Source code for AFL.automation.mixing.OT2Prepare

import warnings
import time
from typing import List, Union, Dict, Any, Optional, Tuple
from AFL.automation.mixing.MassBalance import MassBalanceDriver, MassBalance
from AFL.automation.prepare.OT2HTTPDriver import OT2HTTPDriver
from AFL.automation.shared.utilities import listify
from AFL.automation.shared.units import to_quantity, is_volume
from AFL.automation.mixing.Solution import Solution
from AFL.automation.mixing.PipetteAction import PipetteAction

[docs] class OT2Prepare(OT2HTTPDriver, MassBalanceDriver): defaults = { 'prep_targets': [], 'prepare_volume': '900 ul', 'catch_volume': '900 ul', 'deck': {}, 'stocks': [], 'stock_mix_order': [], 'fixed_compositions': {}, 'stock_locations': {}, # Maps stock names to deck positions: {'stockH2O': '3A2'} 'stock_transfer_params': {}, # Per-stock transfer parameters: {'stockH2O': {'mix_after': True}} 'catch_protocol': {}, # PipetteAction-formatted dict for catch transfer parameters }
[docs] def __init__(self, overrides=None): # Initialize both parent classes OT2HTTPDriver.__init__(self, overrides=overrides) MassBalanceDriver.__init__(self, overrides=overrides) # Override the name set by both parents self.name = 'OT2Prepare' # Update filepath to match the new name self.filepath = self.path / (self.name + '.config.json') # Replace config with optimized settings for OT2Prepare # Inherits optimized settings from MassBalanceDriver, but we can further customize # Note: PersistentConfig will automatically load existing values from disk from AFL.automation.shared.PersistentConfig import PersistentConfig self.config = PersistentConfig( path=self.filepath, defaults=self.gather_defaults(), overrides=overrides, max_history=100, # Reduced from default 10000 max_history_size_mb=50, # Limit file size to 50MB write_debounce_seconds=0.5, # Batch rapid operations compact_json=True, # Use compact JSON for large files ) # Initialize additional attributes self.stocks = [] self.targets = [] self.last_target_location = None self.useful_links['View Deck'] = '/visualize_deck' self.process_stocks()
[docs] def status(self): """ Get the status of the OT2Prepare driver. """ # Get status from OT2HTTPDriver ot2_status = OT2HTTPDriver.status(self) # Add our own status information status = [] status.append(f'Stocks: {len(self.stocks)} configured') status.append(f'Stock locations: {self.config["stock_locations"]}') status.append(f'{len(self.config["prep_targets"])} preparation targets available') # Combine status information return status + ot2_status
[docs] def is_feasible(self, targets: dict | list[dict]) -> list[dict | None]: """ Check if the target composition(s) is/are feasible for preparation using mass balance. If feasible, returns the balanced target solution dictionary. Otherwise, returns None. This implementation creates a local MassBalance instance for each feasibility check to avoid modifying the driver's state. Parameters ---------- targets : Union[dict, List[dict]] Either a single target dictionary or a list of target dictionaries. Returns ------- List[Union[dict, None]] A list containing the balanced target dictionary for each feasible target, or None for infeasible targets. """ targets_to_check = listify(targets) # Process stocks from the driver self.process_stocks() # Get the minimum volume configuration minimum_volume = self.config.get('minimum_volume', '100 ul') results = [] for target in targets_to_check: try: # Create a local MassBalance instance mb = MassBalance(minimum_volume=minimum_volume) # Configure the same stocks as in the driver for stock in self.stocks: mb.stocks.append(stock) # Apply any fixed compositions from config target_with_fixed = self.apply_fixed_comps(target.copy()) # Create a Solution from the target and add it to the MassBalance instance from AFL.automation.mixing.Solution import Solution target_solution = Solution(**target_with_fixed) mb.targets.append(target_solution) # Calculate mass balance mb.balance(tol=self.config.get('tol', 1e-3)) # Check if balance was successful for this target if (mb.balanced and len(mb.balanced) > 0 and mb.balanced[0].get('balanced_target') is not None): results.append(mb.balanced[0]['balanced_target'].to_dict()) else: results.append(None) except Exception as e: # If an exception occurs, indicate failure warnings.warn(f"Exception during feasibility check for target {target.get('name', 'Unnamed')}: {str(e)}", stacklevel=2) results.append(None) return results
[docs] def apply_fixed_comps(self, target: dict) -> dict: """ Apply fixed compositions to a target dictionary without overwriting existing values. Parameters ---------- target : dict The target solution dictionary Returns ------- dict A new target dictionary with fixed compositions applied """ # Create a copy to avoid modifying the original result = target.copy() # Get fixed compositions from config fixed_comps = self.config.get('fixed_compositions', {}) if not fixed_comps: return result # For each component property type that might exist in the target for prop_type in ['masses', 'volumes', 'concentrations', 'mass_fractions']: # Initialize property dictionaries if they don't exist if prop_type not in result: result[prop_type] = {} # If this property exists in fixed compositions if prop_type in fixed_comps: # Add each component from fixed compositions that doesn't already exist for comp_name, comp_value in fixed_comps[prop_type].items(): if comp_name not in result[prop_type]: result[prop_type][comp_name] = comp_value # Handle simpler properties that might not be dictionaries for prop in ['total_mass', 'total_volume', 'name', 'location']: if prop in fixed_comps and prop not in result: result[prop] = fixed_comps[prop] # Handle solutes list if 'solutes' in fixed_comps: if 'solutes' not in result: result['solutes'] = fixed_comps['solutes'].copy() else: # Add any solutes that aren't already in the list for solute in fixed_comps['solutes']: if solute not in result['solutes']: result['solutes'].append(solute) return result
[docs] def prepare(self, target: dict, dest: str | None = None) -> tuple[dict, str] | tuple[None, None]: """Prepare the target solution. The dest argument is currently not used by this implementation.""" # Apply fixed compositions without overwriting existing values target = self.apply_fixed_comps(target) # Check if the target is feasible before attempting preparation feasibility_results = self.is_feasible(target) if not feasibility_results or feasibility_results[0] is None: warnings.warn(f'Target composition {target.get("name", "Unnamed target")} is not feasible based on mass balance calculations', stacklevel=2) return None, None balanced_target_dict_from_feasible = feasibility_results[0] self.reset_targets() # We need to re-add the original target, not the dict from is_feasible self.add_target(target) self.balance() if not self.balanced or not self.balanced[0].get('balanced_target'): warnings.warn(f'No suitable mass balance found for target: {target.get("name", "Unnamed target")}',stacklevel=2) return None, None # This is the Solution object containing the protocol balanced_target_solution_object = self.balanced[0]['balanced_target'] # Configure the destination for the preparation if not self.config.get('prep_targets'): raise ValueError("No preparation targets configured. Cannot select a destination target.") # Pop a location from the preparation targets list if dest is None: # need to pop and then resend the locations list so that the persistant config triggers a write prep_targets = self.config['prep_targets'] destination = prep_targets.pop(0) self.config['prep_targets'] = prep_targets else: destination = dest # Execute the protocol using OT2HTTPDriver if not hasattr(balanced_target_solution_object, 'protocol') or not balanced_target_solution_object.protocol: raise ValueError("No protocol generated for the target solution") # Reorder protocol based on stock_mix_order if specified protocol = self.reorder_protocol(balanced_target_solution_object.protocol) # Execute each step in the protocol for step in protocol: # Get source and destination # Note: source is already a deck location (e.g., '3A2') source = step.source dest = destination volume_ul = step.volume # Volume is already in μL # Get stock name from deck location for transfer parameters stock_name = self.config.get('deck', {}).get(source) if stock_name is None: raise ValueError(f"No stock name found for deck location: {source}") # Get stock-specific transfer parameters transfer_params = self.get_transfer_params(stock_name) # Execute the transfer try: self.transfer( source=source, dest=dest, volume=volume_ul, **transfer_params ) except Exception as e: warnings.warn(f"Transfer failed from {source} to {dest}: {str(e)}", stacklevel=2) return None, None # Store the last target location for catch transfer self.last_target_location = destination # Return the balanced target and destination result_dict = balanced_target_solution_object.to_dict() # Add total_volume to the result dictionary if hasattr(balanced_target_solution_object, 'volume') and balanced_target_solution_object.volume is not None: result_dict['total_volume'] = f"{balanced_target_solution_object.volume.to('ul').magnitude} ul" return result_dict, destination
[docs] def process_stocks(self): """ Process stocks and update deck config with inverse of stock_locations. """ # Call parent method to process stocks and update stock_locations MassBalanceDriver.process_stocks(self) # Populate deck config with inverse of stock_locations self._update_deck_config()
def _update_deck_config(self): """ Update the deck config with the inverse of stock_locations. This creates a mapping from deck locations to stock names. """ deck_config = {} stock_locations = self.config.get('stock_locations', {}) for stock_name, deck_location in stock_locations.items(): deck_config[deck_location] = stock_name self.config['deck'] = deck_config
[docs] def get_transfer_params(self, stock_name): """ Get the transfer parameters for a specific stock solution. Parameters ---------- stock_name : str Name of the stock solution Returns ------- dict Dictionary of transfer parameters to pass to transfer() """ # Get stock-specific parameters if available stock_params = self.config.get('stock_transfer_params', {}).get(stock_name, {}) # Get default parameters default_params = self.config.get('stock_transfer_params', {}).get('default', {}) # Combine default and stock-specific parameters, with stock-specific taking precedence params = default_params.copy() params.update(stock_params) return params
[docs] def reorder_protocol(self, protocol): """ Reorder the protocol based on stock_mix_order if specified Parameters ---------- protocol : list List of PipetteAction objects Returns ------- list Reordered list of PipetteAction objects """ # If no stock_mix_order is specified, return original protocol stock_mix_order = self.config.get('stock_mix_order', []) if not stock_mix_order: return protocol # Group protocol steps by source steps_by_source = {} for step in protocol: if step.source not in steps_by_source: steps_by_source[step.source] = [] steps_by_source[step.source].append(step) # Build reordered protocol based on stock_mix_order reordered = [] for stock_name in stock_mix_order: if stock_name in steps_by_source: reordered.extend(steps_by_source[stock_name]) del steps_by_source[stock_name] # Add any remaining steps that weren't in stock_mix_order for steps in steps_by_source.values(): reordered.extend(steps) return reordered
[docs] def transfer_to_catch(self, source=None, dest=None, **kwargs): """ Transfer a prepared sample to the catch/loader location using catch protocol settings. Parameters ---------- source : str, optional Source location (well) of the prepared sample. If None, uses the last prepared target location. dest : str, optional Destination location (well). If None, must be specified in catch_protocol config. **kwargs Additional transfer parameters that override catch_protocol settings. Returns ------- str or None UUID of the transfer task if successful, None otherwise """ # Get catch protocol parameters from config catch_params = self.config.get('catch_protocol', {}).copy() # Determine source location if source is None: if self.last_target_location is None: raise ValueError("No source specified and no last target location available. Call prepare() first or specify source.") source = self.last_target_location kwargs['source'] = source # Handle destination if dest is not None: kwargs['dest'] = dest # Merge with kwargs (kwargs take precedence) catch_params.update(kwargs) if 'dest' not in catch_params: raise ValueError("Destination 'dest' must be specified in catch_protocol config or as an argument.") # Execute the transfer try: self.transfer(**catch_params) except Exception as e: dest_val = catch_params.get('dest', 'unknown') warnings.warn(f"Transfer to catch failed from {source} to {dest_val} using {catch_params}: {str(e)}", stacklevel=2) raise
[docs] def reset(self): """Reset the driver state/configuration.""" # Placeholder: implement reset logic self.reset_targets() self.reset_stocks()
_DEFAULT_PORT=5002 if __name__ == '__main__': from AFL.automation.shared.launcher import *