
OSCAL "Deep Diff“
- a model-agnostic OSCAL tool and the concept behind it -

ITL/CSD/OSCAL Team
”Lunch With the Devs” Presentation



How do I track changes that 
my team has made between 
revisions of a document?

The Problem: Large Documents are Difficult to Digest

Authors

How can I produce a 
checklist of controls with 
relevant changes when a 
new revision of a control 
catalog comes out?

Catalog Consumers

How can I track when certain 
types of changes to a 
document happens, and 
make decisions based on 
those change-lists (such as in 
a CI/CD pipeline)?

Developers



The Solution: A “Diff” Tool for OSCAL Documents

A tool that can generate a 
comparison between two OSCAL 
documents

Configurable enough to be applied 
in multiple scenarios

Must be able to generate output 
documents that are easy to digest 
and share

Portable and extendable so that it 
can be integrated into other tools 
(such as web applications)

*

*

*

*

GitHub’s diff view, an example of a diff tool used daily by developers



• An open-source JavaScript/TypeScript CLI 
application and library that can be used to 
compare arbitrary JSON documents

• Does not rely on a schema to compare objects, 
can be configured to compare documents in a 
reproducible manner

• Generates outputs in multiple formats including 
easy-to-distribute Excel spreadsheets

• Can be integrated into other tools, including 
web and desktop applications

OSCAL Deep Diff Introduction

OSCAL-deep-diff GitHub card



• By default, OSCAL deep diff produces a JSON document listing the 
differences between the two documents
• Valid change types are “property_left_only”, “property_right_only”, 

“property_changed”, and “array_changed”.
• Each “array_changed” type has a sub-list of changes for each 

matched pair of items.

• The raw JSON document can be used to produce friendlier output 
documents
• Excel output collects all of one object type (like controls) and 

displays them in an Excel document.
• The tool can be extended to produce other comparison views (such 

as a web-application or pdf report)

Output Format



The tool can be configured to change the behavior of 
the comparison:
• Ignore objects that are irrelevant to the 

comparison
• Change the way properties are compared (select 

a string similarity algorithm, ignore case, etc.)
• Swap out the algorithms used to “match” array 

items to each other

…as well as the output format:
• Change which objects will be collected for the 

comparison
• Choose which metadata should be displayed in 

the output document
• Output to JSON, Excel, etc.

This is all configured via a YAML file

Configurability

An example configuration file for comparing control catalogs



• Speed of comparisons
• Array comparison algorithms are computationally expensive.
• For example, depending on the settings used, comparisons 

between SP 800-53 revisions can take upwards of 10 minutes.
• Comparison behavior tuning

• Getting the tool fit a particular comparison scenario may require 
tweaking. 

• This can be solved with community support and examples.
• Comparison results

• Some scenarios are not supported yet, such as object 
demotion/promotion. (ex. A control becoming an enhancement)

Shortcomings



If this tool is exciting or potentially useful to you:
• Please provide feedback, report bugs, and suggest 

improvements!
• Feel free to submit issues, PRs, and discussions to 

https://github.com/usnistgov/oscal-deep-diff

Please note: The version of OSCAL Deep Diff shown here is still experimental, see 
https://github.com/usnistgov/oscal-deep-diff/pull/34

Look forward to OSCAL Deep Diff v1.0, coming soon!
Expect the second pre-release later this week!

Call to Action

https://github.com/usnistgov/oscal-deep-diff
https://github.com/usnistgov/oscal-deep-diff/pull/34


Questions?
XKCD Comic https://xkcd.com/2582/

https://xkcd.com/2582/

