AFL.automation.instrument.GPInterpolator#
Classes
|
This is the wrapper class that enables scattering interpolation within the classifier labels. |
|
- class AFL.automation.instrument.GPInterpolator.Interpolator(dataset)[source]#
-
- train_model(kernel=None, optimizer=None, noiseless=False, heteroscedastic=False, tol=0.0001, niter=21)[source]#
- class AFL.automation.instrument.GPInterpolator.ClusteredGPs(dataset)[source]#
This is the wrapper class that enables scattering interpolation within the classifier labels. It presupposes that the dataset or manifest contains a datavariable called labels and that it is
- get_defaults()[source]#
returns a list of dictionaries corresponding to the default data pointers for each GP model
- set_defaults(default_dict)[source]#
check the default params, but these are pointers to the values in the dataset
- load_datasets(gplist=None)[source]#
This function instantiates the X_raw, Y_raw data with the appropriate filtering given the defaults dictionaries
- define_domains(gplist=None, alpha=0.1, buffer=0.01)[source]#
define domains will generate the shapely geometry objects for the given datasets X_raw data points.
- unionize(gplist=None, geomlist=None, dslist=None, buffer=0.01)[source]#
determines the union of and indices of potentially conflicting domains. Creates the new indpendent_GPs list that corresponds.
Note! buffer is important here! if a cluster contains a single point or a line, there is a bunch of stuff that breaks. specifying a non-zero buffer will force these lesser dimensional objects to be polygonal and help with all the calculations. a large buffer will potentially merge polygons though. exercise caution
- train_all(kernel=None, optimizer=None, noiseless=True, heteroscedastic=False, niter=21, tol=0.0001, gplist=None)[source]#