.

>>> from fipy import Grid2D, Grid3D, numerix

>>> mesh = Grid3D(nx = 3, ny = 2, nz = 1, dx = 0.5, dy = 2., dz = 4.)
>>> print(numerix.allequal((18, 19, 20),

- numerix.nonzero(mesh.facesTop) [0]))

True
>>> ignore = mesh.facesTop.value

>>> mesh = Grid2D(nx = 3, ny = 2, dx = 0.5, dy = 2.)

>>> print(numerix.allequal((6, 7, 8),

- numerix.nonzero(mesh. facesTop) [0]))
True
>>> ignore = mesh.facesTop.value

property x

Equivalent to using cellCenters[0].

440 Chapter 23. fipy

FiPy Manual, Release 3.99+1.9g7861e396d.dirty

>>> from fipy import *
>>> print (GridlD(nx=2).Xx)
[.5 1.5]

property y
Equivalent to using cellCenters[1].

o

>>> from fipy import
>>> print (Grid2D(nx=2, ny=2).y)

[.5 0.5 1.5 1.5]

>>> print (GridlD(nx=2).y)
Traceback (most recent call last):

AttributeError: 1D meshes do not have a "y" attribute.

property z
Equivalent to using cellCenters[2].

>>> from fipy import *

>>> print(Grid3D(nx=2, ny=2, nz=2).z)

[6.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5]
>>> print (Grid2D(nx=2, ny=2).z)
Traceback (most recent call last):

AttributeError: 1D and 2D meshes do not have a "z" attribute.

23.4 fipy.solvers

Solving sparse linear systems

Module Attributes

DefaultSolver Solver class f