examples.convection.exponential1D.tri2DΒΆ
This example solves the steady-state convection-diffusion equation as described in
examples.convection.exponential1D.mesh1D
but uses a
Tri2D
mesh.
Here the axes are reversed (nx = 1
, ny = 1000
) and
\[\vec{u} = (0, 10)\]
>>> from fipy import CellVariable, Tri2D, DiffusionTerm, ExponentialConvectionTerm, DefaultAsymmetricSolver, Viewer
>>> from fipy.tools import numerix
>>> L = 10.
>>> nx = 1
>>> ny = 1000
>>> mesh = Tri2D(dx = L / ny, dy = L / ny, nx = nx, ny = ny)
>>> valueBottom = 0.
>>> valueTop = 1.
>>> var = CellVariable(name = "concentration",
... mesh = mesh,
... value = valueBottom)
>>> var.constrain(valueBottom, mesh.facesBottom)
>>> var.constrain(valueTop, mesh.facesTop)
>>> diffCoeff = 1.
>>> convCoeff = numerix.array(((0.,), (10.,)))
>>> eq = (DiffusionTerm(coeff=diffCoeff)
... + ExponentialConvectionTerm(coeff=convCoeff))
>>> eq.solve(var = var,
... solver=DefaultAsymmetricSolver(iterations=10000))
The analytical solution test for this problem is given by:
>>> axis = 1
>>> y = mesh.cellCenters[axis]
>>> CC = 1. - numerix.exp(-convCoeff[axis] * y / diffCoeff)
>>> DD = 1. - numerix.exp(-convCoeff[axis] * L / diffCoeff)
>>> analyticalArray = CC / DD
>>> print(var.allclose(analyticalArray, rtol = 1e-6, atol = 1e-6))
1
>>> if __name__ == '__main__':
... viewer = Viewer(vars = var)
... viewer.plot()
Last updated on Feb 07, 2025.
Created using Sphinx 7.1.2.