
Evaluation of Latent Friction Ridge Technology
Test Plan and Application Programming Interface

Last Updated: 23 March 2021

Contents

1 Introduction 2

2 Evaluation Imagery 3

3 Scenarios and Variables 5

4 Application Programming Interface Highlights 8

5 Software and Documentation 18

References 23

Revision History 23

Not Human Subjects Research

The National Institute of Standards and Technology Research Protections Office reviewed the
protocol for this project and determined it is “not human subjects research” as defined in 15 CFR
27, the Common Rule for the Protection of Human Subjects.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this document in order
to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are necessarily the best available for
the purpose.

ELFT Test Plan

1 Introduction

The National Institute of Standards and Technology (NIST) is reviving Evaluation of Latent Fin-
gerprint Technology as Evaluation of Latent Friction Ridge Technology (ELFT), a biometric technology
evaluation that aims to study the state of the art in automated latent friction ridge identification
algorithms. NIST’s interest in latent friction ridge identification goes back to 2006, when they
convened their first latent fingerprint testing workshop to learn about the needs and wants of
automated latent fingerprint system stakeholders [1]. A series of tests were conducted in the
subsequent decade, but has languished since 2012. In 2020, ELFT joins the ranks of ongoing NIST
biometric technology evaluations.

1.1 Background

Latent friction ridge identification is a largely human-intensive process. Crime Scene Investigators
(CSIs) and Certified Latent Print Examiners (CLPEs) take care to capture or develop friction ridge
marks deposited on a surface by chance due to contaminants, skin secretions, or other matrix.
CLPEs carefully annotate these marks for distinctive features, compare observed groupings of
features with an exemplar capture, and conclude whether or not there is sufficient information to
assert that the two marks originated from the same source. The exemplar chosen for comparison
could come from an individual on trial for committing a crime or may be a top-ranked candi-
date returned from an Automated Biometric Identification System (ABIS). ELFT focuses on the
evaluation of algorithms that create such ABIS candidate lists.

1.2 What is ELFT?

ELFT studies the computational performance and accuracy of automated open set latent identifica-
tion algorithms and their associated feature extraction algorithms. These algorithms are typically
components of an ABIS. In ELFT, software libraries under test assemble a reference database of
images and search that database with one or more latent image probes. NIST reports on the
computational performance and accuracy of these algorithms in public analysis reports.

1.3 What’s New Since ELFT-EFS

The concept of operations for Evaluation of Latent Fingerprint Technology—Extended Feature Set
(ELFT-EFS) #2 [2] was last updated in 2010. In short,much has changed in the intervening decade.
Developers of submissions for ELFT should read this document in its entirety before beginning
work on their software libraries. NIST encourage developers and other stakeholders to send
feedback, especially in ways that the ELFT application programming interface (API) dramatically
differs from the current operations of their commercially-deployed algorithms.

2

ELFT Test Plan

2 Evaluation Imagery

2.1 Source

Imagery used in ELFT comes from a variety of sources. The vast majority of images are operational
in nature. This means they were collected by law enforcement, border protection, or other local or
federal government employees as a part of their professional duties. Other data may come from
subjects recruited as part of institutional review board (IRB)-approved collections.

2.2 Region

Images used in ELFT encompass all regions of the hand. This includes images of all parts of
the palm, all phalanges, and all interphalangeal joints. Although it will be the most represented,
neither probe nor reference imagery used in ELFT is limited to the distal phalanx.

2.3 Quality

Due to the operational nature of the source of the imagery, the quality of the images vary dramati-
cally between datasets and samples within the datasets. No open-source algorithm currently exists
that can quantify latent or exemplar friction ridge image quality for all combinations of resolution,
bit depth, and sensor type represented in ELFT, and therefore, NIST will not be providing quality
values along with the imagery during the test. Participants are encouraged to use the metadata
provided with the imagery (Section 2.4) to assess quality in their own way and store this value in
their template. This collection of quality values may help advise future directions in friction ridge
image quality, especially when it comes to latent imagery. See Section 4.4 for more details.

2.4 Metadata

Participants may be provided with known metadata about each image during template creation.
Depending on the scenario being tested (Section 3), some, all, or none of this information will be
provided. Possible metadata is detailed in Section 3.2.3.

2.5 Access

Most ELFT evaluation datasets are protected under the Privacy Act (5 U.S.C. §552a) and are treated
as controlled unclassified information (CUI) as defined in Executive Order 13556. ELFT partici-
pants will not have access to such ELFT evaluation data, before, during, or after the evaluation.
NIST will provide similar image data from publicly-available research datasets that can be used to
prepare software libraries for ELFT.

Note that participants will additionally not have access to any data generated by their software
libraries at NIST, regardless of the source of the imagery used to derive such data.

2.6 Format

The software library under test must be capable of processing friction ridge images sent as buffers
of uncompressed raw pixels. Images may be in red-green-blue color (RGB) triplets or single-
component grayscale. A single color component may be comprised of either 8 bits or 16 bits.

Images shall follow the scan sequence as defined by ISO/IEC 19794-4:2005, §6.2, visualized in
Figure 1. The origin is the upper-left corner of the image. The --coordinate (horizontal) position

3

ELFT Test Plan

Line 0

Line :

Line ℎ − 1

Line 0 Line : Line ℎ − 1

(0, 0)

(
F × bpp

bpc ×
bpp

8 − 1, ℎ − 1
)

(
F × bpp

bpc ×
bpp

8 − 1, 0
)

(0, ℎ − 1)

Figure 1: Order of image scanlines in data passed to ELFT implementations. Fingerprint image sourced from NIST
Special Database 302 [3, 4].

shall increase positively from the origin to the right side of the image. The .-coordinate (vertical)
position shall increase positively from the origin to the bottomof the image. Images are canonically
encoded. The minimum value that will be assigned to a “black” pixel (e.g.,) is zero (0) in all color
components. The maximum value that will be assigned to a “white” pixel (e.g.,) is

(
2bpc − 1

)
in

all color components, where bpc is bits per component.

Image width and height are measured in pixels and will be supplied to the software library under
test as supplemental information. Pixels are stored left to right, top to bottom. The number of
bytes in an image is equal to (width × height × bpp

bpc ×
bpp

8), where bpp is bits per pixel.

4

ELFT Test Plan

3 Scenarios and Variables

Analysis in ELFT will be the result of evaluating search scenarios (described in Section 3.1) with
combinations of search variables (described in Section 3.2). Together, these differentiations provide
operationally-relevant situations for examination.

3.1 Probe Template Scenarios

TheAPI for ELFT is flexible enough to supportmultiple probe template generation scenarios. Each
scenario represents a possible realistic law enforcement search scenario.

3.1.1 Single Latent

This search scenario is the most basic scenario in ELFT. A single latent image or feature set is
provided to the template creation method. A probe template is produced from this method and is
then provided to the search method.

3.1.2 Multiple Latents, Same Region

The probe template in a search will always be derived from at least one latent friction ridge
image or set of features. The API can test searching multiple latent impressions or feature sets
simultaneously. In this case, more than one latent image or feature set would be provided to the
template creation method to return a single template. All images and features incorporated into a
probe template in this search scenario would come from the same hand region, as specified in the
set of features provided.

3.1.3 Multiple Latents, Different Regions, Same Subject

A probe template might also be created per-subject instead of per-region. In this case, multiple
latent images or feature sets from the same subject but potentially different regions of the hand
would be passed to the template creation method to return a single template.

When searching with this type of probe template, Candidate friction ridge position will be ig-
nored.

3.2 Variables

Searches can range in difficulty by changing several variables for any of the search scenarios
described in Section 3.1.

3.2.1 Image Only

Image only refers to a probe template made from an image without any human-supplied annota-
tion. This is equivalent to an image of a developed latent print being sent directly to an ABIS for
fast search. No metadata about the image (e.g., region of interest, orientation, substrate, etc.) is
provided.

It’s possible some limited human intervention may have been applied to the image in this scenario.
For example, developing prints with a chemical like 1,2-indanedione requires photographing
through a color filter. ACLPEmayhave converted the image to grayscalemanually, using their best

5

ELFT Test Plan

judgment to optimize image brightness and contrast. This is known as image enhancement. Other
development techniques, such as using black powder and tape, would likely be photographed or
scanned without anymanual intervention, instead relying on device defaults for grayscale capture
or conversion.

Image only searching is a step ahead of “lights-out” Tier 1 [5], since image enhancement and proper
orientation are not guaranteed.

3.2.2 Enhanced Image Only

This is the same as Image Only (Section 3.2.1), but the image is known to have been enhanced such
that it is suitable for a human CLPE to annotate. In this scenario, NIST may be able to compare
searches of enhanced and non-enhanced images. Software libraries under test will not know if an
image has been enhanced.

3.2.3 Extended Feature Set

ANSI/NIST ITL 1-2011 added support for Extended Feature Set (EFS), a data blockwhich, “defines
the content, format, and units of measurement for the definition and/or exchange of friction ridge
feature information” [6]. In the ELFT API, a subset of EFS information is available to software
libraries under test to assist in feature extraction and searching. Available features include:

• Position

• Capture technology

• Impression type

• Orientation

• Processing method

• Value assessment

• Pattern classification

• Known/possible lateral reversal

• Known/possible tonal reversal (partial or overall)

• Core, delta, and/or other minutia locations

• Region of interest polygon

• Ridge quality region

Some, all, or none of this data will be provided to the software library under test during feature
extraction. The source (e.g., CLPE, this algorithm, third-party algorithm) of the specified features
will not be provided.

3.2.4 Features Only

Some or all of the data described in Section 3.2.3 will be provided to the software library under
test during feature extraction. No image will be provided. The software library under test should
encode theses features into their template format for later searching.

6

ELFT Test Plan

3.2.5 Database Size

The number of references in a database has an affect on open set identification. NIST will evaluate
performance with reference databases containing various numbers of nonmated references.

3.2.6 Database Quality

The quality of references in the database plays a large part in the quality of candidates returned
in a candidate list. Many aspects affect quality, such as the sensor type and the skill of the sensor
operator. Where possible, NIST will vary the quality of the mated reference in the database.

3.2.7 Database Type

Traditionally, only exemplar-quality images are present in a reference database. However, there is
emerging interest in latent-to-latent searches. This scenario may help enable linkage of unsolved
cases where only latent prints are available. Multiple impressions of some latents may enable
enhanced searching through image composition.

7

ELFT Test Plan

4 Application Programming Interface Highlights

The ELFT API is only discussed briefly in this test plan. Thorough documentation is available
directly in the C++ header file, and is additionally formatted both for the web and for print.

The ELFT API is written in C++ and makes use of C++17 features. The core library does not need to
adopt this standard, butwill need to be compiledwith the appropriate flags to support linkagewith
the ELFT test application. All code should be built with the same compiler to ensure compatibility
with the ELFT test application and to prevent difficult to debug link and runtime errors.

4.1 ELFT Namespace

All API code for ELFT exists within the ELFT namespace. The namespace contains declarations for
several enumerations and structs that are used throughout ELFT API methods.

4.1.1 Metadata Enumerations

Depending on the scenario (Section 3), the software library may be provided with some metadata
about the image under test. These enumerations map directly to codes described in detail in
ANSI/NIST-ITL 1-2011 Update 2015 [6].

• Impression

• FrictionRidgeCaptureTechnology

• FrictionRidgeGeneralizedPosition

• ProcessingMethod

• PatternClassification

• ValueAssessment

• Substrate

4.1.2 ReturnStatus

The ReturnStatus struct is used in most non-trivial API methods to return information from
the software library under test about the status of performing an operation. If an operation is
successful, the default-constructed ReturnStatus is sufficient to indicate success (e.g., return {};
or return (ReturnStatus());. In failure conditions, software libraries under test shall set the
result parameter of ReturnStatus to Result::Failure. For debugging purposes, it is helpful to
include text matching the regular expression [[:graph:]]* regarding why the failure occurred
in ReturnStatus’s message parameter. If it adds meaningful information, message can also be
populated when successful, but is otherwise discouraged.

4.1.3 EFS

The EFS struct encapsulates metadata about an image of one or more hand regions. Depending on
the scenario (Section 3), this data may be provided only in part or not at all. In other cases, some
or all of the data simply might not be known. Software libraries under test are expected to process
all Images provided, regardless of what metadata is provided. Metadata provided in EFS can be
assumed to come from CLPEs.

8

https://github.com/usnistgov/elft/blob/master/elft_1_x/include/elft.h
https://pages.nist.gov/elft/doc/testplan
https://pages.nist.gov/elft/elft_1_x/doc/testplan.pdf

ELFT Test Plan

This struct is also used to expose data encoded in templates, as described in Section 4.4.

4.2 Extracting Features

The ELFT API defines the abstract class ExtractionInterface, with several pure virtual functions
to support extracting features and creating templates from a wide variety of friction ridge im-
ages. Participants shall publicly inherit ExtractionInterface to implement all feature extraction
methods.

4.2.1 Identification

ExtractionInterface::getIdentification() serves two purposes. The primary purpose is a run-
time means for the ELFT test application to obtain the name and version number of a submission.
This helps NIST enable an automated way of providing the correct inputs to the software library
under test and structurally storing its output.

This method also provides a means for organizations to provide marketing information to readers
of ELFT analysis reports. If desired, populate the SubmissionIdentification structwithmarketing
and Common Biometric Exchange Formats Framework (CBEFF) information about the exemplar
and latent feature extraction algorithms embedded within the software library under test. This
information will be printed verbatim in ELFT analysis reports.

4.2.2 Create Template

ExtractionInterface::createTemplate() is the workhorse of the ExtractionInterface. Depend-
ing on the scenario (Section 3), the software library under test will be provided zero or more
friction ridge images and expected to produce a single buffer of data in the form of a template
usable by the software library under test. ExtractionInterface::mergeTemplates() provides a
mechanism to merge one or more templates of the same type with the same identifier generated
via ExtractionInterface::createTemplate().

Notes

• Both exemplar and latent images are processed in this method. The EFS imp member may
distinguish between the two, but is not required to do so.

• This method supports differentiation between Probe and Reference templates.

• The software library under test may be provided more than one image per friction ridge
position, especially when creating Reference templates.

• Internally, the software library under test may store more than one template, but data must
be returned as a single buffer.

• If an Image contains more than one friction ridge position (e.g., an upper palm capture),
it is the responsibility of the software library under test to segment into multiple regions
for feature extraction, if desired. Participants should consider participating in NIST’s Slap
Fingerprint Segmentation III evaluation for segmentation practice and detailed analysis.

• Depending on the scenario, some, all, or none of the EFS metadata will be provided. The
software library under test is still expected to process the image regardless of what, if any,
EFS data is received.

9

https://www.nist.gov/itl/iad/image-group/slap-fingerprint-segmentation-evaluation-iii
https://www.nist.gov/itl/iad/image-group/slap-fingerprint-segmentation-evaluation-iii

ELFT Test Plan

• Feature only searches (Section 3.2.4) are facilitated by not providing an Image. If no Image is
provided, there is guaranteed to be some EFS data provided. Simply encode this information
into a template usable by the SearchInterface.

• The source of EFS data is not specified. It may be from your software library under test, a
different software library under test, or a CLPE.

4.2.3 Create Reference Database

Once all Reference templates have been created, the ELFT test application will provide them en
masse to ExtractionInterface::createReferenceDatabase(). This method should ingest these
templates, do any necessary processing, andwrite some sort of structure to disk at the location pro-
vided by the databaseDirectory parameter. This location will be provided to the SearchInterface
later for searching. When creating the reference database, the number of templates provided is
exactly the number of identities represented (i.e., consolidated) and no de-duplication efforts are
necessary.

4.2.3.1 Database Size

Do not write over maxSize bytes when creating the reference database. The data written will
be returned to SearchInterface in RAM, and if more than maxSize bytes are written, this will
not be possible. If the software library under test requires more space than maxSize, return
ReturnStatus::Result::Failure and indicate in the message parameter approximately howmuch
space is necessary given the Reference templates provided.

If possible, fail as soon as possible if maxSize is not suitable for the software library under test.
This will allow NIST to find more suitable hardware or communicate with the participant about
reducing the size of the enrollment database without wasting evaluation resources for other
participants. Participants may count on maxSize being ≥96GB. The size of the reference database
will be printed in ELFT analysis reports.

4.3 Searching the Database

The ELFT API defines the abstract class SearchInterface, with several pure virtual functions to
support searching and modifying the reference database created with ExtractionInterface. Par-
ticipants shall publicly inherit SearchInterface to implement all feature extractionmethods.

4.3.1 Identification

As in template creation (Section 4.2.1), the ELFT API provides a means for providing marketing
information about the search algorithm to readers of NIST reports. If desired, return this infor-
mation in SearchInterface::getIdentification(). This information will be printed verbatim in
ELFT analysis reports.

4.3.2 Database Manipulation

Methods designed tomodify the database are provided as part of the ELFT SearchInterface class.
Software libraries under test should dowhatever processing necessary to perform these operations,
but keep in mind the relatively short amount of time allowed before they must return control to
the ELFT test application. These are designed to be rapid modifications and not a substitute for

10

ELFT Test Plan

• UnknownFinger
– Per-finger: MISS
– Per-hand: MISS
– Per-subject: HIT

• RightIndex
– Per-finger: HIT
– Per-hand: HIT
– Per-subject: HIT

• RightMiddle
– Per-finger: MISS
– Per-hand: HIT
– Per-subject: HIT

• LeftIndex
– Per-finger: MISS
– Per-hand: MISS
– Per-subject: HIT

Figure 2: Outcomes for searching a latent image from a subject’s right index distal phalanx if the correct identifier is
returned with the specified FrictionRidgeGeneralizedPosition.

the database creation operations described in Section 4.2.3. Any modifications made as a result
executing of these methods shall persist.

• exists() returns true or false based on if the identifier in question is represented in the
reference database.

• insert() is used to insert new Reference templates with previously unseen identifiers into
the database. If the identifier already exists in the reference database, data in the newly-
provided template should bemergedwith existing data, if such a manipulation is relevant for
the software library under test’s implementation.

• remove() shall remove all information about an identifier from the reference database. The
identifier shall no longer appear in any candidate lists after this method returns success-
fully.

4.3.3 Search

Probe templates created in the ExtractionInterface are searched through the reference database
in SearchInterface::search(). Software libraries under test will be provided a single template
created by their template generation implementation and are expected to return a list of potential
Candidates with accompanying similarity scores. Since multiple friction ridge positions may
be included in a single reference template, Candidates shall include the most localized friction
ridge position that is most similar. If friction ridge position cannot be determined but the search
is sure of the Candidate identifier, a friction ridge position of UnknownFinger, UnknownPalm, or
UnknownFrictionRidge can be returned. Depending on the scenario, omitting, misidentifying, or
over-generalizing a friction ridge position may result in a miss.

In addition to a list of Candidates, this method also asks for a bool as to whether or not the
software library under test believes the candidate list contains the true mate. This may be based
on an internal perceived similarity score threshold or any other heuristic.

NIST plans to report accuracy per-finger, per-hand, and per-subject for distal phalanx latent image
searches. An example of possible outcomes is described in Figure 2. This applies similarly to
palms and joints, as shown in Figure 3, substituting per-finger with per-region (e.g., distal phalanx,
palm, other phalanges).

11

ELFT Test Plan

• UnknownFrictionRidge
– Per-region: MISS
– Per-hand: MISS
– Per-subject: HIT

• LeftHypothenar
– Per-region: HIT
– Per-hand: HIT
– Per-subject: HIT

• LeftThumb
– Per-region: MISS
– Per-hand: HIT
– Per-subject: HIT

• LeftGrasp
– Per-region: HIT
– Per-hand: HIT
– Per-subject: HIT

Figure 3: Outcomes for searching a latent image from a subject’s left thenar if the correct identifier is returned with the
specified FrictionRidgeGeneralizedPosition.

4.4 Research Data

The ELFTAPI provides two facilities to gain insight into the decisionsmade by the software library
under test. Currently, providing these insights isoptional, butmayhelp indebuggingerrorsduring
the ELFT evaluation, provide insights into miss analysis, and aid future NIST research.

4.4.1 Templates

There is no template format requirement for the data returned from ExtractionInterface::-
createTemplate(). ExtractionInterface::extractTemplateData() allows for insight into what
kind of data is included in the otherwise opaque template. This method should return one
TemplateData per friction ridge position per image. If the TemplateData is derived from a single
finger in amulti-region image, the Coordinates of a convex polygon enclosing the region of interest
of the finger in question should be recorded in the roi parameter. An example of returning
TemplateData from an identification flat image is shown in Figure 4 as well as from a latent image
in Figure 5.

4.4.2 Correspondence

Many latent search algorithms operate bymimicking the actions of CLPEs—corresponding group-
ings of minutia found in latent images with the same groupings found in an exemplar image. This
information can be exposed via SearchInterface::extractCorrespondence(). This method re-
turns a list of corresponding minutia for each Candidate in a candidate list for a given search. An
example of returning Correspondence is shown in Figure 6.

Important

Minutia returned in Correspondence shall come from the set returned in ExtractionInterface::-
extractTemplateData().

4.5 Fundamentals

4.5.1 Object Construction

Each class defines a static “factory” method named getImplementation(). These methods provide
the software library under test necessary filesystem paths needed to load provided configurations
and their reference database, as applicable. The software library under test is responsible for imple-
menting these methods that return an instance of the child class that implements the appropriate

12

ELFT Test Plan

std::vector<TemplateData> tds{};
tds.reserve(4);

TemplateData tdLM{};
tdLM.imageIdentifier = 6; // Copy, provided in createTemplate()

// Parse your template to get this info. It is hardcoded here for clarity.
tdLM.efs.frgp = FrictionRidgeGeneralizedPosition::LeftMiddle;
tdLM.efs.roi = std::vector<Coordinate>{{285, 16}, {306, 3}, {341, 3},{356, 20}, {356, 114}, {285, 114}};
tdLM.efs.orientation = 8;
tdLM.efs.valueAssessment = ValueAssessment::Value;
tdLM.efs.pct = PatternClassification::LeftLoop;
tdLM.efs.plr = false;
tdLM.efs.trv = false;

// Locations are relative to the rectangle bounding td.efs.roi (lighter red above).
tdLM.efs.cores = std::vector<Coordinate>{{48, 24}};
tdLM.efs.minutia = std::vector<Minutia>{};
tdLM.efs.minutia->emplace_back({{12, 26}, -14.5, MinutiaType::RidgeEnding});
tdLM.efs.minutia->emplace_back({{{57, 34}, 15.0, MinutiaType::Bifurcation});
tdLM.efs.minutia->emplace_back({{{47, 12}, 48.2, MinutiaType::Bifurcation});
// . . .

tdLM.imageQuality = 83;
tds.push_back(tdLM);

// . . . Repeat for other fingers. All have same imageIdentifier . . .

return (tds);

Figure 4: Example of returning TemplateData from ExtractionInterface::extractTemplateData(). In this example,
a left identification flat image (frgp = 14) was provided to ExtractionInterface::createTemplate(). The graphic
visualizes what might have been recorded for the left middle finger. The red dashed line shows a six-sided polygon
region of interest, with the lighter red rectangle representing the bounding rectangle formed by the region of interest. All
Coordinate are relative to the bounding rectangle. Green and blue dots indicate minutia and the yellow circle indicates
a core. All annotations are simulated. The code example shows only what would be needed to return information for
the left middle finger. Fingerprint image sourced from NIST Special Database 302 [3, 4].

13

ELFT Test Plan

TemplateData td{};
td.imageIdentifier = 13; // Copy, provided in createTemplate()

// Parse your template to get this info. It is hardcoded here for clarity.
td.efs.orientation = 47;
td.efs.valueAssessment = ValueAssessment::Value;
td.efs.pct = PatternClassification::Unknown;
td.efs.plr = false;
td.efs.trv = true;

// No region of interest specified. Locations are relative to the image.
td.efs.minutia = {

{{59, 35}, -12.5, MinutiaType::RidgeEnding},
{{90, 107}, 13.3, MinutiaType::Bifurcation},
{{121, 73}, 47.0, MinutiaType::Bifurcation},
// . . .

};

td.imageQuality = 71;

return ({td});

Figure 5: Example of returning TemplateData from ExtractionInterface::extractTemplateData(). In this example, a
single latent lift (fct = 22) was provided to ExtractionInterface::createTemplate(). The graphic above visualizes
what data might have been recorded in a template. Green and blue dots indicate minutia. Because no region of interest
is specified, all Coordinate are relative to the bounds of the image. All annotations are simulated. Fingerprint image
sourced from NIST Special Database 302 [3, 4].

14

ELFT Test Plan

std::vector<std::vector<Correspondence>> allCandidateCorrespondence{};
allCandidateCorrespondence.reserve(searchResult.candidateList.size());

for (const Candidate &candidate : searchResult.candidateList) {
// Retrieve reference template for this Candidate. For simplicity, we’ll assume this private method returns an
// ELFT::TemplateData.
const TemplateData referenceTemplate = this->retrieve(candidate);

// Determine which Minutia align between the probe and this reference
const std::vector<std::pair<Minutia>> minutia = this->determineCorrespondingPairs(probeTemplate,

referenceTemplate);

// Save away all those Minutia
std::vector<Correspondence> oneCandidateCorrespondence{};
oneCandidateCorrespondence.reserve(minutia.size());
for (const Minutia &m : minutia) {

Correspondence c{};
c.probeImageIdentifier = 13; // Copy, provided in createTemplate()
c.referenceImageIdentifier = 6; // Copy, provided in createTemplate()

// Corresponding Minutia MUST align from TemplateData. The commented values here are for clarity and are from
// the previous extractTemplateData() examples.
c.probeMinutia = m.first; // Iteration 1: {12, 26}; Iteration 2: {57, 34}; Iteration 3: {47, 12}; . . .
c.referenceMinutia = m.second; // Iteration 1: {59, 35}; Iteration 2: {90, 107}; Iteration 3: {121, 73}; . . .

oneCandidateCorrespondence.push_back(c);
}

allCandidateCorrespondence.push_back(oneCandidateCorrespondence);
}

return (allCandidateCorrespondence);

Figure 6: Example of returning Correspondence from SearchInterface::extractCorrespondence(). For continuity, the
same images parsed in Figures 4 and 5 are used here. For each Candidate in searchResult.candidateList, a placeholder
std::vector of Correspondence is reserved. Then, corresponding Minutia for each pair of probeTemplate and reference
template (retrieved from the loaded referencedatabase) aredeterminedand iteratively set in Correspondenceobjects. The
Minutia set heremustmatch the Minutia returned in TemplateData from ExtractionInterface::extractTemplateData().

15

ELFT Test Plan

ELFT interface. The ELFT test application will exclusively use the returned object for calling API
methods. When the ELFT test application forks, calls to getImplementation()will occur before the
fork, such that large read-only memory buffers are shared between processes, relying on Linux
copy-on-write pages.

4.5.2 Errors

Each non-trivial API method provides a way to return a ReturnStatus where information about
failures and errors can be expressed to the ELFT test application (Section 4.1.2). It’s not always
possible to safely jump out of code in certain error conditions (e.g., a memory allocation failure).
In this case, it may be appropriate to throw an exception. The ELFT test application will catch
std::exception fromallAPImethods. To assist in debugging these failure scenarios, please be sure
to throw exceptions inherited from std::exception and populate the what_arg parameter with a
description of the problem. If your existing customexception type does not inherit std::exception,
consider catching it and re-throwing a std::runtime_error with appropriate information. Like
the message member of ReturnStatus, all exception what_arg shall match the regular expression
[[:graph:]]*.

4.5.3 Multiprocessing

All API methods shall be single-threaded. The reason is that the NIST test driver operates as a
Message Passing Interface (MPI) job to multiple nodes, forking on each node to run many tasks in
parallel. See Section 5.1.1 for more details.

ELFT::ExtractionInterface::createReferenceDatabase() is an exception to this rule. NIST will
run this method on a single node in a single process. For this method, NIST expects the soft-
ware library under test to make use of threading (if necessary) to complete the creation of the
reference database as fast as possible, within the required time limits. Software libraries under
test should query the system for a hint of the number of supported concurrent threads (e.g.,
std::thread::hardware_concurrency()) and make reasonable use of them.

4.5.4 Speed

All API methods have speed thresholds that must be achieved before NIST will accept a software
library for evaluation. Technical details are described in Section 5.4. Required speeds are as listed
in Table 1. Note that multi-finger images are considered multiple samples for the purposes of
timing. For example, a four-finger slap image would be considered four samples and a full palm
image would be considered eight samples.

For template creation and searching, these speeds will be enforced as the mean observed duration
on afixed subset of data from the evaluationdatasets (Section 2). For all othermethods, these values
will be hard maximums. If these times are reached before the method has returned, the NIST test
driver will forcibly terminate and NIST will request a faster version from the participant.

16

ELFT Test Plan

API Method Metric Requirement
Ex

tr
ac
tio

n

getImplementation() Max 5 s
getIdentification() Max 250ms
createTemplate(): Latent Sample Mean 20 s per sample
createTemplate(): Exemplar Sample Mean 5 s ×" per sample
createTemplate(): Features (no image) Sample Mean 2.5 s per feature set
extractTemplateData() Max 500ms
mergeTemplates() Max 10ms per template
createReferenceDatabase() Max 10ms per identifier

Se
ar
ch

getImplementation() Max 5 s
getIdentification() Max 250ms
exists() Max 5 s
insert() Max 5 s
remove() Max 5 s
search() Sample Mean 10ms per identifier
extractCorrespondence() Max 5 s

Table 1: API runtime requirements. API Method indicates the ELFT API method for the current timing requirement.
Metric indicates how the duration will be enforced—either a hard maximum or as a mean value measured over a fixed
sample. Requirement indicates the value that must be achieved. For some methods, the value is variable based on the
number of identifiers in the reference database. In others, a multiplier" is in effect. See Table 2 for a list of these values.

Image Contents " Value

Single Finger 1
Two-Finger Simultaneous Capture 2
Four-Finger Simultaneous Capture 4
Upper, Lower, or Writer’s Palm 8
Joint Regions 8
Full Palm 16

All Other Regions 8

Table 2: " value requirements for feature extraction. Image Contents is what friction ridge structure is depicted within
an image. M Value is what is used as a multipler in the calculation of time permitted for feature extraction. See Table 1
for other parts of the time allocation equation.

17

ELFT Test Plan

5 Software and Documentation

5.1 Software Libraries and Platform Requirements

The methods specified in Section 4 shall be implemented exactly as defined in a software library.
The header file used by the ELFT test application is provided on the ELFT website in the ELFT
validation package (Section 5.3).

5.1.1 Restrictions

5.1.1.1 Dynamic Library

Participants shall provide NIST with binary code in the form of a software library only (i.e., no
source code or headers). Software libraries must be submitted in the form of a dynamic/shared
library file (i.e., .sofile). This library shall be know as the core library, and shall be named according
to the guidelines in Section 5.1.5. Static libraries (i.e., .a files) are not allowed. Multiple shared
libraries are permitted if technically required and are compatible with the validation package
(Section 5.3). Any required libraries that are not standard to CentOS 8.2.2004 must be built and
submitted alongside the core library. All submitted software libraries will be placed in a single
directory, and NIST will add this directory to the runtime library search path list (RUNPATH).

5.1.1.2 Single Configuration

Individual software libraries provided must not include multiple modes of operation or algorithm
variations managed by NIST. NoNIST-managed configurations or options will be tolerated within
one library. For example, the use of two different minutia sorting techniques would be split across
two separate software libraries (though the ELFT application indicates that NIST will only accept
one submission every 90 days).

Supplemental non-library files (e.g., pre-specified configurations and training models) are permit-
ted. If necessary, these files shall be placed in a dedicated directory as specified in the validation
submission instructions (Section 5.3). Filenames and checksums of all provided files will be
reported in ELFT analysis reports. The path to such files will be provided as a parameter to
getImplementation() (Section 4.5.1). No vendor-specific environment variables will be set for an
implementation to affect operation. NIST will additionally not alter any system-level configura-
tion.

Example
A participant submits a software library that internally has a customizable minutia sorting algo-
rithm. The software library decides which sorting algorithm to used based on the contents of a
text file, config.txt. The participant submits their software library and config.txt pre-configured
to use a sorting algorithm �. After NIST discovers a defect, the participant realizes the defect is
not present when the sorting algorithm is set to �, and could be corrected by a small change to
config.txt. Even though the change is minor, the participant must submit a new config.txt and a
new software library with incremented version number (Section 5.1.5) to correct the defect.

5.1.1.3 Multiprocessing

With one exception, the software library shall not make use of threading, forking, OpenMP, or
any other multiprocessing techniques. The ELFT test application operates as an MPI job over
multiple compute nodes, and then forks itself into many processes. In the test environment, there

18

ELFT Test Plan

is no advantage to threading. It limits the usefulness of NIST’s batch processing and makes it
impossible to compare timing statistics across ELFT participants.

The software library under test shall not acknowledge the existence of other processes running
on the test hardware, such as through semaphores or pipes, nor attempt to communicate with any
other process.

The single exception to this rule is theAPImethodELFT::ExtractionInterface::createReference-
Database(), which can and should use multiple threads, standard template library parallel exe-
cution policies, OpenMP, or any similar multi-threading technique in order to create reference
databases as fast as possible. The ELFT test application will call this method from a single process
on an otherwise idle machine. The reference database will be read-only after creation.

5.1.1.4 Deterministic Operation

The software library under test shall remain stateless and deterministic. API calls with the same
inputs shall produce the same outputs on all nodes at all times.

5.1.1.5 Filesystem

The software library under test shall not read from or write to any file system or file handle,
including standard streams. It shall not attempt any external communication such as network
connections via sockets.

The only exception to this rule is when interacting with the reference database. In this case, the
software library under test shall only read and write to areas at or below the filesystem path
provided in getImplementation().

Software libraries under test shall also be permitted to read configuration files at or below the
filesystem path provided in getImplementation(). This path shall be read-only.

5.1.2 External Dependencies

It is preferred that the API specified by this document be implemented in a single core library if
possible, to reduce the likelihood of difficult to remotely debug linking errors. Additional libraries
may be submitted that support this core library file (i.e., the core library filemay have dependencies
implemented in other libraries if a single library is not feasible). It is recommended that the RUNPATH
of these dependent libraries be set to $ORIGIN, since the only participant library that the ELFT test
application will explicitly link is the core library. The ELFT test application’s RUNPATHwill include
the directory containing the participant’s core library. Filenames and checksums of all library files
will be reported in ELFT analysis reports.

5.1.3 libelft.so

Core libraries will need to depend on the NIST-provided libelft.so. Participants shall not alter
the provided header file for libelft.so. NISTwill build and supply libelft.so, and so this library
shall not be included in validation submissions (Section 5.3).

5.1.4 Hardware Dependencies

Use of intrinsic functions and inline assembly is allowed and encouraged, but software libraries
shall be able to run and are required to pass validation (Section 5.3) on the Intel Xeon E5-2680, Intel

19

ELFT Test Plan

Xeon E5-4650, and Intel Xeon Gold 6140 CPUs. Speed tests that run on a fixed sample dataset will
be run as described in Section 5.4.

5.1.5 Naming

The core software library submitted for ELFT shall be named in a predefined format. The first part
of the software library’s name shall be libelft_. The second piece of the software library’s name
shall be a non-infringing and case-sensitive unique identifier that matches the regular expression
[:alnum:]+ (likely the participating organization’s name), followed by an underscore. The final
part of the software library’s name shall be a four uppercase hexadecimal digit version number,
followed by a file extension. Be cognizant of the name provided, as this will be nameNIST uses to
refer to your submission in reports. Supplemental librariesmay have any name, but the core library
must be dependent on supplemental libraries in order to be linked correctly. The only participant
library that will be explicitly linked to the ELFT test driver is the core library, as demonstrated in
Sections 5.1.2 and 5.1.6.

The version number shall match the uppercase hexadecimal version number with leading 0s, as
returned by ELFT::ExtractionInterface::getIdentification(). With this naming scheme, every
core library received by NIST shall have a unique filename. Incorrectly named or versioned
software libraries will be rejected.

Note
When NIST encounters an error, NIST will expect a different version number on resubmission.
Incrementing the version number is not a penalty. It is NIST’s way of ensuring they’re always
running with the latest version of a software library and its templates, and that analysis is run
against appropriate log files.

NIST discourages trying to align version numbers for marketing use. Instead, make use of the
marketing identification features of the API described in Section 4.2.1 for this purpose.

Example
Initech submits a software library named libelft_initech_101C.so with build 4 124 of their al-
gorithm. This library returns {"initech", 0x101C} from getIdentification(). NIST determines
that Initech’s search() method is too slow and rejects the library. Initech submits build 4 125 to
correct the defect in 4 124. Initech updates getIdentification() in their implementation to return
{"initech", 0x101D} and renames their library to libelft_initech_101D.so. In ELFT analysis
reports, NIST refers to Initech’s library as initech+101D.

5.1.6 Operating Environment

The software library will be tested in non-interactive “batch”mode (i.e., without terminal support)
in an isolated environment (i.e., no Internet connectivity). Thus, the software library under test
shall not use any interactive functions, such as graphical user interface calls, or any other calls that
require terminal interaction (e.g., writes to stdout) or network connectivity. Any messages for
debugging failure conditions shall be provided via the message parameter of ReturnStatus (or via
exceptions in extreme cases) and notwrite to files or the console.

NIST will link the provided library files to a C++17 language test driver application using the
compiler g++ (version RedHat 8.3.1-5, via mpicxx) under CentOS 8.2.2004, as seen in Figure 7.

20

ELFT Test Plan

mpicxx -o elft elft.cpp -Llib -Wl,--enable-new-dtags -Wl,-rpath,lib -lelft \
-lelft_initech_101D -lstdc++fs

Figure 7: Example compilation and link command for the ELFT test application.

Participants are required to provide their software libraries in a format that is linkable using g++
with the NIST test driver. All compilation and testing will be performed on 64-bit hardware
running CentOS 8.2.2004. NIST is using the base CentOS release install and not CentOS Stream,
which typically targets sources to be present in the next minor release. Participants are strongly
encouraged to verify library-level compatibility with g++ on CentOS 8.2.2004 prior to submitting
their software to NIST to avoid unexpected problems.

5.2 Usage

5.2.1 Software Libraries

The software library shall be executable on any number of machines without requiring additional
machine-specific license control procedures, activation, hardware dongles, or any other form of
rights management.

The software library under test’s usage shall be unlimited. No usage controls or limits based on
licenses, execution date/time, number of executions, etc., shall be enforced by the software library.
Should a limitation be encountered, the software library under test shall have ELFT testing status
revoked.

5.3 Validation and Submitting

NIST shall provide a validation package that will link the participant core software library to a
sample ELFT test application. A script included in the validation package runs a series of tests
and reporting routines to help ensure correct operation at NIST. Once the validation successfully
completes on the participant’s system, a file with logs, the participant’s software libraries, and
any provided configuration files will be created. After being signed and encrypted, only this
file and a public key shall be submitted to NIST. Any software library submissions not generated
by an unmodified copy of the latest version of NIST’s ELFT validation package will be rejected.
Any software library submissions that generate errors while running the validation package on
NIST’s hardware will be rejected. Validation packages that have recorded errors while running
on the participant’s system will be rejected. Any submissions of successful validation runs not
created on CentOS 8.2.2004 will be rejected. Any submissions not signed and encrypted with the
private key whose public key fingerprint is recorded on the participant’s ELFT agreement will be
rejected.

Participants may resubmit a new validation package immediately upon being notified of a vali-
dation rejection. NIST may impose a “cool down” period of several months for participants with
excessive repeated rejections in order to most efficiently make use of test hardware.

5.3.1 Agreement

Before releasing ELFT analysis reports, NIST must receive a signed ELFT agreement. This agree-
ment must be physically mailed or faxed to NIST. E-mailed agreements cannot be accepted. Even

21

ELFT Test Plan

if the information has not changed, a new agreement must be submitted for each ELFT analysis
report NIST posts.

5.3.2 Communication

All communication to NIST shall be addressed to the ELFT e-mail alias elft@nist.gov and not a
specific member of the ELFT team. This will help ensure your message is replied to in an efficient
manner.

5.4 Speed

Timing tests will be run and reported. Speed requirements are listed in Table 1. For those methods
where Metric is Sample Mean, the test will be performed using a fixed sample of the ELFT dataset
(Section 2) on an Intel Xeon Gold 6140 CPU prior to completing the entire test. Submissions that
do not meet the timing requirements listed for each method in Table 1 will be rejected. A table of
timing requirements can be seen in Section 4.5.4.

Speed tests of ELFT::ExtractionInterface::createReferenceDatabase() will also be performed
on an Intel Xeon Gold 6140 CPU. For expediency, NIST may choose to allow some discretion in
the runtime of this method. For example, if the maximum runtime is 10 h but the actual runtime
was 10.1 h and there was demand for compute resources in our data center, it may be prudent to
continue the evaluation, since a resubmission in this example would also require the regeneration
of millions of templates.

Due to the nature of the ELFT API, timing failures may not be seen by NIST until several days after
submission. Participantsmay resubmit a new validation package immediately upon being notified
of a timing rejection. NIST may impose a “cool down” period of several months for participants
with excessive repeated rejections in order to most efficiently make use of test hardware.

22

mailto:elft@nist.gov

ELFT Test Plan

References

[1] Dvornychenko VN, Garris MD (2006) Summary of NIST Latent Fingerprint TestingWorkshop.
NIST Interagency Report 7377 https://doi.org/10.6028/NIST.IR.7377

[2] Indovina MD, Dvornychenko VN, Hicklin RA, Kiebuzinskio GI (2012) ELFT-EFS Evaluation
of Latent Fingerprint Technologies: Extended Feature Sets [Evaluation #2]. NIST Interagency
Report 7859 https://doi.org/10.6028/NIST.IR.7859

[3] Fiumara G, et al. (2018) National Institute of Standards and Technology Special Database 302:
Nail to Nail Fingerprint Challenge. National Institute of Standards and Technology, Technical
Note 2007. https://doi.org/10.6028/NIST.TN.2007

[4] Flanagan PA NIST Special Database 302 Nail to Nail (N2N) Fingerprint Challenge, National
Institute of Standards and Technology, Zip Archive. https://doi.org/10.18434/M31943

[5] Meagher S, Dvornychenko V (2011) Defining AFIS Latent Print “Lights-Out”.NIST Interagency
Report 7811 https://doi.org/10.6028/NIST.IR.7811

[6] American National Standard for Information Systems (2016) Information Technology: ANSI/
NIST-ITL 1-2011 Update 2015—Data Format for the Interchange of Fingerprint, Facial &Other
Biometric Information. NIST Special Publication 500-290e3 https://doi.org/10.6028/NIST.SP.
500-290e3

Revision History

23 March 2021 RUNPATH contains the path to the participant’s core software library, not necessarily
RPATH. This is because CMake passes --enable-new-dtags to the linker (Paragraph 5.1.1.1,
Section 5.1.2, and Figure 7).

08 March 2021 Version 1.0.0.

10 July 2020 Updated speed requirements in Section 4.5.4 and localization examples in Sec-
tion 4.3.3.

28 May 2020 Some durations in Section 4.5.4 were listed in µs when they should have been in ms.

07 May 2020 Initial draft for public comment.

23

https://doi.org/10.6028/NIST.IR.7377
https://doi.org/10.6028/NIST.IR.7859
https://doi.org/10.6028/NIST.TN.2007
https://doi.org/10.18434/M31943
https://doi.org/10.6028/NIST.IR.7811
https://doi.org/10.6028/NIST.SP.500-290e3
https://doi.org/10.6028/NIST.SP.500-290e3

	Introduction
	Evaluation Imagery
	Scenarios and Variables
	Application Programming Interface Highlights
	Software and Documentation
	References
	Revision History

