J Sign Process Syst (2017) 89:457-467
DOI 10.1007/s11265-017-1262-6

@ CrossMark

A Hybrid Task Graph Scheduler for High Performance

Image Processing Workflows

Timothy Blattner!
Milton Halem? - Mary Brady!

- Walid Keyrouz! - Shuvra S. Bhattacharyya* .

Received: 14 July 2016 / Revised: 11 April 2017 / Accepted: 22 June 2017 / Published online: 19 July 2017

© US Government (outside the USA) 2017

Abstract Designing applications for scalability is key to
improving their performance in hybrid and cluster com-
puting. Scheduling code to utilize parallelism is difficult,
particularly when dealing with data dependencies, memory
management, data motion, and processor occupancy. The
Hybrid Task Graph Scheduler (HTGS) improves program-
mer productivity when implementing hybrid workflows
for multi-core and multi-GPU systems. The Hybrid Task
Graph Scheduler (HTGS) is an abstract execution model,
framework, and API that increases programmer productiv-
ity when implementing hybrid workflows for such systems.
HTGS manages dependencies between tasks, represents
CPU and GPU memories independently, overlaps compu-
tations with disk I/O and memory transfers, keeps multiple
GPUs occupied, and uses all available compute resources.
Through these abstractions, data motion and memory are
explicit; this makes data locality decisions more accessi-
ble. To demonstrate the HTGS application program inter-
face (API), we present implementations of two example

>4 Timothy Blattner
timothy.blattner @nist.gov

Information Technology Laboratory, National Institute
of Standards and Technology, Gaithersburg, MD 20899, USA

Center for Hybrid Multicore Productivity Research,
University of Maryland Baltimore County, Baltimore,
MD 21250, USA

Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742, USA

Department of Pervasive Computing, Tampere University
of Technology, Tampere, Finland

algorithms: (1) a matrix multiplication that shows how
easily task graphs can be used; and (2) a hybrid imple-
mentation of microscopy image stitching that reduces code
size by & 43% compared to a manually coded hybrid
workflow implementation and showcases the minimal over-
head of task graphs in HTGS. Both of the HTGS-based
implementations show good performance. In image stitch-
ing the HTGS implementation achieves similar performance
to the hybrid workflow implementation. Matrix multipli-
cation with HTGS achieves 1.3x and 1.8x speedup over
the multi-threaded OpenBLAS library for 16k x 16k and
32k x 32k size matrices, respectively.

Keywords Heterogeneous architectures - Task graph -
Hybrid workflows - Dataflow - Image processing - Matrix
multiplication

1 Introduction

Hybrid clusters currently play a prominent role in high per-
formance computing; they make up four of the top ten
fastest supercomputers as of June 2016 [21]. These petas-
cale clusters consist of nodes that contain one or more CPUs
with one or more co-processors or accelerators (Intel Xeon
Phi [11] or NVIDIA Tesla [17]); these accelerators scale up
the compute capabilities of individual nodes while staying
within energy budgets. Clusters are approaching the exas-
cale level; the next generation of hybrid architectures will
contain fat cores coupled with many thin cores/accelerators
on a single chip, as seen on Intel’s Knights Landing [9]. Pro-
gramming these exascale machines for performance will be
challenging. It will require programmers to maximize par-
allelism and minimize data motion while maximizing the
arithmetic density of computations applied to the data [1];

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-017-1262-6&domain=pdf
http://orcid.org/0000-0002-4964-5403
mailto:timothy.blattner@nist.gov

458

J Sign Process Syst (2017) 89:457-467

this task is further complicated by accelerators which effec-
tively have their own memory domains that are distinct from
those of CPUs.

This paper builds on our previous work [6] and formal-
izes our approach to developing a scalable implementation
of image stitching for large optical microscopy images. It
presents the Hybrid Task Graph Scheduler (HTGS), which
is designed to aid in building hybrid workflows for high
performance image processing. HTGS presents a model
and framework, which makes it easier to overlap data
motion with computation, maximize processor occupancy
when running on hybrid computers, and manage memory
usage to stay within physical memory limitations. Ignor-
ing these aspects of a system has a detrimental impact on
performance.

An earlier version of this work [7] demonstrated a proto-
type of the hybrid task graph scheduler for image processing
workflows in Java. This paper expands on that work by pre-
senting the full release version of the HTGS API in C++,
which we have recently made available in open source
form [5], and its performance for image stitching com-
pared to a similar hybrid workflow implementation in C++-.
Additionally, we present an HTGS-based implementation of
matrix multiplication for in-core matrices, which achieves
up to 1.8x speedup over the standalone OpenBLAS library
for 32k x 32k size matrices.

In the following sections, we first introduce image stitch-
ing for microscopy. Next, we present an overview of our
previous work with hybrid pipeline workflows and the per-
formance gains attained and some related works to task
scheduling and workflow systems. Then, we present the
hybrid task graph scheduler model and framework, followed
by two examples to illustrate the functionality of HTGS in
microscopy image stitching and matrix multiplication. We
will then present the conclusions.

1.1 Image Stitching for Microscopy

Image stitching addresses the scale mismatch between the
dimensions of (1) an automated microscope’s field of view
and (2) the plate under study. To image a plate, the micro-
scope acquires a grid of overlapping images as its motorized
stage moves the plate. Image stitching reconstructs the full
image by first computing the relative positions of adjacent
image tiles and then using these distances to compose the
image mosaic.

Image stitching applications for microscopy must
address two challenges, algorithmic and scalability. Optical
microscopy can generate images with few distinguishable
features in the overlap region that can be used to guide
stitching; this occurs often in early phases of live cell exper-
iments. This lack of distinguishable features makes it dif-
ficult to determine the relative positioning of two adjacent

@ Springer

tiles and rules out a large class of stitching algorithms with
good performance characteristics. The scalability challenge
is due to the large number of tiles in a grid (e.g., 100s—
1000s); the resulting data sets are large and require a lot
of processing. This challenge is further amplified by long-
running experiments which image a plate periodically (e.g.,
every hour) to study phenomena such as cell growth over
several days (e.g., 1-2 weeks). Image stitching must recon-
struct a plate’s image in a fraction of the imaging period to
enable computationally steerable experiments, which allow
researchers to analyze the acquired images and, if need be,
intervene in the experiments.

There is a large body of literature on general image
stitching. Szeliski provides an excellent entry point into this
literature [20]; Szeliski discusses many algorithms for find-
ing the proper alignment of image tiles and classifies them
into two categories: feature-based alignment techniques [3,
16] and direct methods [12, 13].

Our work [6] uses a direct method, Kuglin and Hines’
phase correlation image alignment method [13], that is mod-
ified to use normalized correlation coefficients as described
by Lewis [14, 15]. This method uses Fast Fourier Trans-
forms (FFTs) to compute Fourier Correlation Coefficients
and then uses these correlation coefficients to determine
image displacements. It is very similar to the one used by
Preibisch, Saalfeld, and Tomanak in their Imagel/Fiji plu-
gin for image stitching [19]. We chose the Fourier-based
approach because (1) it has predictable parallelism and (2) it
is more robust for optical microscopy as it does not depend
on feature detection which is inherently scene-dependent.
The image stitching computation can be summarized in the
following formulas:

NCC;; = F ;) ®.7:(Ij)
max;; = maxloc(]—'_l(NCCij))
di; = max(CCE"“*(1;, I}, max;}))

where F and F~! are the forward and inverse Fourier trans-
form operators, ® is the normalized correlation coefficient
operator, maxloc returns the index of the largest value in
a vector, and CCF!* produces the four cross correlation
coefficients and relative displacements of an image pair.
The image stitching algorithm is compute-bound and is
dominated by Fourier transform computations, both forward
and backward. For an n x m grid, there are 3nm —n — m)
such transforms. There is also a similar number of vector
multiplications and reductions; these operations can become
comparatively expensive if they do not take advantage of
hardware vector instructions. For the large image grids
under consideration (100s—1000s), image stitching exhibits
a high degree of coarse-grained parallelism: all the for-
ward transforms are independent of each other and can be
computed in parallel; the NCC and maxloc computations

J Sign Process Syst (2017) 89:457-467

459

exhibit a similar parallelism. However, the image stitch-
ing algorithm is not embarrassingly parallel because of
data dependencies and size limitations imposed by physi-
cal memory. Therefore, a scalable parallel implementation
must ensure that the dependencies of NCC;; and CCF}]:'4
are satisfied before these computations can proceed. Fur-
thermore, the implementation must manage memory to stay
within physical memory limits because the problem may not
fit into a machine’s main memory (e.g., 16, 32, or even 64
GB). Otherwise, the virtual memory system will result in
excessive swapping with the ensuing dramatic fall in per-
formance. Memory size limits are even more constraining
in the case of accelerators where even high-end accelerators
are limited to no more than 16 GB. The challenges in devel-
oping scalable parallel implementations lie in exploiting the
coarse-grained parallelism available in image stitching and
taking advantage of computing resources (CPUs and GPUs)
while satisfying the constraints noted above.

In our previous work, we reported that directly porting
compute-intensive functions from a sequential implemen-
tation to the GPU did not yield sufficient performance
improvements; this was due to the low utilization of the
GPU, a result of the default synchronous approach to CPU-
GPU memory copies. This led us to develop an implementa-
tion based on hybrid workflows, which are designed to keep
GPUs and CPUs busy while overlapping data movement
with computations.

1.2 Hybrid Pipeline Workflows

In our previous work, we started with a CPU-only sequential
implementation. This was then ported to the GPU (Simple-
GPU) by replacing the compute-bound functions with
equivalent CUDA kernels (hand-coded or from NVIDIA’s
CUDA libraries); Simple-GPU copied images to the GPU
before operating on them. This resulted in a 14% speedup
compared to the sequential CPU-only implementation. Data
motion between co-processors and CPUs dominated the per-
formance. By contrast, by scheduling the CPU/GPU invo-
cations as a hybrid workflow (Pipeline-GPU) that properly
manages memory and provides CPU threading to overlap
computations with data motion, we improved the Simple-
GPU implementation by 24x and scaled with multiple
GPUs. The Pipeline-GPU implementation delivered 500x
speedup w.r.t. ImagelJ/Fiji, which is already multi-threaded
to take advantage of multi-core computing. Additionally,
we implemented a CPU-only version of microscopy image
stitching using the hybrid pipeline workflow, which deliv-
ered 170x speedup w.r.t. Imagel/Fiji.

Developing hybrid workflows can be complex and time
consuming. We simplify the implementation of hybrid
workflows by using the proposed HTGS, which includes a
runtime system to schedule the task graphs on the hybrid

compute resources (i.e., CPUs and GPUs). HTGS helps
developers build task graphs that handle dependencies, man-
age memory in multiple native address spaces (CPU or
GPU), overlap data motion with computations, and scale to
multi-GPU systems through execution pipelines. Every task
created through HTGS exposes the computational resources
to the programmer and binds tasks to the specific hardware
(CPU/GPU).

Workflows have been studied by a number of research
groups: Concurrent Collections [10], Intel Threading Build-
ing Blocks [18], and Spark [24]. One example is the hybrid
task scheduler StarPU [2], which uses work stealing to
overlap CPU and accelerator computation. This is achieved
by representing both memories as a unified address space
and requires the programmer to implement a kernel for
each architecture. The method is convenient, but requires
careful consideration of data access patterns, which can
result in inefficient data transfers. HTGS differs from this
approach by explicitly representing each of the address
spaces for the underlying architectures separately (i.e., CPU
and GPU).

Kokkos [8] is a programming model that targets high
performance computing platforms. It presents an alterna-
tive approach to utilizing GPU accelerated systems, which
executes on GPU and CPU cores concurrently through high-
level policies that express the parallel components of an
algorithm as a series of execution patterns. Memory is also
explicitly represented with scratch pads shareable among
thread groups, and larger memory spaces that are attached to
volatile or non-volatile memory that are addressed based on
memory layouts and traits. Using the threading and mem-
ory model, locality-driven computation can be expressed at
a high level of abstraction and defined for a specific abstract
machine model. One major difference between HTGS and
Kokkos is its method for expressing an algorithm. HTGS is
explicit in representing an algorithm as a task graph. The
task graph design maps directly into implementation and
back, whereas in Kokkos some of these high-level decisions
are lost in implementation.

2 Hybrid Task Graph Scheduler

The Hybrid Task Graph Scheduler (HTGS) provides an
abstract execution model, a framework based on the model,
and an API to assist in transforming an algorithm into
a task graph and execute the core computational kernels
concurrently using coarse-grained parallelism on compute
nodes with multiple CPUs and GPUs. In the HTGS frame-
work, a task graph consists of vertices and edges: vertices
define state, computational, or scalable tasks; edges con-
nect tasks to define data dependencies or state maintenance.
HTGS represents an algorithm’s components explicitly as

@ Springer

460

J Sign Process Syst (2017) 89:457-467

a task graph and provides a separation of concerns by
modularizing the components. This design improves pro-
ductivity when optimizing and expanding an algorithm to
incorporate improvements into an algorithm’s implemen-
tation such as on accelerators or high-level scheduling
decisions to improve data locality.

The HTGS model combines two paradigms, dataflow and
task scheduling. Dataflow semantics represent an algorithm
at a high-level of abstraction as a dataflow graph, similar
to signal processing dataflow graphs (e.g., see [4]). Task
scheduling provides the threading model. Traditionally, task
scheduling assigns a thread pool to a task queue to process
tasks concurrently; this queue is ordered based on inter-task
data dependencies. HTGS alters this threading model by
defining a thread pool for each task; the threads then operate
on data sent to the task.

There are five steps in the HTGS design methodology,
as shown in Fig. 1. The first three steps are pictorial white-
board stages; the remaining steps are coding and revisiting
of the pictorial stages. First, an algorithm is represented as a
parallel algorithm where computational kernels are ideally
laid out as a series of modular functions. Second, the paral-
lel algorithm is represented using a dataflow interpretation,
which maps computational functions to nodes and edges are
data dependencies. This step exposes the concurrency and
formulates a pipelined workflow system for the algorithm.

Third, using the HTGS framework, a mapping of the
dataflow graph onto the targeted platform is designed. The
HTGS framework provides abstractions for this mapped

Parallel
Algorithm
Design

Represent
as Dataflow

Refine and
Optimize

HTGS
Task Graph
Design

HTGS API
Coding

Figure 1 HTGS design methodology.

@ Springer

dataflow graph that make it easier for developers to exper-
iment with and iteratively optimize this mapping when
compared to conventional methods for designing CPU/GPU
implementations. Such an iterative approach to design opti-
mizations is important given the complexity of modern high
performance platforms for image processing. The HTGS
framework provides novel models, methods, and support-
ing APIs as the foundation for such an iterative system
design process. Fourth, the HTGS task graph is imple-
mented using an application programmer interface (API)
that builds the HTGS framework. Finally, the HTGS task
graph is refined and optimized; for example, modifying
thread configurations of tasks, which improves data pro-
duction and consumption rates, or altering the scheduling
behavior and memory management to improve data locality.

The HTGS framework defines components for building
HTGS task graphs: tasks, bookkeepers, memory managers,
and execution pipelines. HTGS specifies a task to have four
phases with corresponding phase methods: (1) Initialize is
called when a CPU thread has attached to the task; it allo-
cates local task-level memory and/or binds the task and
thread to an accelerator; (2) Execute consumes one input
data object and produces zero or more output data objects;
(3) Terminate? identifies if a task is ready to terminate;
(4) Shutdown is called when the task is terminating; it is
used to free local task-level memory and/or unbind from
accelerators. These phase methods are used to customize
the behavior of a task. Furthermore, HTGS specifies that
every task has one input type, one output type, and a pool
of threads. If the size of the thread pool is greater than one,
then the task is copied, where each copy is bound to a sep-
arate thread. The threads share the same thread-safe input
and output queues. The HTGS framework uses this task
specification to build specialized tasks to assist in managing
dependencies (bookkeeper), memory (memory manager),
and scalability (execution pipelines).

Bookkeeper tasks manage task dependencies and
advance the state of the computation. For example, image
stitching uses a bookkeeper to detect that the FFTs of an
adjacent pair of images are available before computing their
relative displacements, as shown in Listing 1. A book-
keeper consumes data and forwards that data according to
programmer-defined rules. A rule uses the data to update
the state of the computation and determine when to produce
data to the rule’s output task. All rules in a bookkeeper have
the same input type, but may have different output types. By
convention, the rules should not be computationally inten-
sive as they are accessed synchronously. Figure 2 shows the
bookkeeper task.

An HTGS memory manager is a special-purpose task,
dedicated to managing memory, that connects two tasks
with a memory edge where one task allocates memory and
the other will eventually release it. This edge is distinct from

J Sign Process Syst (2017) 89:457-467

461

void applyRule(std::shared_ptr<FFTData> data) {

fftDataHolder ->set (row, col, data);

// Check mnorthern neighbor
if (fftDataHolder ->has(row-1, col) &&
northState->has(row, col) == false) {

// Mark north is now done
northState->set(row, col, true);

// Get neighbor FFT data
auto neighbor = fftDataHolder ->get (row, col);

auto output = new PCIAMData(data, neighbor)

// Produce data along bookkeeper edge
// to process phase correlation
this->addResult (output);

}

// ... Check West, South, and East
}

Listing 1 Representative bookkeeper rule in image stitching.

traditional data edges in a task graph as it only passes mem-
ory data between the two tasks. The memory manager acts
as an intermediary between the two connected tasks and
updates the state of memory that is sent or received along
its memory edge. This manager uses its memory rules to
define and update the state of a memory buffer and to deter-
mine when the buffer can be released. These rules express
the locality of the memory and ensure it is not released until
it is no longer needed. For example, a memory manager
can use a rule to decrement a reference count and to free a
memory buffer when the count reaches zero. Furthermore,
the memory manager allocates a buffer pool to be used for
the memory edge at initialization. If the pool is empty and
a task requests memory from the edge, then the request-
ing task will wait until memory becomes available based on
the release rules of the memory, which is processed by a
memory manager task.

Scalability in HTGS is further enhanced via execution
pipeline tasks. Thread pools and accelerator tasks (e.g.,
CUDA NVIDIA GPU tasks) already build parallelism into

Rulej

— Data Outq

il

— Data Out,

Figure 2 HTGS bookkeeper task with rule interface for scheduling
management.

HTGS task graphs. Execution pipeline tasks replicate and
execute task graphs on systems with multiple GPUs, thereby
utilizing all available GPUs concurrently. A developer takes
advantage of this feature by encapsulating all or part of a
graph into an execution pipeline task. During initialization,
the execution pipeline task dynamically creates mirror-
copies of the sub-graph and binds each copy to a separate
accelerator. For example, in a graph with CUDA GPU tasks
and CUDA memory managers, each accelerator gets its own
CUDA task and memory manager: the accelerator-specific
GPU tasks will schedule CUDA kernels on their own GPU;
each memory manager task will manage the memory of
its own GPU. When data enters an execution pipeline task,
the data is distributed among the sub-graph copies using a
bookkeeper with user-defined decomposition rules.

3 Microscopy Image Stitching with HTGS

Section 1.1 describes the image stitching algorithm in detail.
This section uses the HTGS methodology to provide a
detailed description of an HTGS-based implementation of
image stitching. We first represent image stitching as a
parallel algorithm. This algorithm can be split into two
parts depending on whether it operates on single images or
adjacent image pairs. The algorithm computes the Fourier
transforms of images and uses these transforms as input
to the phase correlation image alignment method (PCIAM)
to compute the maximum intensity location of an adjacent
image pair. The maximum intensity location is then used
in conjunction with the image data of the image pairs to
compute the cross correlation factors (CCF), which gives
the relative displacement between the neighbors. There-
fore, the primary data dependencies are (1) the image data
and (2) the forward Fourier transforms. A parallel imple-
mentation can compute forward transforms concurrently as
soon as their corresponding images are loaded. Similarly,
an implementation can compute the maximum intensity
of image pairs concurrently as soon as the needed for-
ward transforms are available. This leads us to the dataflow
representation for a single pair of image tiles shown in
Fig. 3.

Based on the dataflow representation, we use the HTGS
framework to build the HTGS task graph, shown in Fig. 4.

S1 S2 S3

PCIAM

Figure 3 Dataflow graph for an adjacent pair computation.

@ Springer

462

J Sign Process Syst (2017) 89:457-467

e
Ct{ Read >/ P T >/ B peian —[ccr]

Figure 4 Hybrid image stitching task graph (machine with 1 GPU).

First, the Read task loads images from the file system and
produces image data for the FFT task to compute fast
Fourier transforms. This latter task’s green color indicates
that it will execute on the GPU and requires it to copy the
image data from the CPU to the GPU. Next, the bookkeeper
task, BK, enables the task graph to switch single images to
pairs of images. BK collects forward transforms and dis-
patches an image pair to the PCIAM task when it detects
that the transforms of an adjacent image pair are available,
presented in Listing 1. PCIAM executes on the GPU, as
indicated by its green color, and computes the maximum
intensity location of an image pair using their forward trans-
forms. It also copies the single scalar maximum intensity
location from the GPU to the CPU. Last, the CCF task
uses a thread pool on the CPU to compute the cross cor-
relation factors of the image pair and outputs the relative
displacement as the largest CCF value.

The task graph includes a memory manager (MM)
between Read and PCIAM to manage a GPU’s limited
memory. MM allocates memory for the forward transforms
on the GPU. It initializes a release count that is used in
its memory rules; this count is the number of times an
image’s data is processed: 2, 3, and 4 for images along
the corners, outside edges, and inner regions, respectively.
The traversal of the image grid impacts the amount of
memory required to process the grid. Using a chained-
diagonal approach reduces the needed memory to 1 +
min(gridWidth, gridHeight); this value is used to specify the
size of the memory pool for the MM task.

< e

1
FFT —| BK — PCIAM

[» FFT —| BK > PCIAM ->[]—>

Figure 5 Hybrid image stitching with execution pipeline (3 GPUs).

@ Springer

This task graph computes the relative displacements for
an image grid on a single GPU. To scale it to multiple
GPUs, we partition it into two task graphs: (1) a GPU graph
and (2) a container graph that holds an execution pipeline
and the CCF task. The execution pipeline task encapsu-
lates the GPU graph and duplicates the graph; one for each
GPU as shown in Fig. 5. The number of copies is spec-
ified by the programmer, which is ideally the number of
GPUs on the system, and each pipeline is bound to a sepa-
rate GPU. The programmer adds a decomposition rule to the
execution pipeline task that decomposes the image tile grid
evenly such that each GPU graph copy processes a different
non-overlapping region. The CCF task remains outside of
the execution pipeline as it processes data on the CPU and
stores the resulting relative displacements between a pair of
images.

3.1 Microscopy Image Stitching Results

Table 1 compares the HTGS-based implementation of
hybrid microscopy image stitching with the original imple-
mentation that did not use HTGS [6]. Each test case was
repeated 50 times using a grid of 42 x 59 images (6.75 GB)
and the average end-to-end run-time is reported. The eval-
uation machine used has two Intel Xeon E5-2650 v3 CPUs
(40 logical cores) and three NVIDIA Tesla K40 GPUs.
The implementation is written in C++ and uses C++11
threads, CUDA 7.5 for GPU kernels, and cuFFT 7.5 for FFT
computations.

Table 1 shows that using HTGS without execution
pipelines reduces the code size by 43.4% compared to
the original hybrid workflow [6]. Including the execution
pipeline enables the hybrid workflow to scale to multi-
ple GPUs and obtains a performance improvement of 2.1x
with three GPUs at the cost of only fen additional lines of
code. There is little performance improvement when using
3 GPUs instead of 2 due to hardware limitations within the
PCI express (PCle) bus. The lack of PCle lanes on the Xeon
E5-2650 v3 socket saturated the bus and could not keep
all three GPUs busy. Additionally, the third GPU was on a

Table 1 Runtime results of the HTGS Prototype for hybrid
microscopy image stitching.

HTGS Exec Pipeline GPUs Runtime (s) Lines of Code
X X 1 17.278 1232

X X 2 9.721 1232

X X 3 8.301 1232

v X 1 17.232 697

v/ v 1 17.235 707

v v/ 2 9.537 707

v v/ 3 8.102 707

J Sign Process Syst (2017) 89:457-467

463

Bi,1
AxB=C B
SR (Ap g X By) = Cric femmmb b,
Bn,l
A1l Al.n Ci1,1

Figure 6 Matrix multiplication with block decomposition.

different PCle bus from the first two GPUs; this pre-
vented the third GPU from using GPU-direct peer-to-peer
PCle transfers. Such transfers copy data between GPUs on
the same PCI express bus without first copying the data
back to the CPU. This additional overhead impacted the
performance when adding the third GPU.

The results compared to the original implementation and
HTGS using 3 GPUs show a 42.6% reduction in code size,
while maintaining the same relative performance, showing
off the minimal overhead of HTGS and its ability to overlap
data motion with computation.

4 Matrix Multiplication with HTGS

Matrix multiplication is one of the typical algorithms dis-
cussed in the parallel programming literature. This section
presents the use of HTGS for parallelizing matrix multipli-
cation. Our goals in presenting this example are twofold:
(1) emphasize the utility of HTGS in optimizing end-to-
end performance at an application level and (2) highlight
the role of HTGS in experimenting with parallel signal pro-
cessing software that weaves the invocations of compute

Figure 7 Matrix multiplication

// Instantiate tasks and graph
htgs::TaskGraph tgraph;

// Build graph
tGraph->setGraphConsumer (BK1);
tGraph->addRule (BK1, LoadA, sendARule);
tGraph->addRule (BK1, LoadB, sendBRule);

tGraph->addEdge (LoadA, BK2);
tGraph->addEdge (LoadB, BK2);
tGraph—>addRule(BK2, MatMul, loadRule);

tGraph->addEdge (MatMul, BK3);
tGraph->addRule (BK3, Accumulate, accRule);
tGraph->addEdge (accTask, BK3);

tGraph->addRule (BK3, WriteC, outputRule);
tGraph->addGraphProducer (WriteC);

Listing 2 HTGS matrix multiplication graph construction.

kernels and I/O operations. Given the complexity of parallel
software and interactions between memory management
and computation in high-performance platforms, effective
experimentation and iterative design optimization are crit-
ical to maximizing performance and retargeting designs
efficiently across platforms.

Given two matrices, A(m, n) and B(n, p), the elements
of their product, matrix C(m, p), are can be computed as
the dot product of a row of A and a column of B: ¢, =
A,. - B. .. To exploit parallelism and pipelining, we split
matrix C into square blocks and compute its elements as the
dot-products of horizontal and vertical bands of A and B as
shown in Fig. 6.

Figure 7 shows a task graph that implements matrix mul-
tiplication. This graph consists of eight tasks and contains
three dependencies, and takes as input square blocks.

The first bookkeeper, BK;, distributes data to two load
tasks, Loads and Loadp, which load blocks from A;. and
B. . and sends these blocks to the second bookkeeper, BK>.
BK> advances the state of the computation by identifying
which blocks of A and B have been loaded and when it
can schedule the multiplication of two block matrices. Next,
MatMul multiplies its two input block matrices A, and
Bk for one of the n contributions to C; .. MatMul sends
the Cﬁ . contribution to the third bookkeeper BK3, which
accumulates its input in C;.. When BK3 detects that the
Accumulate has accumulated all n contributions, it sends the
final result C; ¢ to the Writec task.

Listing 2 shows pseudo-code for building the graph using
the HTGS APL. In this implementation, each task specializes

task graph.
grap. Accumulate:
Loada | Cﬁc+-:=Cﬁt1
|~ ~ BK MatMul: BK
—| BK; A U0 T A x Be=Cl [O
Load .
0ads N Writeg —

@ Springer

464

J Sign Process Syst (2017) 89:457-467

htgs::Runtime runtime (tGraph)
runtime->executeRuntime ();

// Produce data for graph
for (int row : matrixA)
for (int col : matrixA)
tGraph->produceData(
MatrixARequest (row, col));

for (int col : matrixB)
for (int row : matrixB)
tGraph->produceData (
MatrixBRequest (row, col));

// Indicate done adding data
tGraph->finishedProducingData();

// Process output from graph

while (!tGraph->isOutputTerminated()) {
auto data = tGraph->consumeData();
if (data != nullptr) { ... }

}

Listing 3 HTGS matrix multiplication graph execution and
interaction.

the ITask base class, which implements the task’s four phase
methods. The tasks are added to a task graph as edges, rules,
the graph’s consumer, or its producer; the consumer and
producer of the graph are the entry and exit tasks of the
graph. Each rule edge has a bookkeeper and user-defined
rules. These rules decide when data is produced along the
edge based on the state of the computation.

The listing directly corresponds to the task graph of Fig. 7
and provides conceptual continuity between analysis and
implementation. Coding the graph in such a manner pro-
vides the programmer the following benefits: (1) identifying
the performance bottlenecks and debugging of parallel code
at a high level of abstraction, (2) instrumenting the code as
per the conceptual model, and (3) sustaining the separation
of concerns. Such an approach is consistent with optimizing
performance as per the Roofline Model [22].

Listing 3 executes the task graph from Listing 2 using the
HTGS runtime environment. The runtime spawns threads

80

-=-1024
-+-2048
4096
—-8192
—OpenBLAS DGEMM Optimal

70

60

i

20 ~ _
\ /\/\//\

30 w

Execution Time (s)

20
B 0 ®
F o+ o+
NoWw A

S+0T
9+C1
LT
8+91
6+81
0T+0C
TT+2C
[4% 74
ET+9C
vT+8C
ST+OE
9T+CE
LT+PE
8T+9¢€
6T+8€
0z+0y

(a) Runtimes for 16k x 16k matrices.

and binds them to tasks within the graph. Each thread imme-
diately begins processing data as soon as data is available
in its input queue. The data is processed in a First-In First-
Out (FIFO) order. This mechanism customizes the traversal
strategy for processing the matrices by using an inner-
product, as shown in Fig. 6. This traversal is chosen to
initiate the accumulation and write tasks as quickly as pos-
sible; the write bandwidth is often a significant bottleneck
for traditional I/O subsystems, such as hard disk drives.
The operations on the block matrices within the task graph
remain the same and do not depend on whether the algo-
rithm uses an inner or outer product. BK; consumes the
graph’s input data and distributes the data to the Loady
and Loadp tasks; this task is very fast as the send rules for
BK; are light-weight by design. The Writec task produces
data for the graph, which can then be used for additional
post-processing in the main thread.

4.1 Matrix Multiplication Results

Our implementation of block-oriented matrix multiplica-
tion, shown in Fig. 7 and Listings 2 and 3, uses the double
precision general matrix-matrix multiplication (DGEMM)
operation from the OpenBLAS library [23]. This implemen-
tation configures OpenBLAS to use one thread only for this
kernel. Each task in the graph is bound to one thread, except
for the MatMult and Accumulate tasks, which uses n and
n/2 threads, respectively. Therefore, the total number of
threads spawned is 6 +n + n/2.

The hardware configuration used for the evaluation is a
system with two Intel Xeon E5-2650 v3 CPUs (40 logical
cores) and 128 GB of DDR4 RAM. First, we ran Open-
BLAS DGEMM as a one-off function call, configured with
varying threads from 1 to 40. The runtimes leveled off once
we reached the number of physical cores and the optimal
performance was found to be the number of logical cores
(40). Next, we ran the HTGS implementation at varying

650

-=-1024
—=-2048
4096
8192
—+16384
—OpenBLAS DGEMM Optimal

550

350

Execution Time (s)

250 |

150

[4a74
€+9

®
by
IS

S+0T
9+C1
LT
8+91
6+81
0T+0C
TT+CC
(4% 74
ET+9C
PT+8¢
ST+0€
9T+CE
LT+PE
8T+9¢€
6T+8€
0Z+0t

(b) Runtimes for 32k x 32k matrices.

Figure 8 DGEMM comparison—OpenBLAS and HTGS (block sizes and thread configurations).

@ Springer

J Sign Process Syst (2017) 89:457-467

465

block-sizes and compared the performance with the optimal
one-off call of DGEMM.

Figure 8a and b show the results for two matrix sizes:
16k x 16k and 32k x 32k. Each reported runtime is the
average runtime over 25 runs with varying HTGS task
thread configurations and block sizes. The matrices are
stored on disk and read using memory mapped files.

The results show that as the number of threads increases,
the execution time goes down and then tapers off as HTGS
uses more threads than logical cores. HTGS data points
that are above the Optimal OpenBLAS DGEMM line indi-
cate worse performance than OpenBLAS DGEMM. Inter-
estingly, HTGS improves upon OpenBLAS’s DGEMM by
~ 1.3x and ~ 1.8x for the 16k x 16k and 32k x 32k
matrices, using a 26 + 13 thread configuration with 4k
and 8k block sizes respectively. This improvement is a
significant achievement for HTGS given the highly opti-
mized nature of OpenBLAS and demonstrates the abil-
ity of HTGS to effectively overlap matrix multiplica-
tion computation with disk I/O with a modest effort.
These results indicate that there is not a significant
amount of overhead with scheduling data through the task
graph and we are able to effectively pipeline the general
matrix multiplication operation more efficiently than Open-
BLAS’s DGEMM for 16k x 16k and 32k x 32k matrix
sizes.

5 Conclusions

The Hybrid Task Graph Scheduler (HTGS) improves pro-
grammer productivity for designing and implementing
hybrid pipeline workflows to obtain performance on sys-
tems with multiple CPUs and GPUs. HTGS provides this
productivity improvement by allowing the programmer to
(1) represent an algorithm as a set of concurrent mod-
ular components that provide a separation of concerns
and (2) optimize these components independently. This
enables high-level modifications that can be used to alter the
scheduling behavior and threading to improve data locality
and parallelism, respectively. Using HTGS, these high-
level abstractions are explicitly expressed programatically,
which maps the task graph analysis phase directly to/from
implementation.

We illustrate the use of the HTGS API using two algo-
rithms. First, microscopy image stitching obtains similar
performance to a manually-coded version, while reducing
the code size by ~ 43%. Second, matrix multiplication
was developed with a modest effort and achieves 1.3x and
1.8x speedup over the multi-threaded OpenBLAS library for
16k x 16k and 32k x 32k size matrices, respectively. The
performance of matrix multiplication and microscopy image
stitching illustrates the applicability of HTGS task graphs

to a broad class of algorithms and the performance gains of
utilizing the HTGS model.

The source code for the HTGS API is available at https://
pages.nist.gov/HTGS. Tutorials on how to use the API and
the test cases presented are found at https://github.com/
usnistgov/htgs-tutorials.

6 Future Work

Execution pipelines are a promising way to scale task
graphs to multiple GPUs within a single compute node. In
the future, we plan to extend this method to clusters and
hybrid clusters. As such, using an MPI execution pipeline,
task graphs may scale to clusters. Given that an execu-
tion pipeline in the HTGS methodology is just a task
in the task graph, each execution pipeline may contain
one or more additional execution pipelines within itself.
This recursive nature enables execution pipelines to effec-
tively map to hybrid clusters: for example, one execution
pipeline per GPU, per node in a cluster, or a combination of
both.

7 Disclaimer

No approval or endorsement of any commercial product
by NIST is intended or implied. Certain commercial soft-
ware, products, and systems are identified in this report
to facilitate better understanding. Such identification does
not imply recommendations or endorsement by NIST, nor
does it imply that the software and products identified are
necessarily the best available for the purpose.

References

1. Ang, J.A., Barrett, R.F.,, Benner, R.E., Burke, D., Chan, C., Cook,
J., Donofrio, D., Hammond, S.D., Hemmert, K.S., Kelly, S.M., Le,
H., Leung, V.J., Resnick, D.R., Rodrigues, A.F., Shalf, J., Stark,
D., Unat, D., & Wright, N.J. (2014). Abstract machine models
and proxy architectures for exascale computing. In Proceedings
of the 1st international workshop on hardware-software co-design
for high performance computing, co-HPC ’14 (pp. 25-32). IEEE
Press.

2. Augonnet, C., Thibault, S., Namyst, R., & Wacrenier, P.A. (2011).
StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice
and Experience, 23(2), 187-198.

3. Barnea, D.I., & Silverman, H.F. (1972). A class of algorithms for
fast digital image registration. IEEE Transactions on Computers,
C-21(2), 179-186. doi:10.1109/TC.1972.5008923.

4. Bhattacharyya, S.S., Deprettere, E., Leupers, R., & Takala, J.
(Eds.) (2013). Handbook of signal processing systems, 2nd edn.
Springer.

5. Blattner, T. (2016). HTGS application programming interface.
https://pages.nist.gov/HTGS/. Last access: 2017-03-20.

@ Springer

https://pages.nist.gov/HTGS
https://pages.nist.gov/HTGS
https://github.com/usnistgov/htgs-tutorials
https://github.com/usnistgov/htgs-tutorials
http://dx.doi.org/10.1109/TC.1972.5008923
https://pages.nist.gov/HTGS/

466

J Sign Process Syst (2017) 89:457-467

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Blattner, T., Keyrouz, W., Chalfoun, J., Stivalet, B., Brady, M.,
& Zhou, S. (2014). A hybrid CPU-GPU system for stitch-
ing large scale optical microscopy images. In 43rd Interna-
tional conference on parallel processing (ICPP) (pp. 1-9).
doi: 10.1109/ICPP.2014.9.

. Blattner, T., Keyrouz, W., Halem, M., Brady, M., &

Bhattacharyya, S.S. (2015). A hybrid task graph scheduler for high
performance image processing workflows. In 2015 IEEE Global
conference on signal and information processing (globalSIP)
(pp. 634-637).

. Carter Edwards, H., Trott, C.R., & Sunderland, D. (2014). Kokkos.

Journal of Parallel and Distributed Computing, 74(12), 3202—
3216. doi:10.1016/j.jpdc.2014.07.003.

. Gardner, E. (2014). What public disclosures has Intel made about

Knights Landing? https://software.intel.com/en-us/articles/what-
disclosures-has-intel-made-about-knights-landing. Last access:
2015-05-21.

Grossman, M., Sbirlea, A.S., Budimlic, Z., & Sarkar, V. (2011).
CnC-CUDA: declarative programming for GPUs (pp. 230—
245). No. 6548 in Lecture Notes in Computer Science. Berlin:
Springer.

Intel: Intel® Xeon Phi™ product family (2015). http://www.intel.
com/content/www/us/en/processors/xeon/xeon-phi-detail.html.
Last access: 2015-06-26.

Jing, Z., Chang-shun, W., & Wau-ling, L. (2009). An image
mosaics algorithm based on improved phase correlation. In Pro-
ceedings of 2009 international conference on environmental
science and information application technology (pp. 383-386).
IEEE. doi:10.1109/ESIAT.2009.184.

Kuglin, C.D., & Hines, D.C. (1975). The phase correlation image
alignment method. In Proceedings of the 1975 IEEE international
conference on cybernetics and society (pp. 163—165).

Lewis, J. (1995). Fast normalized cross-correlation. http://
scribblethink.org/Work/nvisionInterface/nip.pdf. Last access:
2017-03-31.

Lewis, J. (1995). Fast template matching. Vision Interface, 10,
120-123.

Ma, B., Zimmermann, T., Rohde, M., Winkelbach, S., He, F.,
Lindenmaier, W., & Dittmar, K.E. (2007). Use of AutoStitch
for automatic stitching of microscope images. Micron, 38(5),
492-499. doi:10.1016/j.micron.2006.07.027.

NVIDIA: Tesla accelerated computing (2015). http://www.nvidia.
com/object/tesla-supercomputing-solutions.html. Last access:
2015-06-26.

Pheatt, C. (2008). Intel™ threading building blocks. Journal of
Computing Sciences Colleges, 23(4), 298-298.

Preibisch, S., Saalfeld, S., & Tomancak, P. (2009). Globally
optimal stitching of tiled 3D microscopic image acquisitions.
Bioinformatics, 25(11), 1463-1465. doi:10.1093/bioinformatics/
btp184.

Szeliski, R. (2006). Image alignment and stitching: a tutorial.
Found. Trends. Comput. Graph. Vis., 2(1), 1-104. doi:10.1561/
0600000009.

TOP500: TOP500 supercomputer sites (2016). http://www.
top500.org/. Last access: 2016-06-20.

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline:
An insightful visual performance model for multicore architec-
tures. Communications of the ACM, 52(4), 65-76. doi:10.1145/
1498765.1498785.

Xianyi, Z. (2016). OpenBLAS - an optimized BLAS library. http://
www.openblas.net/. Last access: 2016-05-12.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., &
Stoica, I. (2010). Spark: Cluster computing with working sets. In
Proceedings of the 2nd USENIX conference on hot topics in cloud
computing, HotCloud’10 (p. 10). USENIX Association.

@ Springer

Timothy Blattner works as a
research scientist at NIST. He
acquired his Bachelor’s degree
in Computer Science from
Marquette University, and his
MS and PhD from the Uni-
versity of Maryland Baltimore
County in 2016. His primary
field of research is in high per-
formance computing, in par-
ticular, developing high-level
abstractions to take advantage
of ‘desktop super computers’
that consist of multiple GPUs
and multiple CPUs on a single
node. Dr. Blattner developed a
technique for utilizing these systems by transforming an algorithm into
a hybrid pipeline workflow. He has formalized this approach into a
model and API called the Hybrid Task Graph Scheduler (HTGS).

Walid Keyrouz is a research
scientist at NIST, which he
joined in 2011. His research
interests are in High Perfor-
mance Computing and Engi-
neering Design. He has an
undergraduate degree in Engi-
neering from the American
University of Beirut and MS
and PhD from Carnegie Mel-
lon University. His first expo-
sure to parallel computing was
during his Master’s degree in
the early 1980s and has used
GPUs as compute engines
since 2006.

Shuvra S. Bhattacharyya is a
Professor in the Department of
Electrical and Computer Engi-
neering at the University of
Maryland, College Park. He
holds a joint appointment in
the University of Maryland
Institute for Advanced Com-
puter Studies (UMIACS). He
is also a part time visiting
professor in the Department
of Pervasive Computing at the
Tampere University of Tech-
nology, Finland, as part of the
Finland Distinguished Profes-
sor Programme (FiDiPro). He
is an author of six books, and over 250 papers in the areas of signal
processing, embedded systems, electronic design automation, wire-
less communication, and wireless sensor networks. He received the
B.S. degree from the University of Wisconsin at Madison, and the
Ph.D. degree from the University of California at Berkeley. He has
held industrial positions as a Researcher at the Hitachi America Semi-
conductor Research Laboratory (San Jose, California), and Compiler
Developer at Kuck & Associates (Champaign, Illinois). He has held
a visiting research position at the US Air Force Research Laboratory
(Rome, New York). He has been a Nokia Distinguished Lecturer (Fin-
land) and Fulbright Specialist (Austria and Germany). He has received
the NSF Career Award (USA). He is a Fellow of the IEEE.

http://dx.doi.org/10.1109/ICPP.2014.9
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://dx.doi.org/10.1109/ESIAT.2009.184
http://scribblethink.org/Work/nvisionInterface/nip.pdf
http://scribblethink.org/Work/nvisionInterface/nip.pdf
http://dx.doi.org/10.1016/j.micron.2006.07.027
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://dx.doi.org/10.1093/bioinformatics/btp184
http://dx.doi.org/10.1093/bioinformatics/btp184
http://dx.doi.org/10.1561/0600000009
http://dx.doi.org/10.1561/0600000009
http://www.top500.org/
http://www.top500.org/
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/1498765.1498785
http://www.openblas.net/
http://www.openblas.net/

J Sign Process Syst (2017) 89:457-467

467

Milton Halem is a Research
Professor in the Computer Sci-
ence and Electrical Engineer-
ing Department at the Uni-
versity of Maryland, Bati-
more County. He acquired his
Bachelor’s degree in Math-
ematics from the City Col-
lege of New York, and his
PhD from the Courant Insti-
tute of Mathematical Sciences,
New York University in 1968.
Dr. Halem is Exec. Mgr. of
the NSF funded Center for
Hybrid Multicore Productivity
Research. His current areas of
research interest are high performance hybrid computer and storage
technologies, machine learning, quantum computing, service oriented
computing, remote sensing information systems, extreme events and
Big Data Analytics. Prior to joining UMBC in 2003, Dr. Halem served
as Assistant Director of the NASA Goddard Space Flight Center.
He has more than 150 scientific publications and most noted for his
ground breaking research in simulation studies of space observing
systems and development of four dimensional data assimilation for
weather and climate prediction. In 1999, Dr. Halem was awarded the
honorary Doctoral degree from Dalhousie University, CA in recogni-
tion for his contributions to the field of computational science.

Mary Brady is the Manager
of the Information Systems
Group in NIST’s Informa-
tion Technology Laboratory
(ITL). She received a M.S.
degree in Computer Science
from George Washington
University, and a B.S. degree
in both Computer Science
and Mathematics from Mary
Washington College. Her
group is focused on develop-
ing measurements, standards,
and underlying technologies
that foster innovation through-
out the information life cycle
from collection and analysis
to sharing and preservation.

@ Springer

	A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows
	Abstract
	Introduction
	Image Stitching for Microscopy
	Hybrid Pipeline Workflows

	Hybrid Task Graph Scheduler
	Microscopy Image Stitching with HTGS
	Microscopy Image Stitching Results

	Matrix Multiplication with HTGS
	Matrix Multiplication Results

	Conclusions
	Future Work
	Disclaimer
	References

