fipy.solvers.pysparse.linearPCGSolver¶
Classes
|
The LinearPCGSolver solves a linear system of equations using the preconditioned conjugate gradient method (PCG) with symmetric successive over-relaxation (SSOR) preconditioning by default. |
- class fipy.solvers.pysparse.linearPCGSolver.LinearPCGSolver(tolerance='default', criterion='default', iterations='default', precon='default')¶
Bases:
LinearRHSSolver
The LinearPCGSolver solves a linear system of equations using the preconditioned conjugate gradient method (PCG) with symmetric successive over-relaxation (SSOR) preconditioning by default. Alternatively, Jacobi preconditioning can be specified through precon. The PCG method solves systems with a symmetric positive definite coefficient matrix.
The LinearPCGSolver is a wrapper class for the the Pysparse itsolvers.pcg() and precon.ssor() methods.
Create a Solver object.
- Parameters:
tolerance (
float
) – Required residual tolerance.criterion (
{'default', 'initial', 'unscaled', 'RHS', 'matrix', 'solution', 'preconditioned', 'natural', 'legacy'}
, optional) – Interpretation oftolerance
. See Convergence for more information.iterations (
int
) – Maximum number of iterative steps to perform.precon (
Preconditioner
) – Preconditioner to use. Not all solver suites support preconditioners.
- DEFAULT_ITERATIONS = 1000¶
Default maximum number of iterative steps to perform
- DEFAULT_PRECONDITIONER¶
alias of
SSORPreconditioner
- DEFAULT_TOLERANCE = 1e-05¶
Default tolerance for linear solves unless criterion=”legacy”
- LEGACY_TOLERANCE = 1e-10¶
Default tolerance for linear solves if criterion=”legacy”
- __repr__()¶
Return repr(self).
- property default_tolerance¶
Default tolerance for linear solve