{ "cells": [ { "cell_type": "markdown", "id": "2fad641c", "metadata": {}, "source": [ "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/usnistgov/AFL-agent/blob/main/docs/source/tutorials/autosas_tutorial.ipynb)\n", "\n", "# Basic Fitting with AutoSAS\n", "\n", "This tutorial demonstrates how to use AutoSAS to fit small-angle scattering (SAS) data with different models. We'll explore how to:\n", "- Load and prepare SAS data\n", "- Set up an AutoSAS fit for a single model\n", "- Compare and evaluate the fits" ] }, { "cell_type": "markdown", "id": "ced056ca", "metadata": {}, "source": [ "## Google Colab Setup\n", "\n", "Only uncomment and run the next cell if you are running this notebook in Google Colab or if don't already have the AFL-agent package installed." ] }, { "cell_type": "code", "execution_count": null, "id": "5543936a", "metadata": {}, "outputs": [], "source": [ "# !pip install git+https://github.com/usnistgov/AFL-agent.git" ] }, { "cell_type": "markdown", "id": "607446da", "metadata": {}, "source": [ "## Getting Started\n", "\n", "First, let's import the necessary packages and load our example dataset:" ] }, { "cell_type": "code", "execution_count": 5, "id": "0a3a2890", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "from AFL.double_agent import *\n", "from AFL.double_agent.AutoSAS import AutoSAS\n" ] }, { "cell_type": "markdown", "id": "c7496ebc", "metadata": {}, "source": [ "Next, let's load the example dataset. We'll subselect only part of the dataset to work with" ] }, { "cell_type": "code", "execution_count": 6, "id": "6a0749bd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 17kB\n",
       "Dimensions:  (sample: 10, q: 100)\n",
       "Coordinates:\n",
       "  * q        (q) float64 800B 0.001 0.001072 0.00115 ... 0.8697 0.9326 1.0\n",
       "Dimensions without coordinates: sample\n",
       "Data variables:\n",
       "    I        (sample, q) float64 8kB 5.465e+03 4.598e+03 3.859e+03 ... 1.08 1.03\n",
       "    dI       (sample, q) float64 8kB 545.9 429.3 342.6 ... 0.1025 0.1025 0.1025\n",
       "    model    (sample) object 80B 'surface_fractal' ... 'surface_fractal'
" ], "text/plain": [ " Size: 17kB\n", "Dimensions: (sample: 10, q: 100)\n", "Coordinates:\n", " * q (q) float64 800B 0.001 0.001072 0.00115 ... 0.8697 0.9326 1.0\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " I (sample, q) float64 8kB 5.465e+03 4.598e+03 3.859e+03 ... 1.08 1.03\n", " dI (sample, q) float64 8kB 545.9 429.3 342.6 ... 0.1025 0.1025 0.1025\n", " model (sample) object 80B 'surface_fractal' ... 'surface_fractal'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from AFL.double_agent.data import example_dataset2\n", "\n", "# Load example dataset and select the mass_fractal model\n", "ds = example_dataset2()\n", "ds = ds.where(ds.model == 'surface_fractal',drop=True)\n", "ds" ] }, { "cell_type": "markdown", "id": "6e449bc1", "metadata": {}, "source": [ "Let's plot the data so we can see what we're trying to fit." ] }, { "cell_type": "code", "execution_count": 7, "id": "2190e8e9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG6CAYAAAABEOyFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoEhJREFUeJzsnQd8G/X5/z93smTLsi1bdjzjFcdO4uzhTLKAECgNhTQlrLLC6h8oFDqAtoTQAh0U0hb6CxvKaGkhUMJKIBNC9k6c4ThO7MQrXrItS5atu//r+Uo6azhOAonn8369juNOp5N0VnwfP+sjqaqqgmEYhmEYphcid/UbYBiGYRiGOV+w0GEYhmEYptfCQodhGIZhmF4LCx2GYRiGYXotLHQYhmEYhum1sNBhGIZhGKbXwkKHYRiGYZheCwsdhmEYhmF6LSx0GIZhGIbptbDQYRiGYRim18JCh2EYhmGYXkuvETpNTU1IT0/Hz3/+865+KwzDMAzDdBN6jdB54oknMHHixK5+GwzDMAzDdCNC0AsoKCjAgQMHMGfOHOzdu/esnqsoCkpLSxEZGQlJks7be2QYhmEY5tyhqioaGhqQnJwMWe4gbqN2MWvXrlW///3vq0lJSSq9nQ8++CDomOeee05NT09XQ0ND1fHjx6ubNm3ye/yKK65QDx48qL722mvqgw8+eFavX1JSIl6XF1544YUXXnhBj1voPt4RXR7RsdlsGDlyJG699VbMnTs36PF3330XDzzwAJYsWYIJEyZg8eLFmD17Ng4ePIj4+Hj873//Q05Ojli++eab075ec3OzWHwVIVFSUoKoqKhz/OkYhmEYhjkf1NfXIzU1VWRkOkIitYNuAqWOPvjgA1x55ZXaPhI3eXl5eO6557RUE32we++9Fw899BAefvhhvPXWW9DpdGhsbERLSwsefPBBPProo+2+xmOPPYZFixYF7bdarSx0GIZhGKYHCR2z2Xza+3e3FjpOpxPh4eF47733/MTPTTfdhLq6OhHN8eX1118XNTpPP/30GUd0vIqQhQ7DMAzD9D6h0+Wpq46oqqqCy+VCQkKC337apuLjb0NoaKhYGIZhGIbp/XRroXO23HzzzV39FhiGYRiG6UZ06zk6cXFxovamoqLCbz9tJyYmfqdzP//888jNzRX1PwzDMAzD9E66tdAxGAwYO3YsVq5cqe2jYmTanjRp0nc699133438/Hxs2bLlHLxThmEYhmG6I12euqJOqcOHD2vbRUVF2LlzJywWC9LS0kRrORUfjxs3DuPHjxft5dSSfsstt3Tp+2YYhmEYpvvT5UJn69atmDlzprZNwoYgcUNdVPPnz8fJkydFu3h5eTlGjRqFzz//PKhAmWEYhmEYplu3l3cmVKNDC3V1HTp0iNvLGYZhGKYH0SPn6HTnC8UwDMMwTM+7f3frYmSGYRiGYZjvAgud80RDdRWK9+4Wa4ZhGIZh+mgxcm9kz6oV+OLFvwvDULK1mHXHvRh+4SVd/bYYhmEYps/RZyM652tgIEVwvCKHoPUXLz3HkR2GYRiG6QL6rNA5XwMDa8tKNZHjRVUU1JWXntPXYRiGYRjm9PRZoXO+iElKFukqXyRZRnRicpe9J4ZhGIbpq7DQOcdExsaJmhwSNwStZ91+j9jPMAzDMEznwsXI5wEqPM4YOUakqyiSwyKHYRiGYboGFjrnCRI3LHAYhmEYpmvps6mr89V15aXMasc3hVVizTAMwzBM18AWEOfBAuLdLcV4eOkeKCogS8BTc4djfl7aOTk3wzAMwzBgC4iugiI4XpFD0PqRpXs5ssMwDMMwXQDX6Jxjiqpsmsjx4lJVHK1qQkSrTczZoRZ0rt9hGIZhmPMPC51zTGacSaSrfMWOTpLgOrABL735AttCMAzDMEwnwqmrc0yS2ShqckjcELR+fFYKNntEDsG2EAzDMAzTOYT05a4rWlwu1zk/NxUeT8vpJ9JVGXHhaCkpwH9PYQvBKSyGYRiGOX+E9GWvK1q8VdvnI7JDC9HQmgxQhMdX7EhsC8EwDMMw5xtOXXUCjSEmrIqdDgXudBatV8dOE/sZhmEYhjl/9NmITmd3Yu2LHIKjxlREt1hRpzfDFhIhUlveqA/DMAzDMOcejuh0YicWiZsTxhSxpiLleJ0dxXt3c1EywzAMw5wnOKLTiZ1YNDiQZuqQyPl1thX/e+gn3G7OMAzDMOcRFjqdhG8nFkVyvCLHt92cHM+5C4thGIZhzh2cuurkyM6krFjoG2s0kRPYbs4wDMMwzLmDhU4XQBYQot3cF243ZxiGYZhzTp8VOjQsMDc3F3l5eefl/C3l5bBt3CTWgXC7OcMwDMN0Dn22Rud8Dgyse+89lD26EFAUQJaR9PgiRM+bpz3O7eYMwzAM0zn02YjO+YIiOJrIIRRFbPtGdk7Vbk52EQzDMAzDnDtY6JxjnEePtYkcL4oC57HiDo0/n5w7jKM5DMMwDHOO6bOpq/OFISM92NdKlmBIT+vQ+JNFDsMwDMOce1jonGP0RheS8upQtiUKUCVAUpE0zir2d2T8yTAMwzDMuYeFzrmmphDRA2wwJdrhbAiBIbIV+nAFqDkCmFO6+t0xDMMwTJ+Chc65xpIlZuKQuNGHO937JB1gGdDV74xhGIZh+hxcjHyuoajNnL+6xQ1B6zmLxf6OZuswDMMwDHPu4YjO+WDMjUDWRe50FUVyzCmnna3jhZzMa8tKxfRk9r1iGIZhmO+GpAaaLvWhyci0uFwuHDp0CFarFVFRUefltSiCc/jCi/zbzmUZA1ethD4xUdu1Z9UKfPHi39nRnGEYhmFOg3fg7+nu3302dUVTkfPz87Fly5ZuMVuHIjlekePraE77GYZhGIb5dvRZodPps3XkgEsty36zdShdxY7mDMMwDHNuYaHTCVB6impyNLHjqdHxTVudytE8JDQMxXt3c2SHYRiGYb4FXIzcSVDhsWnEQDj3b4FhSB70OaPadTSfUbUWMlThaH7IlI13fvOgmLLMNTsMwzAMc/aw0Okstv8T+mX3Qa8qwE7Z3YJO3VmncDR3SiG4uuwDSmD51exkjBzD3VgMwzAMc4Zw6qozsJ4Alt1HRTfubVovu9+9/xSO5ga1VUR2fOGaHYZhGIY5O1jodAY1hW0ix4vqQsvBbdoAwUBH8wZDdFDNjiTLiE5M7sx3zjAMwzA9Gk5ddaIthK/YqTtiQtnNDwGKqhUnz583z8/RvGpbtEhXUSSHRM6s2+/htBXDMAzDnAV9dmDg2Q4c+s5s/6c7XUWRHLsehz/q5y2/cSNLGLhqlV8nFkHdVpSuokgOixyGYRiGObv7N0d0usAWwrnvKPC/J/0fV1Q487dBn3i5324SN4ECh20iGIZhGObMYKHT2Yaf5hQYTtZ4uql8anAkFYYIV9BTyqx20ZFFxcpUx8M2EQzDMAxz5rDQ6QL0g8YhaXw9yrZEAaokRE5SXj30g8aKwmSyjKBpyktLnHh46R53GY8E/G5Wf1S0YxPBLecMwzAM0z4sdLoCcwqi7/8DTO8+AGe9BEOUCv38Z1D3xQY/h/PVI38IJX2CeAqJnSUfbcaVp7CJYKHDMAzDMMGw0OkqxtwIfdZF0NccASwD0GLXoewGH4dzRcE9O9/D1vhBqDJGi101IVHulnMfscMt5wzDMAxzavrsHJ3nn38eubm5yMvL69qancypYt2ew7lOVZHU2OZx5dBHInTGfGEPQdA6eta1HM1hGIZhmFPQZyM6d999t1i87WndxuHcR+yosoyKyH7i/2mQ4C8vHYQ/fn4AxtQbhE1End4MR0EkLrPaRaEywzAMwzD+9Fmhc74pt5WjuL4YaVFpSDT5z8bpyOHct0Yn+fFF+N+sy7UBgtR9RbU6ZBNBi0BVxeMsdBiGYRgmGBY654GlBUuxaMMiKKoCWZKxcNJCzM2ee2YO5xdcAOexYhjS04T4oeocXxFD3VckdrxQpIdEEMMwDMMwwfTZGp3zGcnxihyC1rRN+88EEjemCeODJiQTgX5YtH5y7jCxn4YIFu/dLdYMwzAMw7jhiM45htJVXpHjhbZLGkrOKIV1Oubnpfn5YfEQQYZhGIY5NRzROcdQTQ6lq3yh7dTI1HP2GiRuJmXFapEcr8jxHSLIkR2GYRiGYaFzzqGoDdXkeMWOt0bnXERz2oM8r9RTDBFkGIZhmL4Op67OA1R4PDl5skhXUSTnfIkcgow9A4cIQuIhggzDMAxDcETnPEHiJi8x7+xFjvUEULTOvQaE95Vt4yaxbo/GEBNWxU73GyK4Onaa2M8wDMMwfR2O6HSn2Trb/wksu49yTyIqUxdxK8pe+Vybq0NzdqgF3RearbMvcgiOGlO1IYI0Y4dn6zAMwzAMC53zRmOtA3WVdkTHGxERE3b62ToUwfGKHIrk2ICyf31CeSj344oihgnSnB3f1vPMOJOYreM7RJBn6zAMwzCMGxY654H89aVY89YBUTZD5TOjf5SERceDZ+tkR2fD3mp3R3hqCjWRQzgbQtpEjhdFEcMEfYWOd7bOI0v3wqWq2mydiFYbivcWiBoe9sJiGIZh+iosdM5DJMcrcghab/9vGYyjI2ELtWrHkdi5/tProUJ1R3hG/hRzqVPLI3YMka30bH+xI0tiYvLpZutUbfsKL93Nc3UYhmEYhouRzzGUrgro9hZ6Jbo5PuhYEjlahGfX31B+6e8BSSf26cOBpDwrIHlOJqlIGlcHvdHV4WwdiuTwXB2GYRiGccMRnXMM1eS00+2NBVN+jN/vfUyIGgmSJnL8pienj0fi/XuAmiOA7SSi37sFpiSHSGNRhEcfrojHWuw6OI8eE47ngVYRHc3V4RQWwzAM09dgoXOOocLjGTcMxpq3D3ibpzDj+sHIHZOMqYMmidk6Ybow3PDZDX5WEdr0ZOrGMqe4i5MlWYgbfbjTfZCkQ93XB1H21F2n7MSimhxKV/mKHUnmuToMwzBM34SFznkgd0oy0nItsFbaYfZ0XRHUUu5tK6euq8AuLL+WcxI7c/4KLLsfUF1C5LRMfhxl9z3rFjmn6MSiqE30Jdehevk7kKGKuTqxs67laA7DMAzTJ2Ghc54IkyWEhEgIod7vdqDW8lHheSgqPo7MtP4YkNKOF9aYG4Gsi9ypLMsAOPcfB5TnO+zEKrPa8fuCKBhTb9Dm6jgKInGZ1c5zdRiGYZg+Bwud84BtSzlqlxZoTVMxc7Nhykv0m61TnF+DNW8ViFqeg1IBZtygE5GgICiyQwt1YmXoRLpKi+gQsuzXiUUDBBXVf64OvQgPEGQYhmH6Ij1e6NTV1eHiiy9Ga2urWO677z7cfvvtXfZ+Wq3NbSKHUCG2i61OrH7/cHBHlqcFnWp6KN3lTXO1B0VtqCaH0lW+NTrtDRAksePFO0CQOq+oWJln6zAMwzB9hR4vdCIjI7Fu3TqEh4fDZrNh2LBhmDt3LmJjY7vk/bRW2dtEjhcV2P1hYbsiRztEgajp6UjoEFR4bBoxEM79W2AYkgd9zii/x081QJBm6/zL03bOs3UYhmGYvkKPFzo6nU6IHKK5uVncyAPbqzuTkDijSFfZVAeschPMSjhMUhgaXR2/J+rOosLl07L9n9Avuw96UkY7ZXfBMtXydDBAkGbreAcI+s7WyRg5hiM7DMMwTK+mywcGUjRmzpw5SE52t0V/+OGHQcc8//zzyMjIQFhYGCZMmIDNmzcHpa9GjhyJ/v374xe/+AXi4rru5h1iDkXJuFb8O3Q9PjXsEOsjI5rRHHig5LaHEP/raUGnaA4Zf24u2yzWQQT4YYk1dWV5nM7bGyBI645m6zAMwzBMb6bLhQ6lm0ikkJhpj3fffRcPPPAAFi5ciO3bt4tjZ8+ejcrKSu2Y6Oho7Nq1C0VFRXjnnXdQUVGBrsJqtWLF3nVQPSKG1qsPrcf4ef1h1AFxIZJYz7xhMG58cjKu/Nlo3PjEZFGITMafs9+fjQUrFog1bfsR4IflfgGXuyurA7yzdXzh2ToMwzBMX6DLhc5ll12G3//+97jqqqvaffyZZ54RxcW33HILcnNzsWTJEpGqevXVV4OOTUhIEELoq6++OuXrUXqrvr7ebzmX1NTUiOhJc4SCuhRZrGnb1NKAS6L0mBIRItbpBllEcFIGxWiRHO9cHV/jT7/IjiXLHf7xhSwjLAM6fE+UnqKaHBI34imyjFm338NpK4ZhGKbX061rdJxOJ7Zt24aHH35Y2yfLsuiy2rBhg9im6A0JHypKpmgKpcJ+8pOfnPKcTz31FBYtWnTe3rPFYkHpoDAsS7gEqiRDUhXMqVgBeW0NoIb5dWKF5sSIVBdRXF/sNylZs4VoKGkbJNjOEEHMWay1n3cEFR5TTQ6lqyiSQyKHu7AYhmGY3k63FjpVVVVwuVwiUuMLbR84cED8/7Fjx3DHHXdoRcj33nsvhg8ffspzkmiiVJgXiuikprYzrO9bUoMGTeQQtP44YRYWRJbBVO/TUaW6O7S8QictKk1MSG7XFqKDIYKnEjkt5eVBflgkZryCZs+qFZr5J3dhMQzDML2Vbi10zoTx48dj586dZ3x8aGioWM4XB6wnoEr+51ckHY7GNCC6PtSvE0sy6OAorBOdWonmxNPbQrQzRLA9YWP7+uugWTu+flgUyWnP4Zy7sBiGYZjeRrcWOtQ9Re3jgcXFtJ0Y4NrdXRhsToGkVmoRHUJWXTAmGvHv8vWiOFlSgQuTxwP/2Ok3PXlu3lxMTp4s0lUUyWlX5LRD3XvvtQkbb9Gxt8uqHT8sdjhnGIZh+gpdXozcEQaDAWPHjsXKlSu1fYqiiO1JkyZ9p3NTlxcVN+fl5eFckmnuj98mVgpxQ9D6l7Gl2LF7l18n1qrSzWLWjm/NDk1VJnGTl5h3xiKHIjllv320zRaCBEzgHCGPH5YX7sJiGIZh+gpdLnQaGxtF6smbfqIWcfr/4mL3jZnqaV566SW88cYb2L9/vyg0ppZ06sL6Ltx9993Iz8/Hli1bcK75f7mXYv3YBLyR5RTrH0QNExGURkMYTkTHiTWJHatsD6rZOVuc+7YFC5tAPH5YZPj5TWEVGkNM3IXFMAzD9Am6PHW1detWzJw5U9v2FgrfdNNNeP311zF//nycPHkSjz76KMrLyzFq1Ch8/vnnQQXK3Q2K7NBCWGHFgaR0rM0eBVWSIKkqph/ciWuP+UxCljxTlc8SQ2SrWyXRCTRUj/mnqtXoLC1x4uGlq9y7JAibiNufe9WvC4thGIZhehuS2pV+Cd0A6roym82iNT0qKuq8vEapw4mxG/ZB9REjsqpi2TobEhyqn8P5WWM9gbp781C2JcqdE5NUJOXVw/SbT+GsdYpITpXRjCl/cIscL+SB9fVDM4MczbnlnGEYhulN9+8uj+h0FVSjQwu1r59vjtib/UQOoUgSbLflIq5ZFpEcb5v5WWNOQfT9f4Dp3QfgrJdgiFKhn/8MkNAPen0hYHShqMrmJ3IIMvzcdrQWlgibcDwnwcMt5wzDMExvgyM6nRTRGbchH77jAHUAPh6TDZuiYIAxFMlhhu/2IuR35Z2tU7iyzRNLklF38dMY83Gin9gh2UX1yN5U1u9m9UfFi7/x68ai2h1Kb3Fkh2EYhump9+8uL0buC5CIeXpQqhA3BK1/mBCDy7cXYN7OQiGC3imt/m4vQnN1Mqe6/z/A+DP6y19g8WX9RLrK94fuFT60XvLRZjb+ZBiGYXodfTZ11dlclxyLGZZIFNmbES7LQuR4Izy0/sXBEvF4YGTnyIkSHDlWggHpqRiQcgYTnE9h/HlFajPG3pKL0r0FqIqJx0+WH/d/WkiUO8QTENHhlnOGYRimJ8NCpxOxoBphOIqdjmS/NBZBlUIkgqLsCuoq7YiON+LD1V+idkUYZMjYj4OIuWQXbpj7/dO8iMf401fsSDrUfX0Q9U/dhQhFQYQs49KRP8Tn6RO0Qxz6SEz48Z3Y/NaLIpLDLecMwzBMb6DPCp3OLEYmSkv/g/0Hfi3iN9WIgywtgeJToEzprNZ9dfjPOwUwyRIaXSrsqhGy5xgSOyR6jkwoQXi0XpiAkj9W0GDBdow/WyY/jrL7nm0bKqgo+Omu97E9YTAqw8wipfXk3GG4IC8NIydO5JZzhmEYptfAxcidUIzscJRh/TfTPEkqN2twMV6VfiIiOSRyfpeaiPi/7cdIo050PNGPZafdhWKn/4/H+b0CvF73Dz8/rLnZczssTrbtP47im28OOsT0jxdxIj0XGXHhQW3mDMMwDNOd4fbybkST/aifyCFm4Etcl3sLagxDkWkMhZJfB9Ujcghak+ipbGkFjdohFCj4b/nbUELd5yKxQyag5I/VbmTHY/xpyNB5Bgj6vAcaJJibjbTE2PP74RmGYRimC+Guq04g3JjRzqWWkWlOx5QYdwGySXaLm5bQGjTF7BdrWZIQrlM1keOaWoKG0Fq/s5DYIRPQjiAzT5qOLMSOeGn3tGSvySfDMAzD9FY4otMJhIUlYcjgJ7QaHRI5tE3U1G4QQigy04ITKWtRkfu6295clZCQfzMmXHI9imrKkZnWH+HRw/Da+4uFuPFC6StyOj8d0fPmCQdzMvekackschiGYZi+AAudTiI5+WpYLFNhtx+D0ZiOmpqvfOp2ZAzM+iUqhr7h8a0S1VNie0r6AgwY1ObUTjU5lK7yrdE5U6dzvdEFfbxDTEs+FWT8SZOUvdOSGYZhGKYn02eLkX27rg4dOnRei5HPpDjZPas4+EcxZvTbiImZ6Lev3FYu0lUUyTlTkYPt//Sbliw6s8bc6HfIu1uK8fDSPX7Gn/Pz0r7dh2QYhmGY8whPRj4Nd999N/Lz87Fly5ZuUZwc7EBOyCL6E0iEMxpJ1oFifUZQB1bAtGTRfk77fSI5XpFD0PqRpXvFfoZhGIbpqXDqqgtwtcZCVSVIVIvjgbaLikYjM3OH2E/bhwsmYNzYcISFtT03f30p1rx1QAwwpgatGTcMRu6UZBHlOeVsnVNMSxbt557OrFMZfx4sPI4Wg53dzBmGYZgeCQudLqCxUY+CggnIzt6kiRrarijPxsnKDBiNDbDbI+F0mlBTUyNCc+J5tQ5N5BC0XvP2AewzbsLv9z526tk6p5iWLAxAPVBNDqWrfMXOsIb92PanJdjGbuYMwzBMD6XPpq66EovFgsqKHGzedBV275ol1iRySEyQuLFaE8Wats36CDgK69BqbRbWEIEVVaRdXln/ptaJ5Z2tQxGeoGnJJG4IWs9ZjBa7DraNm9BSXi4Kj6kmx2v8GeWyYWb1Ws37ikq5vnjpOTRUV3XWZWIYhmGY7wxHdLoAitDMmTMHy5Yt0wTNFVfMEY/RPhIVtO+SYdPQ9PwBNHnKd4yzMwJ9N8X+utDKdmfr+KWwqPA46yJtWnLdFxtQdsNF7iGCnrk68+fNw7Scfjha1QRj1RGsfKZ9N3NOYTEMwzA9hT4rdDrb6yqQMWPGICsrS6SmKMLjTU+ZUtOx52QNco2RiHqxADbVAavcBLMSDiw/ipk/HIjVSw9rzVOj5yXhxeMNfg1bp5yt45mWTBGcskcX+nlf0TbN2Umi4YJmIwp1duHFJfucmLadJsv5vzgMwzAMc44I6ctdV7R429O6Anpd39d+p7QaPz9Y4pmsY8OC/jaEVG6k2YFihuAFrUMwJXM4Up+YDGulHeZ4IyJiwrCwIHi2DrG5bHO7xcnOo8f87SAIRRHDBL2DBCtcYVgdNx0zq9YKsUMih7YvcBmR1RkXh2EYhmHOAX1W6HQ3Sh1OTeQQtH55SDyut4YhwukQYufrkP0YHXohLDHRQuB4ocJj8rvyztb5pvQbzH5/9imLkw0Z6e16X9HEZN/i5ANRQ3DMmIroFivq9GY49JHCAJRhGIZhegpcjNxNOGJvDp6sI8mwGiN8tgFrS2O7z6eoTV5invh/b3TnVMXJZ+J95S1OJnFzwpgi1k/OHcbTkhmGYZgeBUd0ugkDjKFCdfrNSlYVxLkqYTZXinbzlpYIUc/TETRLx9cL61TFydEDmmCaUw5nvQxDlAL9gKagc9FUZG9xMkVyWOQwDMMwPQ0WOt0EcjB/elAqfnGwBFQeTY3gd+n3Y9Lod7RZO6bwO09ZT0Qzdqj9PC4iSaSrOjT+9ExK1hsV6L3ahSYlU1eWZ4CgFxI3LHAYhmGYngoLnW7EdcmxmGGJRJG9GcmyFUe2PYZqKQblSEaiVArJ/iIcjhsQ0mxBa5UdIXFGhJhDg6Yl/2LWE/hz469Pbfx5BpOSGYZhGKY3wEKnG0Z2aKmp3Ys1mImXcZeo1aE01m1YgiE7dqBseRRKwmWkNinImJGONe8W+E1Lrv8yHB/8+mNU68rbN/7sYFIytZ5TVxYVLPvW7PhCQwNry0rZFoJhGIbp9vRZodPVc3ROh1VO1UQOQetX1DsRus+Kf0wzQZEkyKqKR/aeACWWHD7PJf2ilBmQFDkQEaFGwOTe7+eHRZOSKV1FkRzPpGQxRNA7X8dToBw9b57f+9qzagW+ePHv2lBDtoVgGIZhujOSSnesPsyZ2rx3Nl/XNmDezsKg/ZKqQvXYNBAkdhZ+ZkVrg290xu2D7mv8eSB+Y9CsnbnxE7RJyWQHcfhCz6Rk7eQyBq5aqUV2KJLz0t23CJGjvZQs4/bnXuXIDsMwDNMt79/cXt7Nu7B8oW1fkUNQZCdqdqrIRAmEwoG/8edbB/D0msXBLechOiBzqqjL6WiIoBdKVwXqYq8tBMMwDMN0R1jodPMuLI8Np1j/ZkBSu+Jn+gWpuOFX4/CDa7JxybU5QecibRJpj2235TxoiKDfyWXIRqNm/Ek1OZSu8oUiOtGJyd/14zIMwzDMeaHP1uj0tC6sTGOoED/WshP4WxO0AuV7wwHznhrULi0QkRyjBKQbJBxz+qSXJKDBWO137sCWc+8QQd8aHfMVV+DoNdf41exQTQ65mFMkh0TOrNvv4bQVwzAM021hodNDurAIykM6ly/DzSYXHOYQhFlb4bTpcNwxGSbVYwmhAiNNIah0tcBOdcYyMOP6wUiMvz+oRiewG4sKj8nYk9JVFMnRRI6P8WfBs//Ea/2vR5TTinqDGSmRgzG8068KwzAMw5wZLHR6EOR0Hp9wCNnZG0WUhlJSBQUTYS0eLQSO1+WcRM9VdwxDU5heM/7Mhb8fVlDLuU9khxZKV7VXs/PGf79GQ9xANHisKR5ZuldMT+ahggzDMEx3hIVODyIiogXZ2ZuEyCFoTdtVlZPxmeukn8v5BZZRMDpdCJHbampI3JxK4ATSnvGnKss4YfJPU7lUFQcLj6PFYOe5OgzDMEy3g4VOD0IXUi3sIHyh7UORe6FaE8S2cDnXH0D/f1jc6SwJiJmbDVPemQmcjmp2wh/+DWryo0T0yMuwhv3Y9qcl2MZzdRiGYZhuCAudHkS4McPTZ+WbUpLRZG9zOCdUqLBKdrfQUSEKlUNzYoRdxNngW7NjSE8T4uepLcUiXUWRnCiXDTOr12q97NR6ToXKGSPHcGSHYRiG6RZwe3kPIiwsCUMGP+HzY5ORnv4b4WpuMNhgNpeLNQV9zIpPzYwK4Y11RpDhZ9E699oT2TFNGK8NDSRH868fmol/3T4R/5yX2Tawx/tSPFeHYRiG6Ub02YhOd7eAOBXJyVfDYpkKu/0YjMZ0IX4uueTPsDW9qbmcS/uvgum4pwuLkCAMQE/L9n8KV3PhIUHtWmQTMebGoMO8juYN0SpWSVLQpGSeq8MwDMN0F9gCoptaQJwpDkcZ1n8zDdWIdrucoxSxqMOAdU9D77CceY0ORXAWDws2+rx/T4eO5sL7KmCuDtfoMAzDMN3l/t1nIzq9hSb70XZdzkfeZkFE83ARyfHW5tQfq0d9kRVRmWZEpQd8KWoK/UUOQYaf5IXVgdAhUUM1OZSuokiOtzaHHc4ZhmGY7gALnR7OqVzOb41MQFz/aO24gn8dQNjOStEZZVVVVIyKR/a1g9tOZMlyp6sCIzqWAad9DyRkfMUMO5wzDMMw3QUuRu7hnFDMmsjxokg6FDSEoKioSIT0KJLjFTkErUN3Vor9GhS1oZocEjfiIB0wZ3GH0Zz2oEiOV+T4dmLRfoZhGIbpbDii00tczv0bzlWseff/sE+ugMMRhfEZl2CQ5N9aLkuSO43lm8KiwuOsi9zpKorkkMih2h1Ka1HExyN6yOCT3M5pqKC3G+tMHM45hcUwDMN0Nix0eonL+S8OloD6x0j0fL98OS4c9ZaPTUQpUtQbESG1dV4pqorWpFZsLtuMtKi0tonJJGa8UZx2urDqjoT7DRGkoYL2WZejqMqGzDiTqMnRXtiLxJ1YDMMwTNfAQqeXuZyjfD/sykt+NhEDszfiZNgPoe4HGnR2RLqMODFAxYObrvQz+ZybPbftpBTJ8YocQlXQ8u4DKFuW4Gf0WfroQtz0dTNOhkWD3CZ+delgrIqdjhlVa0VkSYGEtbHTcF2ICZFdcG0YhmGYvg0LnV7mcl5iq8ehNnsrgZivk1WN/xzb7S4QhoRtLdughLkFC4kdcjYn008tstNOF5azXgoy+pQUBYkNVULoKCrwx88OQIkcgqPGVES3WFGnN8MWEoGjVU1s/MkwDMN0OlyM3MvoFzfUPSHQDxnrvz7UViAMFaOqRsHSFI9k60CYms1C7JCzeVAXlg+GKNVt9OmDS5JQFtFWe6N4okgkbk4YU8RaJ0nIiAs/Hx+XYRiGYTqEhU6vtIl4EtWIwz4ME+u4uJ+hudlfaMiQ8YP9P8EV+ffi+u2PYUjlJKRGpnbYhaWf/wySFlzqtkgX+1RsHD1M/O+Ik4cRZ68TouahywaLNUHrJ+cOc09Srq5C8d7d3IHFMAzDdBqcuuqFrMFF+LmUI6IrpGQfN8VBkl6BXt8Io7EBdnsknM0mhLSaNNEz/ch8RDijAfeu9ruwyOhz2X0wzQGcDSEwRLYiofxrTFq+V6vHObHgflwy7Xu4YmSySFdRJIdEDs/WYRiGYboCjuj0MkodTvz8YInWbk7rhcVVGDMrBlkT1kI3skys08z10Ck+LeeqBGtlO8afFNnJnOpee+p29OEKTAlO8XDF5ighcghap772V9F+TuJmUlasFsnh2ToMwzBMV8ARnV7GEXuz30wdgtrOP3TU4lNpidsmAgoWjHwBqSU1aLVbxDFUjmOON6LcVo7i+mL/lvNTTE+mqE5QPZCiwHms2G++Ds/WYRiGYboKjuj00gGCvkhQ8Snm+NlEvCrdAXs/q/txGZhx/WCsqPoUs9+fjQUrFoj10oKl/icKqNsRxcnePnYvsgxDeprfLpqt453KrL0ndjlnGIZhOoE+K3Sef/555ObmIi8vD71xgKCnhFisb08ytWsTMeiaabjyZ6Nx4xOTYRklixZz6r7ybTmnCI8fVLdDjuY3fQz9I7uQ9LvH2zqxPAMEKZpD6Svbxk1iTVEbqskhcUN4Xc45msMwDMOcbyQ1MKfQxzhTm/eeWKtDAwQzje46nHEb9oliYS9UT7NxWDbi61uFw/n2pl0ikhPIq7NfRV5ix2JQWEIcKxaRHBI5de+9FzQ9OXrePFGTE+hyzjAMwzDn8/7NNTq9fICgl6cHpWk2ERTl+X2oGa7nV6LYWAG9PQH9Lx4sJiR7IzoEbfu1nJ8CvdEFfbwDMLqE6NFEDqEoYtt0wQWITExkgcMwDMN0Kix0+qBNRGqrhPp/L8aRqa+7Z+KoEhJ23IzfT12E3+xe6GcLEVSQHEiAH5ZzwANB05PbK1BmGIZhmM6AhU4fjPJYDx5EQa5H5BCSiorcNzDN+DE+uOhjFBUfR2ZafwxIOU00px0/LMPevwKyjx/WKQqUGYZhGKYz6LPFyH0Zp6miTeR4kRQUlRzE578vwIE37GKdv7604xO144elN7Yg6ac3tFugHAhPSmYYhmHONxzR6YNExmUDh0iI+IoUGZs/dcJbmk7rNW8fQFquBRExYe2fKGCujkDSIfraG2G68ha/AuVAeFIywzAM0xlwRKfP+mE94fPjl5EQ/QhamtzDA72QfikvtOL4wVo01jqCT9SOHxbmLBb7SdyYJow/ZSSHJyUzDMMwnQFHdPooyclXw2KZCrv9GIzGdLTaY7BO+gbUjB6hk9DoUkHSZvkr+8juXAxAnnnDYOROCRjyF+iHReLnNPCkZIZhGKazYKHTh6lBLI4gAgMQiuQYA2ZNS0bYzkqRSiIhstPuQrHTm8sCVr+1v/1UFombMxA4gZOSfcUOT0pmGIZhzgecuuqjvFNajXEb8jFvZ6FYv1lYAePuk5pVA61HGnUI83VuUCUUFZ/49i9KXVpF6xAZ0syTkhmGYZhOgSM6fRCamvzgwWKonknJVEr8q2OlWGaQkNDcFmWRJQkmnQRHq3ufAgX1YVRHk3X2Lxowb2f4nL8i47lXeVIywzAMc17hiE4fZE9VjSZyvCiShAJTK4pCnfg81ibWJGwaXC5N5HyV9R9k9U8X/lebyzYH+2CdxbwdLLsfTXYrSsKS0RhiOuefkWEYhmEIjuj0QaLtNjI5g+rjKC6pCtZnu/Ce2SL20+Pzq49jc92fEWmPRYOxGj+fcT++Kf1GM//0Tk+emz33rOftQHXh/n8sxQYlF7IEPDV3OObn8VBBhmEY5tzCQqcPMjg+DtNXrcPa7JHC1ZxEzoQj+XhvwFBN/ND63dgUvD/xZej1Vs3zavb7s4MczicnTw62iqAoDgkcSxYq9CmIUyXofIYUtqoyipQEz3mAR5buxbScfkgyGzvvQjAMwzC9HhY6fRBye/1l3kikLv8CdWEmRDtsSBk3Hht9IjwEiaCyBgk/zHW7l1O6isSNqdkMs6MfrGEnYQu1oqShxF/oBNTjNEx4An9pvQ2LnK9BaZQhRyhYaLgF5YjVnuJSVRytakJEq020n1NnFtftMAzDMN8VFjp9lDFjxiArKws1NTWwWCwod7bij3uKg9JZw/q1DRFMi0rDkMpJmFp4NWTIWt2On8N5O/U4WZt+Axy5BUd2JECGCgUS6kaFAxltT9NJElwHNuClN1/gackMwzDMOYOLkft4ZCczM1OsB/WLxf/T50NW3cXHtP5/+v1iv5cIZzSmH5mPcElGXIgk1rTdVNfSVpzcTj1Oq03FzTs/EyJHnBsq7tv1PuIdVk3kPD4rBZs9IofgackMwzDMuYAjOozA4SjD5JbHMAjRqFCTkIAyxLbUweG4UFhGEHWVdqTpZYwy6vyGCv6/pffhRFSBuzh55E8xN8D/ytloEMXNvsiqgveuSMWJ9FxkxIWjpaQA/+VpyQzDMMw5hiM6jKDJflQ0kceiBrnYJ9a0TRYRXqLCdJrI8R0qKOscbcXJu/6G8kt/7+d/Zbjqt21u5l5kGf3iojHi5GHE2a3atGRfeFoywzAMg74udEpKSjBjxgzk5uZixIgR+O9//9vVb6lHEm7MaOfrIMPQmgRHYR1arc0wtCpBYoSGCkajzRKCxE5J+njg/j3ATR+LtX7WPUh6fFGb2JFlmK+4AkevuQbFN9+MwxdeBNfqNe1OSyaK9+7mFBbDMAzzrZDUQHfFHkZZWRkqKiowatQolJeXY+zYsTh06BBMpjMbQldfXy9qVKxWK6KiotCXKS39D/Yf+LVnVrKMAaG/hP7jwZqpp/nSDFg/P+re9uCCCzcP/C2q9HVim9JXy3+4PLjdHEBLeTmcx4ohG41C5EDxqeWRZQxctRLFjlYcKihCTnYmmo7kay7nXJzMMAzDfJv7d4+v0UlKShILkZiYiLi4ONFJdKZCh2nf0ZwiObXPFLeJGhVC5ERdlon6z4o08XNsShNqaurFtneAYHsih9AnJorFtnGTv8ghFAXLV2zBT/fLYq5O5Ir1uLnkLapK9itOzhg5hmt2GIZhmJ6Tulq3bh3mzJmD5GR3jcaHH34YdMzzzz+PjIwMhIWFYcKECdi8eXO759q2bRtcLhdSU33anZmzggqPY2ImQldv9ovcCFTAkBKBxIfGI+724WI97fvfExGcV2e/KtbeKckd2UQYLKHuk/kiqfi/7ceEyCGinFZN5AQWJzMMwzBMjxE6NpsNI0eOFGKmPd5991088MADWLhwIbZv3y6OnT17NiorK/2OoyjOjTfeiBdffLGT3nnvJiTOKCI2fkju/SHmUIRlRYs1QRGcvMQ8LZKztGCpmKC8YMUCsaZtX/T6eiTlWYW4cZ9XRdI4KyLD7doxdXqzmLfj9/JcnMwwDMP05Bodiuh88MEHuPLKK7V9FMHJy8vDc889J7YVRRERm3vvvRcPPfSQ2Nfc3IxZs2bh9ttvx49//OMOX4OOpcU3x0fn4xqdYGxbynHgk8MoCZeR2qRg8OUDYcprPy3lhSI4vjYR7dbt0FDBxcPQYgOcDSEwRLYixCRhimMxStW2uT3DGvbjwpp1IpLjLU7mGh2GYRim19ToOJ1OkY56+OGHtX2yLOPiiy/Ghg0bxDbptJtvvhkXXnjhaUUO8dRTT2HRokXn9X33Fv6XosfPp0d4SpOBp1P0uO40zymuL/YTOVonlq9NhDkFmPNX6JfdD324092KPmcx7nPNEJ5XZAdBQwR/fPPV+N6Am0W6iiI53toc6sBimwiGYRjmTOjWQqeqqkrU3CQkuM0fvdD2gQMHxP+vX79epLeotdxb3/Pmm29i+PDh7Z6TRBOlwgIjOow/pQ4nHjxYDNWTPiLp8vODxZhhiURymOGUzyObCIrgBEZ0/GwiiDE3AlkXATVHAMsAIX7mA7jArKB0bwGSh2UjJcftZu4rZvasWsGdWAzDMEzvEDpnwgUXXCDSWWdKaGioWJiO2VNVo4kcL1Qzs7eqBsn9T52+oqgNdV6RqzmJnQ47sSiyQ4uHuvfeQ/2jCxGhKKiXZZgeX4ToefO0xymS4xU5BHdiMQzDMD1a6FCruE6nE3NyfKFtaiX/LlDxMy0UMWKCibbbhKknOZh7oW2z3RZ0bGOtQ9hDRMcbERETJjqvJidPFukqiuScqt08cMZO2aML29rOFUVs20aMwzFdBDLjTGgpK9VEjhe2iWAYhmG6dddVRxgMBjEAcOXKldo+it7Q9qRJk77Tue+++27k5+djy5Yt5+Cd9j4GRLuwQF3iZ/JJ27Tfl/z1pfjnI9/gf8/uEGvabq8T63Q4jx5rd7bO//vT/3DdS5sw5Q+r8FWlO13lC3diMQzDMN06otPY2IjDhw9r20VFRdi5cycsFgvS0tJEPc1NN92EcePGYfz48Vi8eLFoSb/lllu69H33dnQh1ZgprcQI7Ggz+ZRqEBJyq6jfOWJvRoITWPPWAW3cDa3XvH0AabkWEdk5GwwZ6W6LCB+x45IknDC5IzU0X+fRL07gjR/fic1vvejXicXRHIZhGKbbCp2tW7di5syZ2ra3UJjEzeuvv4758+fj5MmTePTRR4XFA1k9fP7550EFysz58b4ic0+3wSch46P6eDy8M1/rxPpehgGji5za86gG2VppP2uhQxOTyQ/Lm75SZRl/G/FDVBmjtWNEN9bgSbj9uYlBnVgMwzAM0y2FDhlynm6Uzz333CMWpnMnJA8Z/ISf95Ul64/48RGrNsiP9n6SF46s8hZE2d0/QyrpMccbv9VrRg9ogmlOOZz1MvRRCiwhTWSmpUEt5xlx4Yg0G/0EDrebMwzDMN1W6HQVXIx8dt5XRmM6vrE6oaDW7xgqVq7v14SoYqMQOTOuHyyiOeR23lpl1yYpnxYaIrjsPuiNCvQenfSk9Aq+cozECdUiRM6Tc4chyewvorjdnGEYhukxk5G7AnYvP3PyKzbgon2hfp1YVKT8en87mhxZGJoQgeyESDFRuXZpgWb8GTM3W0xUpqnJNFCQZu0EFSkXrQPemBP0mtXz3sch42gRyQkUORTJeenuW/wiglS3c/tzr3Jkh2EYppdT3xsmIzPdiwHmDNyGx/CKegcUSSdEzhSsw80nZkJBBeTqCvyxMQkzvSKHUCFEzyr9Rvxm90K/2TpeA1CBJcud9/KdqizpEJs6BJPMbbYQvlC6itvNGYZhmB7bXs50v7qd7xkH4ln1J/i1+igWqg/ja8wQtToErX91rAwVhgA3UBV4d8Nb2rRkWtNAQT9nc48thLCDIDy2EC12HWwbN4k5O17KrHZ8U1iFlggLt5szDMMwHcIRHeaMofDgihVN0Ounw2hsQL5+INShAdOTJaDEJCOhua32SZWAE/qKjv2v2rGFqPtiA8puuMjdci7Loitrefp4PLx0j2g3lyXgN5dch7ov/sXt5gzDMEy79Fmhw8XIZ09NTY1IFTmdJrFER9QHTU+mdNaAYTrgK5dWo6O7PB41R+rb0lmn8r/ysYU41aTkpy95BEqYu+WcxM7vDkUhov/1iHJaUW8wIyVyMNp3OWMYhmH6ImcldObO9amp6IClS5eiu0OTkWnxFjMxp4eGOFKqyFsXE6+rxG1YglfUO7WanQV4AckjfgzD0JGoL7IiKtOMqPQoLEw4Q/+r00xKTmyowkmP0CHonTToItBgjBDb5H4+LadfUOEywzAM0zc5K6HDgqBvQz//OXPmYNmyZULsOBxRmKEuxXDJZ3oy6lB29P/hq7e3iknJVEIz44bBmDvl7Pyv2puUTNvlkR2npWio4NGqJhY6DMMwjIDby7m9/Kyha0VpLIrw2GzL/YYKZqY9hs//kqTZQhCU2brxiclnPS2Z3My19JVPjQ5FbUjQUMKMXsb3C0zzdr5+aCYLHYZhmF5OPbeXM+cL+mJ5o3tms/9QwapjYVDVHXDJzXCF2KFrNUKnhApbCMLX5bzDuToBk5INUQr0A5owf0yaSE1R1IZm66w7dFITPqcaKsgwDMP0Xfqs0OFi5HPbdk4LER3vgMNYhoaoAlGITOGWyIZsVB7Lwv8W79DSWVGzmvDnxl+feq5OO5OSsex+0ZWVZE7RxMz8PH/hwyKHYRiG8aXPztGhQuT8/Hxs2bKlq99Kr4IiOQ3mw26RQ0hAY9RhfP2/fD+X89oVYTA6Ik89V6em0H94oHiiy916HgCJm0lZsSxyGIZhmCD6rNBhzh2UHy0qKtJqdyiM02gIw4noOLFWoaJV505deZEhw+zoFzRXJ2hSsi80RNAyQLSeBw4RDITsIYr37hZrhmEYpu/SZ1NXzLlh+/btWhcWtZ5ffPHFOJCUjrXZo6BKElW7Y3rBTkw56R9tUaDAGnby1HN1vJOSKV1FkRzPpGQxRDCgQDl63rwgo88VL/7dHTqSJFzCRp8MwzB9FhY6zLeGIjhekUPQ+sN1X2PtxEugenJXJHbW5YzCT4bGofBfBTBJEmyqCsNFDtgbG0QNzynn6gRMSiY7CG1Sss8QwdCcQVCamkRLukMf0iZy3G8KK158Dhkjx/DEZIZhmD4ICx3mO09K9qXOaNJEjhcFElp1Ci6J0rc5mqeOw8W5y08/V8czKZlw7t/U7hDBo/Pnu4WNLKPh9tvaRI4XVUFh4VGMYqHDMAzT5+AaHeY7T0r2Jdpug+w32Ya+ZCqil5cIs8+tFp1Yk6N5XGsM8hLz/EQOFSRvLtvsX5gcOEQwEK+wURToXnst4NXdQqsuhIddMgzD9EX6rNCh1vLc3Fzk5eV19Vvp8ZOSvWKH1vNnjcECdYmwgyCELYS6BF8nNGPOdBPuygsX6w+T9Wit8i9QXlqwFLPfn40FKxaINW37ok9MFDU5mtgJEFlEuLMFBaG5QtwQtF4bNx2Dsvqfr8vAMAzDdGN4MjJPRj6nk5JdSj527LgB1bCgAm5bCOJ+vAjFR5jIqoqNw7OR1s/tUUURHBI31H2lHSPJWP7D5f5pre3/RMu7PxNDBGU9cPSLfv6pKlnG/mf/ice+LESksw4Nhmj8+uqJYt4OwzAM03vgychMl0xKdjgyRKAwFjViIfZhuJ/IIWj7kL0Z8sEWMSm52FHsJ3J8W841odPOEMGkvDqUbY3x68IaMnssJk3M9RsiSG3mtWWliElK5qJkhmGYPgQLHeacQhOShwx+ws//alzK1ZBOqKIDy4ukKtj0t6042KgXGajRP0oSEZzAiI5fy3k7QwSjB9hgumcJnGoiDOlpIr1FkLjxDhCkdvMvXvy71gI/i9vNGYZh+gx9tkaHOX8kJ1+NKZPXYczot8U6yTAJ0w7tFOKGoPW0Q7sQ7rSJbco87XivDL8Z9pgQN0S7LeenGCKoHzQWpgnjNZHjC0VyvCLH/VoqvnjpOR4kyDAM00fgiA5z3v2vLBYrciuKkVpTAasxAmZ7IyKaHQh3TUB0iIRGlwqHAkw2zRA1OadsOT/FEEFv+3l7ULoqsAxNVRTUlZdyCothGKYPwEKH6bTurOXL/40UHIVDikKibRQujjCJVBIJkV0OF8zkam6KOfVMnXaGCHYkcgiqyfG+hhdJlhGdmHwuPyLDMAzTTWGhw3QKiYmHMX7CB1rdTsK+KEgn3PU3JERGhocgTJbQWOtAXaVdFChHxISddojg6aCoDdXkULqKIjkkcmbdfg9HcxiGYfoIIX15jg4tLpd73gtz/nA4ynyKkwkFFblvILQ+FWpIM/RNCdA3W1C45jhWfn7Ma1GFGTcMRu6U4MgLtaIX1xcjLSqt4+iPByo8Dh+Qi0MFRcjJzkRWBs/UYRiG6SvwHB2eo3PeqandIGbrBKFK9A0U64T8m7F5/2TYfZqqqO74xicm+0V2aIjgog2LRHeWt2B5bvbcDl//3S3FeHjpHijCVwt4au5wnqvDMAzTR+7f3HXFnHfCje7ZOoFUSzHYh2FiTRGeltAa1BslHI0PEWtq0jq07Qi++Wg9jhwsEpEcr8ghaE3b7dlFeCmz2jWR434O8MjSvWI/wzAM0/vps6krpitn60hYgwvxMu6CKsmi3fw2aQmqcyR8MChazNuRVBU/3tGEK76ochcTry/Bxv6VUKLaGSpYth2Jugh3+3lA7U5RlU0TOV5cqiqGCXofz4wzaTN3GIZhmN4FCx2m02brWCxTYbcfQ2VrGF7eowiRQ9D6ZfVOYLBOM+QksfPW6HDMX2tDQrN70N+Y4/FIT0/HMdMx7bwyJKT++0agtcWd66L28zE3oqW8HM6jx5BuSRDpKl+xo5Mk7D5Rh+tf3sjpLIZhmF4Op66YTo3sxMRMxNHmRE3keFGlNpHjaxNREt52nCxJuCZyvv9QwapqJJLIESdRxIydujdfxuELL0LxzTej/srLscRyQogbgta/vHQQ/vjZARhbGpFiPyHWnM5iGIbpnXBEh+l0ou02kZrytYQgkSJJsp/YIePP1Ka2VJWiqpg8/gIs7z/LPVSwrhSJFM3xocWmouzJZ9qMPhUFqa/9Fes+/ATFukjhfUXpqsH1+zGzai3oFcnhfHXcdBytmsApLIZhmF4GR3SYTmdwfBymF/hbQswo2IXfpcVB5zmG1rdW1KMfjUz2iJxDA+wYMChTtJTnJeYhMWlckCWEs9Hg72YunqwgurYSk7JihZBJ0Dk0kUPQmrbjdRzRYRiG6W1wRIfpdKgd8Jd5I5G6/AvUhZkQ7bDh2tmzMKgmBKPXNqLEKCPVrmDw5YNQMcaO8kOlSMxJxsWDMk9rCWG46rfA6n/4ix1ZEoafXvSNNZrI0Q6BCoON3NZ5xg7DMExvgoUO0yWMGTMGWVlZqKmpgcVigQlhKP/DZlgMNYhEBfRqAmqXqkh7aLyI4pypJYSenMvznkTZlihtTk/SOCv0RtdpbSFCQsNQvHe3eJwnJzMMw/QOWOgwXRrZoYVwFNahLnktKnJf9xsiGFc1HCHm0NOcyMcSomgdogfYYEq0w9kQAkNkK/ThilsIeY5pzxZiyNSZ+NdvHhTih0QQPU4TlRmGYZieTZ8VOmwB0b1wRVnbRA4hqWKIYJjxepTX6jDAGIrkMMPpT0SzdCRZiBt9uNNzLp3bANQHEjEZI8cIF3OK5HhFDkFrEkH0OEd2GIZhejZ9thj57rvvRn5+PrZs2dLVb4UB0BxS2iZyPKyRZmLawTrM21mIcRvy8U5p9elP5K3bIXFD0HrO4nZNQEnEpA4dgRaHwy+NRVCkh0QQwzAM07PpsxEdprvaRLi7rKphcU9OhrsFnfb+4mAJZlgiTx/ZCajbOZ3T+alqdqITgw1FGYZhmJ5Fn43oMN3TJsL7lSxHStBQQUoyFtmbz+yEJG4yp7aJHOsJUb8j1gF4a3ZI3BC0nnX7PZy2YhiG6QWwezm7l3crHI4yYRNRJ/fHlO1VnviOG0pGbZmUiyi7grpKO6LjjX7O5qdk+z+BZfe5Jye3YxNhyEiHPjERDdVVIl1FkRwWOQzDML3j/s2pK6Zb0dwcjrq6BFgskXh6kFGkq1wekfPnQamo21aFD986IMbk0GDlGTcMRu6UDlJMFMHxihxfm4h9TpQ99awYJghZRtLjixA9bx4LHIZhmF4GCx2m27B9+3YsW7ZMa/G+5JJwPKu+hwokIAEVGNf0U3z+VhKo2TwiREKjS8Watw8gLddy6shOTaEQNy1NstZuDgTbRJQ9uhCmCy4QkR2GYRim98BCh+kWUOjRK3IIvb4RtqY3ESupiEWV2FdU/BjSIv+AkVI/rXh4p90Fa6X91ELHkoW6IyaUbaawJhU2q7AMtrVrE+E8VsxCh2EYppfBxchMt4AmJPuWixmNDZAC2s2p9yrbUi1EDkHrkUYdIsO8DlnBtNh1KNsS7RE54lmoORgh0lV+yLKfTQTDMAzTO2Chw3QLyAbCK2AIuz0yKOgCVYbBnuC3S5YkGFp9S5b9oWLjoBOpgOXmm9vEjqdGp8poxjeFVSizsrknwzBMb4FTV0y3gCrn58yZo6WvnE4TCgomIjt7k4jsqKqEwwUT0N8ZLvysNCSgtLUWR77Jx4D0VAxISRW7y23lKK4vRv/4cLegoaJjL7IMy40/FgulqyiSs7TEiYf/sAqKKjxA8dTc4ZiflyY6sWrLStn/imEYpofC7eXcXt6toJ8DpbFsNhvee+89GAw2kcaiCA+Jn/kT5yBybZOIypDIOZDRhP07dJAhQ4GCmEscCB/uxKINi6CoCmRJxjMNlyP5+f8FdVh5oQjOFI/I8aKTJLxxgYLNb77A/lcMwzDdEG4vZ3q00Sd9cUlckLihhaDt5EkD4RrmxMlj5XCGS9j/QrMQOQSta1eE4R9Vf4IS6o7gkNh5IPITvPXf5+EsPoakQWMQPWC432sWVdn8RA4R1tKATW++paW9fP2vCI7yMAzD9AxY6DA9IpVFIoe2CwsL/bqzIozZMNqTtOeR2Il0xKIhtFbbR2Ln+q0/hQoV8kkZC10LMTd7rvZ4ZpxJpKt8xY6ltT6otof8r7Z/9hG2ffwBR3kYhmF6CJy64tRVj0hlUbEysXjxYn8DThVIqpqAaClMzNVpUhX8a8zjfkInEEpnLf/hciSa2lrJ391SjEeW7oVLVUXa6vFZKah48Tf+ryVJ7gb1AE+s2597lSM7DMMwnQynrk7D888/LxaXi+buMt09lUUUFRUFuYyT8hgd5USyGiEeOzjAjp/PvF+r0SFpQpEcX2h/SUOJn9ChwuNpOf1wtKoJGXHhSDIbsQf3inQVRXJI0Iz93g+w9eMP2nU5Z6HDMAzTPemzQufuu+8Wi1cRMj2nBZ2GCXoLlFuaTTCr4eJxemzw0XAkxs/A5B9OFmImTBeGGz67QYgb34hOaqS7O8sXEje0eKGUFNXkeP2viG2ffMgu5wzDMD0InqPD9BhIkJItxPgJH2DEyC/E+oJ+NvFYqVwDGxwildVaZUeEMxpJ1oHIDMnGwkkLhbghaE3bIprTgaO5l8YQE0rCksWaXc4ZhmF6Hn02osP0TGfzJvuLqJFiUI5kJEqliB3yAd6wG3FSH4/opkZcastEQ1E6NvxlO0yyBJuiYuL1E0VNDkV4KJIjRE57juZZF7m9sSxZgDlF1O08vHSP32wdRA7Ga/2vR5TTinqDGSmRg+Hfw8UwDMN0J7gYmYuReww1tRvw7I7X8DLugirJkFQFF2AtvsZ0z7aK6Yd24ur9ScgLC9f8sHY5XJjx2KQ2PyyK4Cwe1uZoLpCEXYSzXoYhSoHtij9hzMeJfp1YIo4T0J1FhctfPzTTL+XFMAzDnH+4GJnpdVjlVE3kELT+Sp0huqHc2xLW5ozEjeWlkBxtflgjwnSoK6pvEzoeR3Nf6gqNKNti1ow/E8t+i/jkP6DVrkNyYxVKI+JQZYx2Dyr0gbq0qICZhQ7DMEz3hIUO02M4oZihSm4ncw0ffyyv+Kk3RoDKdXz9sEy+vp+UmiKx5BE7LU2yj8gRJ0X5lihcO/RLXLx3K2SooP6tv4+ahxWZE4IiOtSlxTAMw3RPuBiZ6TEMMIa284X1D7GQKBnY5K/fVQnQRYfh+MFaNNY6RP2NqMmR3OrH2WDwETltT5q1zy1yvOf96e738fSMRCFuCFo/OXcYR3MYhmG6MRzRYXoMyWEGPD0oFb84WAKafkQyZbK6BusxDYqkg6y6sAAvYsD37kbTh1bND8sxoh+W/WGrGHRMGmXGDYORO+VGT/HxERhaIoE11/lPQpZEAZvf60uKgtnRLkx6aKbfvB2GYRim+8LFyFyM3OModThRZG9GjHMvyvbdgGpYUIEkJKAMsajBmNFvI1IeLdrMnSEy3vKIHC+UtbrxicltNTtUo/Peeyh7dKFm/Bn/4AOo/MszQa7nA1ethD6xbdAgwzAM0zVwMTLTqyM7tDgcGSiDLMQNLW5kGI3pCAkLRYg5FFUHawMtq0RpjrXS7id0yM3cdMEFcB4rhiE9TYgZndnsJ37I9Zz2t5SXw3n0GAwZ6Sx6GIZhujksdJgeS1hYEoYMfgL7D/yajB2EyKFt2u8lOt4o0lWBER1zvBHltnIU1xcjLSpNzNYh0eIrXNoTP4GRHxI/9lmXCwd0MgflVBbDMEz3glNXnLrqFYME7fZjIpLjFTm+ZqAn9tqw5u0D2mzAGdcPxoH4jZoflndasq+jeXtQJOfwhRf5pbNUWcZNlzyCk2HR2lBB8s1iGIZhzi+cumL6DCRufKM427dvx7Jly8SwQJqjM2fOHFGTQ+kqiuQ0Guqw6H23yCFoTaJncvJkP6NPbbigZ1qy8+hx/5odT4FyYkOVEDrUdk4O6GQOypEdhmGY7gG3lzO9ClL2XpFD0Jq2XXIzUgbFiLocSlf5mnz6Opr7QTYRNEH5jTlibWjYItJVvrgkCWURcUEDBBmGYZjuAQsdpldB6SoSN42GMJyIjhNr2qb9Xqgmx2vyeUpHc4rkeL2wCFWB/ptHkfTwz9rEjizjuVHzYNeHIMV+AqbWRh4gyDAM083g1BXTq6CanANJ6VibPUpYQgj/q4KdMKIJ5fu+QGR8DhL7pYuanMAaHb+0VTs2EVBdiL5gEEyrVmoFyuM/XY2s5W9p05NjZ18n0lYN1VWoLStFTFIyu5szDMN0ISx0mF6FLdSItTmjoHomHZPYWZc9EuuO3IJYqRoolzAg7FeYO+V2UZPj52iOU9tECGiSsmUA9GZ3dxaJmboV7/hNT6774l/YEmfAV++8rtUIzbrjXgy/8JJOvQ4MwzCMG05dMb2KA9YyTeR4USQZFZJHyEgqjjj+BNvJY0Lc5CXmBYscIsAmQqznLHbv90ARm8CmRVVRsM4jcsS2quKLl54ToohhGIbpfDiiw/QqElEKSQ3VHM4JsoYwwIF9GCYej5Vq0FhZAFO/dL/nBs7VwZg2mwiK5PiKHILSUhSx8RM7gUN7POKnrryUU1gMwzBdQK+I6Fx11VWIiYnBvHnzuvqtMF3MAHMGbsMLQtwQtJ6irsNj+AOelBbhPryA1epFUMOT0GpthqOwTqyXFizF7PdnY8GKBWJN2wISN5lTg0QOQcKF0lKSR1TRetp1Nwvx44sky4hOTO6Mj88wDMP0xojOfffdh1tvvRVvvPFGV78VpouheTo/GXwRhh/4f6hQE2BAMx6TntIiPLR+BXfhkoMOtK7drBl/bkhcASX6DObqBJBaU48Z+UfRpNchvMWFAU4VYXfcK9JVFMkhkTPr9ns4msMwDNNF9AqhM2PGDKxZs6ar3wbTTUhOvhpXWKaKacnf1JmhHm32e5zETunuOqQarGgJr4C+KQH3lF2DraZ9qNLX+c3V6Ujo0KRksoMwKgqMzhaxj7YHr1qJ8Kf+gUMFRcjJzkRWRn/uwmIYhumrQmfdunX485//jG3btqGsrAwffPABrrzySr9jnn/+eXFMeXk5Ro4cib///e8YP358l71npudMSx5tdEI6us+vQFlWVSREbsWRsUtEcTJUCQn5NyPJ2U8TOkFzddqBjD0DJyXT9vIVW/DT/bKYlCyv2oXfZH8lurO4C4thGKYP1ujYbDYhXkjMtMe7776LBx54AAsXLhSj/enY2bNno7Ky8lu9XnNzs/DH8F2Y3gu5nP9lUJr2Raf1EykmKDkekUNIKipy34AtvMJ9THtzddqB3MsDJyXT9qLt9ULkEMaWRlQvd4scgruwGIZh+lhE57LLLhPLqXjmmWdw++2345ZbbhHbS5YswSeffIJXX30VDz300Fm/3lNPPYVFixZ9p/fM9CyuS47FDEskiuzNyDSGIsy+DTtOBHjZSgqemf1r1Ej92p+r0w40S4fcy33dzG33/AIni6O1Y6JbrNqcHS/chcUwDNOHIjod4XQ6RUrr4osv1vbJsiy2N2zY8K3O+fDDDws/JO9SUhLgb8T02sjOlJhIsQ43ZoivfjUsouWc1rQdLeciyToQEc42oXI6oufNw8BVK5H2xhtinXL9fOFiHmevw4iThyG7JDEx2RfuwmIYhulDEZ2OqKqqgsvlQkJCgt9+2j5w4IC2TcJn165dIg3Wv39//Pe//8WkSZPaPWdoaKhYmL4L1e5skv+IvysZojBZUhUsaDyEwt/tR4jejtYWIy64diRypyQHz9YJcDSntnOK7NBCkIf6EssJpHywWLOF2HPFVSgt2cNdWAzDMF1AtxY6Z8qXX37Z1W+B6UEUVDTg70qmsIfQWs4jBuGG5OUwOR2idGfTh7XYZzTi93sf8/PDmtvQ2Gb2SS3rND2ZBgv6dGKlvvZXOqvYJrEz8uMPccnS/8LmahWRHBY5DMMwnUe3Tl3FxcVBp9OhosJdJOqFthM9f0F/W6j4OTc3F3l5ed/xXTI9ja3HKjWR44W264wRnv8HisMP4aM1HwmR4ztbp/zTB/wczbHsfneE5zSdWKHWRqQOHdGhyKEC5eK9u7lQmWEYpq8IHYPBgLFjx2LlypXaPkVRxPapUlNnyt133438/Hxs2bLlHLxTpieRrG8Rrua+UPrKbG/UtknsRCohMDWbkWwdKNZitk5IwD8ZmsBcshkoWicEz6k6sWSjEbaNm0TEx0vh0eP4bMVXYr1n1Qq8dPct+O/vHhFr2mYYhmF6QeqqsbERhw8f1raLioqwc+dOWCwWpKWlidbym266CePGjROzcxYvXixqcbxdWAxztowakIRp/1qKdTkjtRqdaQd3IcLp0I6h9JWrJQLXb38MMmQoUPBV1n+Q2uqxhmg7Enj/Vi2VpZ/z16BOLPMVV+DoNddo2/T40voW0XZOqa29AX9xeFvQM0aO4TQXwzDMd0RSA+2XOxmaaDxz5syg/SRuXn/9dfH/zz33nDYwcNSoUfjb3/6GCRMmnJPXpzk6ZrNZdGBFRUWdk3My3R+ayfSv5V+gLsyEaIcN4+NSkX/8kIjkkMiZOfgC7FlHBp0+KS5JxU3XliNi9b3uSI6QJ/TPx9fUUwfcvwctdh2cx4pFJEcTOR7sBj1WDUkL6MUK5upHnxTpLoZhGObb379DuoN9w+m01j333CMWhjlXjBkzBllZWaipqRHRQ/rHUnP8JE4eK0e/9EQ02UKwZ+0O/yepEqwJ30PjnUNRXLYVaaoOiR/dH3CMS7id6zOnik4sSlcF1uyQL9bpRA63oDMMw5wbulzodBVUjEwLta8zfRMSN7R4sfTvJxbCUOsA1Sv7anBqsvrGtgbPrnsWkfZYNIRV4eeREZjcZEexPgRpLa1IJE1jGaA9h2p2vOkxL8YWl9dLVIMe1UkyVJVb0BmGYXpV6qqr4dQVcyry15dizdsHtE7y0fOS8Oy2ZzG18GqtbmfdgHdxKH4DFEkSHloL+1+KuRc/rc3aqdCnYNkvH8aUHbvdaTBJxfrRI+GYNgf21e9qs3ZiZ1+HH/1glpiYzC3oDMMw5+7+zUKHhQ7TAYcKa5BfXIfctGhUth7CjmcbhcjxQmLn7TGPwRZqFds0b2f5oDuQ+PlvRIEymYnSvzCXXYKzIQSGyFZIRmDXD79CdFQ0CgqOIjs7QzicMwzDML2wRodhugulDieO2JsxwBgqrCJe++YIfu2wuqM1x6x4sMmIMDQhTAIidBIaXSocqgyzo58mdEQL+prfIdGTqpJI6kiAHK5CH+7UXitDLkdsxjAWOAzDMOcZFjoMA+Cd0mr8/GCJqJWheM3DyfF4yiNyCFr/JVzB02YZUyFDkihSo2KHvRXWsJPaeSjak+psEzTtoUgyYlOHnPfPxDAMw3TzgYHnE56MzPhGcrwih6D1U6WVmsjxQtvhFoMQOQStR4eHIFynE9vCJmLUT5GoBGaDJVGQTKiSDjLZRphTOuGTMQzDMFyjwzU6fZ6vaxswb2dh0H6anuxrFUHFxsvW2pDQ7P9PRv5xCk7EViM1MtVt/Ln9n25rCGo1p7k6cxYDWReJtnPRkeUROTQlmSwjqDPLawrKMAzDnBlco8MwZwjV5Hi7n7zQ9i9DI/Gn5gato+r3cgQSnG02EQIJiO+fgmRzW0u5MPlsR9j4RnHq3nvPb3oyTUuOnjfv/H9YhmGYPkafTV0xjBcLqrFAXQJZTDumyI1LbN811oSNw7Pxr/gEsb51RjZi5ma3DcCRILZDzKHBJyVRkzm13RQVRXI0kUMoitj29cFiGIZhzg0c0WH6PE32o5iBLzEc21GhJiEBZYhFDez2W2CEBQnSPhgxFEAOTHmJCM2JQWuVHSFxxvZFzmk4lcM5WUYEprDIyby2rBQxSTxbh2EY5tvQZ4UOT0ZmvIQbM0Rwk8QNLW5k7N//OZrsb0GSVJSWSTCF34lJk34hxM23ETheNIdzX7EjyzCkp/kdRw7mX7z4d9HdRYXPs+64F8MvvORbvy7DMExfpM+mru6++27k5+djy5YtXf1WmC4mLCwJQwY/4fPPQUZKyk81kUPQ2tb0Ak6ePCS6tKiAmdbfBoraUE2OEDvi5dw1Or7RHIrkeEWOr6M57WcYhmHOnD4b0WEYX5KTr4bFMhV2+zEYjek4cmSjJnK80PYbxcfwTH2TNm/n6UGpuMJoQl2lHdHxRkTEhJ3R60UPaIJpTjmc9TIMUQr0A5r8Hqd0VWBDpKoowiKCU1gMwzBnDgsdhvGJ7NBC9Os3VKSrfMVOlRqLZ+r7+c3bofk7xctqEdnknoA844bByJ0S7DpebitHcX0x0qLSkNjqApbdB71Rgd7oOYDa0alTy1O8TDU53qGEXtjRnGEY5uzps6krhumIfv1yRE2OSkacInUkwRp6hyZyvNB2Q4QOcSESqGqHTEAbax1+xywtWIrZ78/GghULxHrpvjeFD5Yf1PFF7egeKGpDNTkkbgh2NGcYhvl28MBAHhjIdADV5Jw8uU9EeFoiMzB2wz5h1OlFUmiIYCMSne46mp12F8bcPQopg2K0SA6JG/LA8iKMP4tPILG1pe2FJB1arl0FZ02z3wBBqslhR3OGYZhgeGAgw5yjyA4tBP1jmn5oJ9ZmjxSWDpKqYPqhXYh0kjFnmEg1jTTqEBnmtoQgKF3lK3I0489p9yNx9TPa9OS6iFtQduX1QQMESdywwGEYhvn29Fmhw+3lzNlSU1ODwWXH0L+6AlZjBMz2RkQ4HbDKsTAp7iJkWZJgaG0TNlSTQxGcwIhO6tjbgJG3iHRVS0skSn9wvRBOAkVB6aMLYbrgArHJNhEMwzDfnj5bo8Pt5czZYrFYRNSGJinnYq9YU62yWfFWFLunJdMgQS/kfbVw0kIhbjTjz0kL3Z5YnunJZSX1bSLHexpFQfFLr+HwhReh+OabxZpsIxiGYZizo89GdBjmbKFc8CWXhMPW9KboxqIC5dCmG9G4zYj94TJSmxQMvnxg0DDBudlzMTl5MkoaStqMP304ERGHKEjCX8sLxRmb33lTGIsGRnk4ssMwDHPm9NmIDsOcLQ5HGZrsL/oNEVxhOoE50024Ky8cc6ZH4H8p+nafG+GMRpJ1oFgHkjE4E38fPQ8uj1M6rT/Mmt4mcnyiPGX5BeflszEMw/RWOKLDMGfhieVuKHdTDQtexp1aF5Z7rk4xZlgiIbtqtLk5NTsVrHnrAEi3tDdrJ8lsxMwHbsOtbw9GQsNJVET2wzV5qVB+t84/yiNJ2NmoYt+Kr5CTk4msDCqCZhiGYTqChQ7DnKUnllfslCNZdF/5okDCa7vfw0d7/wqT0wQVOszb9RCgzeNxz9pJy7X4TVGen5eGaTlX4WhVEzLiwsW+RR/Pwz0734NOVYXIeWPEDMS//WchfvZCQuzs63DrrdeizGpHUZUNmXEmIZoYhmGYNljoMMxZemLtP/BrIWkSUSaKiH3Fjqy6ULL3Y1xafCkkSFChwh5WDqPdPXGZoLpja6U9yC6CRIqvUPGN8liN4Zhz8iMtwkPr6uXv4P8Sc/Dnr8qhqFToDDw1d7gQTQzDMIwbFjoM8y09sZrsLizYvwSv4k4okk6InFvVF2AsT4ZkaILR2AC7PRKNUQUwNFugU9xFyqSLzPGnj7yQYJmRNAFVx/ajoNSBwvf8a3ZI7Ly9YhuMIWZEt1hRpzfjkaV7MS2nH0d2GIZh+rrQ4Tk6zHf1xIqJAS4/9g2GN/0ElUhEvFqOcOeFOG4pgSX7ECqkZGSp21BTkIPm2hHQOUOFyJlx/eD2zT+tJ4CaQsCS5W493/5PJCy7DwmqgqSGcBSqY9xFPl5UFRkNxfhB4y4heihttjpuOo5WTWChwzAM44EtINgCgjmHNhH2BideLPobXpHu0qYnL1CX4AbTbYhwJCEq04yo9Ha+Z9v/KYw+RV6L1NDFjwFfPqZ5YtkqDFi/KxN7+vdzix1VxeCyauxPjvMxpHDXCM394/9xoTLDML2eeraAYJjOt4n4+vhKTeQQtKbU1qUbdiOiohn1EqCbmw1TXqJ/JMcrcsSTFOCLx/w6vAyRrUitqUdcQxOaDHqEO1vQFBbqJ3IIiuwYbDUAWOgwDMMQPEeHYc4h9YaU4E4sSYcKeIqRVaB2aQFarc1tB1C6KtDNnESOT5pKH64gaXw9jC4VsTaHWGfe+1MxqdkXcjknA1CGYRjGDUd0GOYcMiQkDrJaAsVHgMiqggh7JLZaJKTaFCQ0q2itsrdNUKaaHBJHvmJH0vmkr9zGn9H3/wGm5EvgPFYMQ3qamJA8peIEvt6yXktnTRkzkU1AGYZhfOAaHa7RYc4hFKlZ8uYOPJkbKsSOrKq4rLQVnyWHaNuP5Dfjrh+PxsmmSlSUnEBCagqSylYDy+7XRA3mLAbG3OgpUD4CWAa4C5R9aCkvFx5Ydp2kpbMo0jNw1Uq2iWAYptdTzzU6DNP5UJTmlgkZmPTJYZQYZSE8bploguIJ8JDYeXJoGFK+Xo2xXxkRBxktOIJ1F8Qh585VKC7birSkcUhMHOV+AombAIHjhVzNyQPLqADGlrbuQYr4sNBhGIZxw0KHYc4xVGg8MicGQ6vs2BSqQCko9ntcJKj2RvgM/5OR8bUJ15Xfh5P6Gsh73A7nZAbaEYaMdECWhdjRkGWR1uJpyQzDMG64GJlhzlNkJywrGtlxJGj8IYGT1gRUhErYatGJNYmdTJt7orGiKli0YRHKbeUdvgZFbZIeX+QWO+LEstheWuLElD+swnUvbRLrd7f4Cy2GYZi+BEd0GOY8khxmwL1GBX9rgjZX54bGemyIDcWTw8K0up2H9zpg85ldSWKnpKEEiaaOU1DRA5pgmlMOZ70MQ5QCW5IVDy/dIywh3OcBT0tmGKZPw0KHYc4jVCTnXL4MN5tccJhDEGZtRWuLCU9MuASqpzNLq9s5Vqs9T5ZkpEamnubk7vk7eqMCvUfDmL/8OeLVv6IcsdphLlXFwcLjaDHYEZOUzF1ZDMP0Kfqs0GELCKYzqKmpQXzCIWRnb/R2gGPF8R9pIseLKktoCYsBWo4JkUM1OqeL5rQ3f4ciRplyBcqVNqEzrGE/tv1pCbapqpi7M+uOezH8wkvO7QdlGIbppnB7ObeXM+fZHmLX7u9Bktr+mVWpsbhfesFP7JBAeT1ehSVOEZEcr8ihOp3i+mKkRaUFCx+K6CweFjR/56OZn+M3y44i0lkHl6zHj8qWuhWW9xBZxu3PvcqRHYZhejTcXs4w3QBdSLWfyCHipGpcenwtPu8/TavbmV6wCyMGXg6XVY+IUCNgApYWLBVFyVSv443yTI4c4N+CPuevQfN3MuvqcFPJm37ixhdVUVBXXspCh2GYPgELHYY5j4QbMzzNjb4pJhm3D6zDpfa7NNfzqMTL8dbfd6DO7EK0VYcLLkvDouNukUPQ+rFvFlII1l3AvEvFwv6XYu7FTwNZF2lDBRtaQ/HFn27xEzn0f4HGn06TpROvAsMwTNfBQodhziNhYUkYMvgJ7D/wa4/YkTEw65c4XPgnxEkK4lAtVMjqiBN45bJ4kc4iMVO0pwhGYyRsoVY/weJbwLzo+OeYXH6DO7LjGSpYu3c3ArPRkkfcUFs7rVfHTccFLiOyOvlaMAzDdAUsdBjmPJOcfDUslqmw24/BaExHk/2oX4SnGhaP47lbxND6g+GJuGDfaJRgB8yOfrCGnfQTPV6xU1K2rW2KMiC6qqjg2FfskLj5T9JVMKitqNOb4dBHIiMuvFM+O8MwTFfDQodhOimyQ0sbbemsciQHOZ7T9jDTLEzb/AMxTFCBgnUD/o0DCZvazqCqSE0a6/c8qruZMnaSn9FnasZI1OgSRZu5jlrZ5w5rd6ZOQ3UVastKuQWdYZheBQsdhunidFYiykVBsq/Yoe3w/aEwGOtgiKiEszEeM4quwQnzATSEWYXIoRod32iO1+gz6rW3MdPX6HPvUaz78HYU69yRHK/I8RU2R3dtxxcv/l1EgrgFnWGY3gQLHYbpBums/NXL8WLocCiSDrLqwoLGnUiKO47EcW+Kri1VlVC+9cf4W9ZfYHUcRmb2EAwYNOaMjT6jayuRMoEKo93sWbVCEzYC75AfiiapKr546TlkjBzDkR2GYXo8LHQYpovTWQ5HGaaGPoFcRKNCTUICyhAbUQt1HOkPt/igdeLYt7D906FoaUrCQakOM24oRe6UZLRam9FaZUdInNFt9OkjWgSyJIw+vVAkx0/kEAEFzNyCzjBMb4GFDsN0Md7i5FjUiMVLwPBkSLICU8RJ1DVZhC5Z8/YBJLS4YF9+VOshj7ksDkl5dSjbEkWFPpQDQ9I4K6pRjuIy9+BBZ1llUGdWIDRUMDox+Xx9ZIZhmE6DhQ7DdMtZOxSVEcU6bbtUCU2hoagaWoiICjOiq+PaRI54HKj97CQSM8NgTqlCWZMBSeFOrIo1YNHyG6FAhQwJvx76i3bfh28LeuysazmawzBMr4CFDsN0w1k7aQkPYeW6VRiYs0mr0fmo/mr8d9Io9zTloQquP74Js/OH+Z9MlbA6LAs/zywT7ec0k0fs9qghEjtP7PsznktuwZbSAVAhQYKKCxMP42f6n8HZIrtb0AsicZnVzo7nDMP0eFjoMEw3LE4uK3OgvKIENbXJMBobUCdH4b/D52mdWbR+p/94fP/4MQys79d2Igl4ql+zEDnu49xrS72KpFoVZTESaqKAsIRq3B5ehTqnEdEGOyL1TiQ4G7AxJNd9HlXF0aomFjoMw/R4WOgwTDectWOxWEWbt9NpEos1RQ6atUMdWkW5LRhIo3U8NTp1F4bgZGmt33Ezdym48zMFskrPAV66VEL/GBfCWhRYGu0wRLaiNUSG1WbEiMbDKI2IQ214DA8VZBimV9Bnhc7zzz8vFperrQWXYboL5Mg7Z84cLFu2TBQOG62tQbN2qA090ZCC5VYnTLIEm6IiVxcnDEC9HlkUySGR0xqVjtaYLITUFuKOz4/i5MWzUPfFTo9BhIqa3Cw8nf8PrUbnxIL7RTSHhwgyDNPTkdTTtV/0cs7U5p1hugL6XtbU1MBiseDZbz7wm7Vzm303Ej5Oc3dXeZFUxN9ej9/vfUyInWHHgAf3XIeEAVM0a4iKI+th2ntqd3OBLKP5icew8t1/uo+TJFzCQwQZhumB928WOix0mB7EroK92FV6GCOTB0JqMuKr/zsWdMy0n6QjOtWG47XbYalIQfj/QoXI8aKoKmrXPAnFYYXd2A9G+0mENdf5ncOu12F1bqYnJ+ZBknHd759Gi8PRYYSHo0AMw3Sn+3efTV0xTE9kZPYwsRBfH9woPLB8bSKc9mjUuP6Lyp2viB6rJlVGQv+bEH1iunYOWZJQk34x8mNGCfECVcHgg+8guXyDdkxTWKi/yCFUBe/85kER4TmVTYTvxGW2kmAYpjvAQodheigD+2dg+fjbMD39gNaCvvF4FlrrClGNGGEWmiiVArlvwFQ1HPpmixbRORI7ui3lJck4OPh6WOoOIsxRI9JW0nULoGz8TNTseHGP9Tm1TUTgxGW2kmAYpjvAQodhujGlDieO2JsxwBiK5DCD32PROhXTMw6IOTgEiZ2JqYexBhfhZdzlnrejKrhNWoL+xgohdETaKtMMx85qv3PRPJ2of/wFRuxHVOpYREdl43+b9iJBOaZZSvimv3xtIhpDTCiqsiG8qiho4jJbSTAM09Ww0GGYbso7pdX4+cESzwhB4OlBqbguOdbPOoJETjUs7ugNSsV+r8ghaP2Keie+N74ZVqsOKYP6IyspFut3feNXixw94Ctsc3yKciQisWAJJibdhpt3rYUjxO2CLisKNmT39/OlIJuIdRUqfvvWKigqEOlqxM0BPlsdWUlwLQ/DMJ0BCx2G6aaRHK/IIWj9i4MlmGGJ1CI7rtZYrFYvwitSW/TmMvUjqHLwvJ3Xdm1Hcl0VpN2SaFufccNg4ZVFXeh6Uw0OjCvFy/i/tihQ2QuYb3bBWCdpLujDj5/E3rQEd/2NLGP8DXfgxi+OI72lBNmuYhTo0rA6djpmVq8T9Tx0zKzb72lXxHAtD8MwnQULHYbphlC6ytf5iiC5UWRv1oTOkTqdJnIIWn+KK0QdjXciMkHCJba1EmZzJez2SDGb5/7778eNT0yGtdKOCv0eLDx6Z0AU6A5My9qDpMIatMarCKmUkFpnw+g//Qq1ZScQN3w4DujjccPnDyG6skykvgZjF+rik/Ba6vUwO62oN5iREjkYwwM+B9fyMAzTmbDQYZhuCNXkBNp86gBkGqkbyk2d0QRVavB/oiRjjuzEMleIFp35fsUKXDT6bW+pDQoKJorZPElJYTDGH8X+E652py6X/OgSyBFvan6jSftHouqOOwFFQYUsw/KTBZrIIWhN2/1Sa1FkTBX7Hlm6F9Ny+vlZSVC6imt5GIbpLFjoMEw3hKI2VJND6SqXR+T8eVCqX0Hy8DgLpII2oUFQl1TU+tW4HiqsxgjEuSo1kUPQOjt7E5zOj7H+m78JBROixkKSlgRMXVYQEfVp2xuSgbLBW5EQpYeuThJip+qNt6Bm+dff0HsZYTuEIrNb6Lg8nlkVzhZsqqzHhPgoZCUla8MLz6SWh2EY5rvAQodhuilUeEw1OZSuymyn64q2/zIoza9g+QGTAY1Ou3g8wukQ6aqAZinRnXX8+F/FFGUiTqrGbeoLeAV3CTNQWVXxYNFRxGb6d2aR2rJlRsPZOBCmk8cRbqvSpiZrqCpsjnDA7HmKJOG1kkp8pDjcx1WcxDVhEVhwx70iXUWRHG8tD1G8dzcXJzMMc05hocMw3RgSM4ECpyMx1LC/HP/yGHwSVJNDWqRGauvMikWtJnK8zJC+xOydE1HVMgipTQos0OFIhuR3nKpIWDVsKppbTJDUgRh/pAbDCzfhwCAzQqNb0Fynx6CDVrw7PlcTOXfOzsYzSmObGJIk/NveiJtHTMQVvwzH0R0bkDF6Euy1TXjp7lu4OJlhmHMOCx2G6UViqDEjHpH12WiIKhBix9lswtLjD+KD1Ilazc5PQrZjSssf/MWOKiPFakFGs7vDyiYZUVAwAQOzN2nDCGmbRI44XAI2D7Bg1sXDkZiyC+VyMhKVUmQ1zcR7kyahuPIQ0uJz8FGRg07m/4ZlCf975znMW/ImUlTAangDa4ZkQG9qQajZiWarQStOJrgFvW/QUl4O59FjMGSkQ5+Y2NVvh+lFsNBhmF5EREwYLps3Eyv/ZUGrbEdTqAkfUku453ESO0tc43DBoTtRlfMeyqVEJKrlGJL/feid7snJJJCUiQaU78jGscYs2M0hwj09tNG/YFkfasOn/WW8Ir3gFlGygtsilmDGnlmiWqegQkaG/m5IyjS/lndJUTDioy8he96UXa+HZVAdUqeVeR0pULIuCds/+wj5n32BiJAYNLbW4oIFt8CcPRSHik8gJy0Faakp6A70pXlA5+uz1r33HsoeXShqv2gyd9LjixA9b945Oz/Tt2FTTzb1ZHohjbUO0Tqeb1Tw48KSoMfnOBvwiT5Cq8m5w2nFbyZNQmuVHSFxRhwt/Ai/3tyAdTmjRas6taxPO7gTqbUVsIZHwNzUiKiok/i/3OsDiphdWIy7EIsa9w5Vxtub5uOzCXOF2CGRc8m6/+G+pe/DYGoVrevOVh3qH2gWIscLiZ3G/83B2PCrIEkyVFXBX82H8PaEsdp5ftd0ErfNmY2upDfNAzqdiDmXn9V34ne/uhocvvAit8jxIstIXf4vOCNsCDdmICwsqd3ztFqbte9siLmtI7EvQ/cy6qq0WCzi3tabYVNPhunjkR1aJIcTcqF/mzrpiU8MkW3DCCUJL4VG445QCclZ0WLfYSkK63IGavN4aL120Cj3EzzCZ+qx0nbb0ivUpDahIymYWV8My6blsBojYbY3ILuoAq48Jyquc3la11v9RI54mgwMSRmCSrsOJSYZxlYZ70wc1/Z+ZBm/De+HS0pOwN5cgaKircjMHIdBA8cA1hNATSFgyQLMKe1aaZQfOYETB48iZVAGEgeceWTI9zyRtvp25wHFpWWc1uH9XLJv324U7N2L7GHDMHToiG91jvZEDKUOvcKHOFezjwInfj+hb8FEX5FDqdOJLdhUMNfjsCZjyOAnkJx8NRyOMjERnMSPa4+E2qUFHhM2IGZuNkx5iR3apvR0fD9/e+Jv+/btYk6W9+dIw0HHjHGngDuiN18zgoUOw/SxNvU7Uvvh/0pOdjiMsBmZUKUm/5P5dFeR4FiXlhw0nJAiOgkoa3uOKqMkMgERzmaxENWDImGd4GoTN7RWgWrfgmmlBp+bB+KP401CiAW+jvvUMt784nlMSHsXeh1QchQoXDcGl5V8KWqRRDptzl/xTuLlfjfWmyvKEfvB816bUgy76MeYfcfVp/1lH3iDfjjC3SLvW1vUYtO36/Ae+Ff2uUoBvfT0n2HPX4lQczOKl4fim9yLcPvPf3Ha51UfPozKg4cQPygHhpjoIBGz4sW/i3p27w1z7OVXnpPZR2Li94Fi8TMl6Fr+2hmCf1vi0K+mSuxzRauwkgjWULD/wK/R0mLF4cI/eZ4lI2HfTYhWp3veDIToWWqR8KvislPapvhGPOsq7YiON4o/CATtCORvw5n8bMtt5SiuL0ZaVBoSTYlndJ7S0v+I6+D9/F7x54W+Y16RIy6JqortrHgTzC0Vp/xcp7Oa6YjWkmNoPXYMIenpCElNb/9zHN2L2sM7EDNwNCIzhqErYKHDML2coM6shgYsKQ6enhzX6tS2h0TFQa49pt2Q2kWWMGG/HZsGhUGVJUiKip+V7gWSZeyThonan+T8C+Fs8U8pGMMbgiI4ayR/I9Kbd/8Hb4yyaK8v3mtAKzulrwamf9HW0CUDhrTtOH4sDpIzHtEhZahb/js8OGGYFnmiX+av9YvH9f2S0KIPRYy1GntXvokjE8bgdzWNp/xlTzfoBw8WazOL6LinGhT8aiSQO/6wX21RzcFov6hHQ0gYvli9WhMNowcOwOFl//nOKSCK5ITU/w+51/nWNjVi28YLkRAzwP8m7sPXL76IL0+ccF/LzZswLioiSMTQtdbqulQVWz/50NPK53uchLqTTpQtXYGUYTlIyck45U3cG4nYWe1Ol/pC27X33Yd+i9w1Oq0J7h+Cr4cbRQgPF/7R5/UVVOS+AVPVcGFWS1QY2kTOqWxTiPz1pVjz1gHt60R2KLnGL1G6/Hc4YkzBAPsJJM/+LUpjp6GksBCpWVlITs84o7QQRcaWvv0GaqIssNTXYO71NwX9bJcWLMWiDYugqApkScbCSQsxN3tu0HlIbHrf5EV33IBq/MZnhKhb/FksU7XIDr2vIDGqqqh5+Ycwo8T9D2TOX4ExN56R1YzsqulQjNneW4rarbGefzFHETNuG0zz5vpFnQr+9QLWfPUNDOYWOK16zJg6GcNveQydDQsdhuljnVlFZfWYdmgn1uWM1ITFtEO7YMiMAfq5b+7hrRJu2NGEt0aHaxEVwj96A4wsKcbAuiIxnNBsb0SRaTieTVnirv2BihtRAqO6XXRpeXE0+be8h8IeZET6+sirgyI4ImWmKFqNzvf3voe44TX+h8jAFyFzICkD0dLYD2rYpqD0Gj3/rbl3iYPpPNM2Lce66gbt9eiX/YOeX/a2qlocPFaGqjAXVBEPa0N8xgk6P6GVOq0cDcdNIrJDuGQdvli1yk80bD90GCZdCOTWFr8UkNRUivrirYhKG4eI1BE4duQQykrykZSai/QBOUE1KYfz12sF3G2vX4ZNb38DtcXadhOfkqzdfJor0CZyPNd0m7UBJr0BjYYw1JpjhfijtJz/RVOhCx0HV/M2LRIWEn4xrA/9DrF1h1AHCfsW3I/GK+Pw6Oa/oUUXD72rEo+P/ykmmlq1SEQjYiHBfzgl/QxShmRj4KqVcB4rhpochvcLnsfLuLPNew1LMAMrA74PClrCKzShc9QktWubcriqEZZmWVwzh6JqIsfzscT2xhFf4zcT3oUiyWJY5g1ff4Dw6kL3dVq7DmNyBqL/kKFBaaGczFwtMqQqjfjL2vVYft2D2ne0aN1H+E2/dNTUNiM1IxFSrCJETotshiskEbrWcrGdFTcBDYjSUqIkcnSRCgyxgLNaxaZlL2DgnMBPp+B41SFUNuuRGWdCqz5cmOvKPv9s6NpFhNaixqhHuN2FsGX3A1kXoabMiqo9e1CYM7Tda/bPgi/x6e5fIVbnQrVLh/vHL8KYllSUHt6I5IET0T8y3kfkEDJqt1pQM/j/sKHydbc5MMog2Vsw5Lp6TYhvW2dDxtF5nR7Z6RVC5+OPP8aDDz4IRVHwq1/9CrfddltXvyWG6bbQX6O5FcVIranQBEpkSzP0ej2KiorE4/SLO+NwM35+wglbVAhM9a04Ouwo3ssYIepwKEX1y9hS1IUeQIRTFcMJ6Ub5wfDkNsEgSfhnbn8sXt+C/a49QuxQR/v4pnHYUdmCvyTc6L7h0W/AdsRIUASHIj0fv4NQgxlhNSWwmmOhDguaV4i0yR9pLfGH8q/T0lh+B3lFlSxj7cRL/E/iuZX/+ZOvEbV7nXhIimuA1E7hdYLkdozX3qOsQkmyoLgpTggGIwmzwB+AJEExhAmhI15LUXDw81/DmvCl+75xEAj5egxa43eIC3a4SELhnrsxIflav5qUzMlGnGyntskQbUODtQ66VqMwbg1LWI2iYvorWhFzARKSJqCiPNvvWldOuARv5o73KxgfcWCbz3ll6I2jERaTiRBTEVptmXA5kmGy/9t9LaAi+dXF+HHShahKfsb9RlQFi/a+imfMy7VIRCyqsUBdglfUu7TXmr3uQwy65WpURwLFaUBoWKzbw81rLULea/gJhis7ECv5CFsV0DXFi/8lGfqxzQ5JDQ8Q4ypML+ejykE/cwCTk8WP3xReI4rp6+v7oUyNxe8H0bBMT9RPkvHmsKtw/cYV4ntNPy8SpzsOH/FPC320DMaGY7CbdIhs0GHApHAsn/6DNsEuy1g+9QrELfvAfR4VyMjMhS1iKhott2rXKNT2NS7dUQlVOil+/D8NbULsqBZk5hVoti3FOzOCImoqZNzyYglga4I1RME10zKht8chxHwMYeEN4g+K0VEF2J0bCkhh4kRDChpR8pc/Y1NJvph9dXJNHKQfPhL0B8y+gifx28QmIZpIPB3/5iEUpriACKCwFCg/NB39cYvfd68l1IpXKnbgFanNHHjBoCWYKbkFKn3c/tPKcfLwOhY6Z0trayseeOABrF69WoQSx44di6uuugqxsWeWY2SYvgb9O6G/RumvU/oFTH+djhgxAq+88orfX6teh/PQphbhcP6DjCdxAaJFsTHV4cRW12GT4Uo4ne7ZOtSNFRiFUWQZhtBEXFMbBatsh1kxoiEsDM94RQ4hfuEHpqVUTCjai00DhvpFnWaHTUC4ZECkZQLeUZwoOFSM7BzvrB/Pcz3zgWidM+Qd3IZyvKLeKQSapJKvl39kBmK/EiRiwo6sER1fhL5eFjfoV+E+Dz1+q/qCZ/hi26nWqBfj5Ys8kQhFwY8//jfCVRWG0CYYjQ1igKOzORwy3fg8GCJcqEv40q9mqTV+e9t56bNF/AMVHw9AcaQLBy21GFQTg7RtMaicKmmf1zvUsTKsGk7dbnFPjHHGo6j42baUh6QKC5DammTt50YC9W2PyBHnkGV8Me0KZJQdRXiLE7oWJy659U40hxxFXcufNBEpLctGg1HG/vRc9K8sF88tT/LcwD0/10rzLajGJvdjnjQU3fiiVlTgRHMaLNYqzI3ahi9Kw/Hcym2IUnJQFt4MJfkG/+8RJBRXxiEmvka7+TqKnVgkleG4JQq1NiciVRJR//H7GS1QX4RF/R7Je7dG+KYUA7O/hnXUxzguJSFRLYPx8E1QpCl+r0c/P/ojQAgU95cpKC2Un5iGddMyxHeeBNXMQ+VQ+8X4n0f2OY8E7C09gsaJ/teo2TRV++7TT+mvjjAszqv2s21JG3UMSumFkJNWi0gW1b5V7LgcP6yyQA2xQ7KHYc+KA/hZVi0qhn7g/otCvF1S6W0n2j8wAieqNyL3+pPiLWQpxSg9+A4+yLlWE57f27EH80eXaZEhWqf2d7V9H2XAlrMWzvI5MDjbapCOm6uDTIbpZ5GKo2iG0Z2ClGsQmuR/jTqDHi90Nm/ejKFDhyIlxV1kddlll2HFihW49tpru/qtMUy3hToxsrKyRF6fIjlekeNbxOjrcA7jbhw4rIhaCa2jilJcYQ3aDZNaztt1Tk8pg8GuR7SxAnp7AupmJkNR3NGMtgPdNwtvu/sD+xrQWF2IgZUntKhTRLMDayj75okMTW8ZhH2HLsPmmmRR96MPcWDI0K/8azvkGsxQV2G4tEMINAMceEz9Q5ComY+38K56Q9sNEi/AEiLDCndtAn3GlIJSPDvwLlTKSYhXytC63oyEmJtRMfQNcfOpVuM8v+jbOsPe+v41eLbgAyB7DSqkZGSp2xC7fxoOFYTBDroGEjIHpkKSDwVcj4AfmKTgtaGH8HLcRVClAe50TulmjLPfg3Djc5AlFYoq4XDBBPFcs7lciColere4ffpdE6kGRu/PTQWcyiC/OUeEIutwcvgwZLcWwt4UicO78hE14jnUSDHu80il2PP9VLw8py0yc+WqT4POQ6JyufJ9fCrNaUtDqUtwf/iHaHLtQHSSHY1GFY8diMT+TE9kgb6H7dRjvdtoxzpHArKlCBSojTgQORr10ya6j1NVTGluFiJqBHa0iXGpBoXmsTjqCsWgRj36oxFfjTqOVzzebpTsumbgm5DUSUHfiWS5GGZzvSZO3V88aOJwXc4ov+jlqpzEdqOQ9N31Qn8MBLcYBkQTSSAiCXE+/85IXIaX5iCp4HJ3uq4pAWpLEwr6bdYCPROdJvFdrPb5Gfn+WxXIEpInnvRLt87NXorp6hpUqkmIV8vgkt3iJvA744cM7A8pRzzicCJCh5RGFzY0m9rtwvT+exMRHnUJRlkmoc8JnXXr1uHPf/4ztm3bhrKyMnzwwQe48sor/Y55/vnnxTHl5eUYOXIk/v73v2P8+PHisdLSUk3kEPT/JygHzTDMaSM7tFC6qt0ixpoaZGZmioJWhyMHOBzopy5jeOMYfK1SmzmEEGmv9idqbCWOJL+sdYuYzIsg1wzxK0olcfPaxibYdZKwoEholvBZQjZONu1ECo7CrkbCCRMMoTYtMrIeBzH1oBNb5QtRpQIWuxWrcw3aX5XeX6w/OmgBBr3v/mWtSliA4MgM1X9Mkr7WbpAWtRabm/x/D1WUDURtdRKM4Y0obMqBdKIKzfXxqGi4UqQKCkIGQhkWHNFakR2CT71DFaHgtiEvYNiRi1Bh1UPWRaO4qgE56sqgFJzvdrUa6xE5bX8tv5Kch8IN27Df+Rjiw6sQUe/CxanbMX7CUi3lUVQ0GqvVi4KuSdz+4zC2WiE7mxGWHAFJTQ+60U/P/Q/iJCpwBY6XDMF26cK2WiqVPMrQ9n5kGR9ceFk7aUIFn0pX+IwpoDTUXZgvFyEusQ6qowaPyz/CNxmT2wSyePOKiOr5ptKyDENxc8PVkCGjLFTFFdMj/aIVS0PTMFWNFd5t3hu8+Oyjxnk+u4ofHS/HfwOiDu/iBlyDN4OE7tRh7p8Jff76PZfCfHIavg7ZL77r9cbg6CVtjywuwO7UrLbv/8FdbVEh8pVrqTxFKtVf1MVT56Lf90GC2ZYm6pFoscGB9aE70BypaAM9G3WFWOPzM2qvtkkNzhKLbRJVQljRz3QE2v3OeFNQ3vfzYVQ6Ph7hvg50bWfujG/3s/l9Z3EX5labEEsF531J6NhsNiFebr31Vsyd6195Trz77rsiNbVkyRJMmDABixcvxuzZs3Hw4EHEx7vzs2dDc3OzWHwHDjFMX4ZqcoLcxCVJ7PdCnR3Uzurb3pqTvgjSF6nor2aKtJRekSGVbfWr/YmVqlHVQB07bX0dTTUL8auDS/DHQe6uKhI5j+xrxtD6NhHlggsjZ9SiodbzXFVCeUUmEhKOaDefgoKJ+ApT8ML0RE/BNEVfBgXdVDP3f4IZ5X+Cy3QSTlsU+ictw7M5P0ElEhGvlqPmUDYKpIkipUNiyGt3kbT/JIoHhLujFDTnRZLgbImA0xrhfpNJJhzDCdikWFildBiVhqBf9JQq80Yz2t7THXg4ehV0TWPFPkdzg/gs9PretFBFRSYSE4o8KQgZR0svhdo/+K/liGgrQkvCYGlxIquhCNnZG/1SHlGZxXhFeiToZnM7FsPc5BYDUa2f4DYc0tJ73hs9iRzveYypFXgZj/ulG4Nqj2QdLlM+xOeYo53nUnUZPpX9BSPVwKyeFI5c6Yj4uUYfs7RTeC7jovxNMLa0iNlLyRXlmBd9HU6Guucq1eil4DSpJKFs4yTEjv9E1EpVKbF4RfYVNRL+039I0J2e3mumcgSLpbvaIkFqTdu4A4qMDF+BAV9dgkQ1F1ZTCZz2ZHzsiUBqH19VcesxYOuJFagzRiDa3oiRTWYUGxuFOLY3RSCj6rgQH77XegrW4Wt1moh+eUVdpD4D6qRa7fvQunE0ohwJsEkOWOUmOODE8cFh+DjhEk2MXFK9Citwof/PWr0T/dWjaJaMSFDLUF+UhswBOwK87/yjNTWyRXxHAr8zqT7nOVo0Gh+PSPKbs7V6ZDRu3bkZr40af+qREJKMI/oGjEE/9CmhQ6kmWk7FM888g9tvvx233OIufCLB88knn+DVV1/FQw89hOTkZL8IDv2/N9rTHk899RQWLVp0jj8Fw/SOmh3fGp3A9lma2UHtrHb7MRiN6UL82OaWU78sTEqY+Av0khHTsWLvOq3258JLh6PRtjTgFRUMbdyE6zfK2g1hcGMG6hGDRtmBCCUU24eWIKn2r361JV6RIzYlwJJdgN/l/Ny/BT0A+sWaH5GK5sP/QYQ+Go0GGZVyNmpqk0VkqNA+yJPCUUXdim8dzZx9y5BRVILKuAToXQ7sHjfS/+SShAOJ6VoKg242F2At1qvTtJvYZViGT6TAG70OB0MHwhgfAkuDC0ZbkztaFPD69s1zEBOtR0N9PyhhrZBSguuILI0nsD70CegkFXvjYlARUH9UIdHNKDCdJKMlNQP9bc2wVrfCYW3BNHWllt4TN/qAmx+l3QLPE4gQNtInuBSfaOeh78Rn6g+CZy15i7glFaPT38fr6qyglGdifa0WDalPSMR7cTKeHto2VykoTaooSC2MQ5Lj97BGnsBJYwzUocHhi2AxqqB1swpLXo1IdVLUY43sP+7gNmkJEiZtQEXIex7xKeHOymvxQvyV2s/6zv0fY7+hFDfaZ6BBX4ooRzqKwj/E+PFbta6jE5sTMV0t97vWFrUG8/COSFdR6qhVMmN4w29Rv64C1ojjMDf2R5Q9Hp+5PkdBrBl14REwogEfJ8z2EyMrYme2mzpaiD+6OxahYpprJzIrh+ONhDmnjNaUK8lQdcHfGd/zjNAfbmeulYS8lqG4dG0NDkW0ILYlFP9vYrT/OAFVgSmsGsAA9Cmh0xFOp1OktB5++GFtnyzLuPjii7FhwwaxTaJm7969QuDQL+bPPvsMv/3tb095TjoXRYh8Izqpqann+ZMwTM+p2elodDyJG9+JrDSJNjQnRmt57m8ORe7FY7TzhIY2Yf03vwtKeW1uqYXJaYLJcyP72nDA73UuyxmARpt/42ugjqGbeIdzfuiVXC7MHp6DgpoY1LXWASFGQM0X4sZbW0QFDnssezCsdrjYRxNkDkZsw5DEQSjIcqExMQLhlcFzfBr1oX51GnQzIJGzEA/DqYaJmxj9Nf4prghK57yf5y5ipZv1nOOhyPj6KJxJGZroCi07Bps0BA2KAboWA+Ib/40fFGXgo8yrtBvrFUUf4PLm94XIIQwhzVCVcPEXufev9QSlVEQ3AkXE6Cmfi2hbnCqhYctYHC7wjWh5Grt8Lm2CUgaZOsoCzkNHqr51TWqNeJ5XKNHnn7vnMD4YMVCL3tFxvkIqVqrCLcfW47X0yX4pT9+UT2OoES8MbUsXea+d37iBr5fDnDAQ70kHoNoAyVgKSR0VJA5nFK7E6qyLtde6cPNKqDsV5BcMRGiUEzZDMl6+NCCiod6JYSF3Ic5b+C2pmNLvHQzB523iMKcGG4+FoDzzS1Hj0qQCRp/rSKdLGV+OoiNjRFTFe60Jip5pqaMLatD6VR3MzUliIWyyAyszs7FukNuSpd1OxXaK6n2/sypNN88ZiXXw/85StGa4ulOk/OjnZT+SACnLfV1PdZ7dqQO1a69dW0WBs7kCq7BHXP/jKrBg/0S8MjhepHBlxYWxu1/F6Amnvj/3SaFTVVUFl8uFhAT/hB5tHzjg/sUYEhKCv/zlL5g5c6ZoL//lL3/ZYcdVaGioWBiGab9m52whjyFfnyH/85iDUl5xcT+D01nZ4TlXrdqL8RP8a4I8XdUadHPxFjB7ETc/74wbVcX/W/MNZt7zIwy/YCCOHy1H/zgdSv/zN3xMIX64a2aG6tfh/ehqlEQch6nFBJveBpMtFGuvGIIPBl2r3RB/ULQUicU6zzwfFQOdhe2kT3RoVowYKu3VUmCzbdVYPipO/MVL7UIiTehz01jWfzj+NLgK6XUjcChCQU6DjK+TbKiR9sP997OKzWE2jF6xE3clFKIxJRYRJ6phqmhAVIYOu0NHYZdhDKKUPXizKhfr42/W3vP3jr+FBY1leCU30e8veBI5nguGyLxtyN90FTZvukqLKMVYqDtpo9bhtL8iHAvqKvDykHi/84zwi0zUouTADKQOXqulXIp3XYEhhywYcLQUtkgXYlttGHzxKv8fpCpj4LZG3LPpJTT0S0V4TSmUuDi/Y6ynqIm5R/0LzGq9qGlpNqVhvdKszWw6Vadc/IZjGLh5L2piE2GpLoe5vkZcY5p9REtxsqXdyEhwgbBb0GmiTQdMyGz1izoSgcXxjQ0W7Vrr9Q4Myf3K77XopVvCy7X5QMThMHubyPEeFCC86fNdV3wUb6cO0L5rfkN1TpFypM+6Nv9HyG4pdEcTnSZ8X9mKj3PctU3tiyoJF5StxTdJU7Vre+Wxj7DfRd9t7zFASOVGvPj5YTSgCSknKxBXX4vYa38LeP/G6CS6tdA5U6644gqxMAzT/Ugud8CyqRr2MBlGh4LmaWFBNUGBNDeHo7p1AaJ1L4uIhUuVsM0mY5zJpd18v6xtQF7TGmzpP6Ot1mevA5OqXSgJl0VRc7+WEdi8ez++3LCuLS038hrcv+tPqEEkLGiA/eJfQT74IuwhdrEQA1uz8MEwt8ghaE3RlHfKixBuM8CshEIy/QePBwktBWU7RsKlS/KkoEwYddKJQcfrUBOhgzNMwruTI/0+K517t3kKfjUqVPsc0w4ORX8fA9Usx3AoIXuEuKHFy3sJD+DlUVPbupXEm2j7a/3TtBvw33+8gUsqL0dBpIp0XRGkUYGD91TRPVdXn6hFuSrLsjG1bA4M4fXQNfXD1xFfIaRxI663hmn1VykxNlhyan3qmiYi/tCPkFRxiUgdmRtSYK+Lx5Hm3UDtlzCVqXBAgmPrHISN+1hrk27efg1qT65HpMmJuMYDaLYbYCtrRHNShtZRFH/SLWIDU2A50kG30KCPP7oWxzcN0D5De51yzZtGYUjESXxVESIEDsnIWUmF2D76R6j8bDtkKvq1VrWb3qLna/Px2ikY9xiv+7EGASkwdQmii+vhNLuvtUHfGHQe2rG3wYFxqgqZZi7RNh3X3gBNz/sUEbXSNUjaNBo/3eX+roU3V+ClS92RtLbP4Zl4HfCdDa93wer0TD9WgZTyUlxfs0L8rENcLfhwzIygNOGPEt/G1Xi7Teim12Jz+VU+kVK32HGSG31tNUzNdvEHAg2F1Ce2b3vRJ4VOXFwcdDodKioq/PbTduJ3vFDUyUULRYwYhjlPkH/QsvsQpioIa3b/Wwv78ueYc/F/sezLr08pdkiQPL56EPQGd0dRlWqDM+nf+KReQb8QFSdbJVhdFJF5DQOOrUKkNBA5VS5cWfUj8fwEz2vZJCe+/Ga932TiZburcP9tXyCzpRKwDIDZnIKFliS/sfzDRk/FKrRjWBrTgikN7gizYrsRD/7nbfxl3rVQdDqRJvvh198gVJVhlajVGKhojkd+xgeYeuQaRNlVqPEnIanZQQXLb2WG+rUqrxk0UpuBIpzjD+3EvK1bUBwua+3UiYoZT3tFjvuiBV1HMctkVB0efH8hEk3xaA5vROVIT3++dpB/9xw9dEHrEES7koFmz9iOlmn43LBTpJO8KaWKimx3XZFnOB0NgswJC4fkNMFc7TYCHWlUUVK1Ec6QEPeQRKcDuwtrobZeKZ5Hrev6injEDarVpjy7rSxsaC6fBkN4DFqa9YgvWorDqeFYN2hUW0QpIAVGUSRjWL3fjbaiLBvKwZkwhp1AbVMGXM2pSI7Zh9sHbkad04hogx2ReieGT7sERy68FoVH9yEa1fh3xSuoF0P9dIDqwvD8f6OpMhTqNG3OH2oOmRGTU+9O6SkS7Pb5CA9/V5trRJGcwInflCZ6YXoFjn34LxjCYuB01MKZNhGG5LZCdGfVhThRNQy1UitMOgk2l4pWZ1I7Qk/FS9sr0Bheh4y6SCTWj8OXcInvWZS9FapiwLUbt+JfE8dpAnru1q04GRUS1BlJHZPesQ3DXGnYE1Ls97MW3ZTZI7U04c1VqxHXz33t2wx80Ta2QPtuAbtHZQLSAPGdHbtlK6Ji4js7oNO9hY7BYBADAFeuXKm1nFN6irbvueee73Tuu+++Wyxem3eGYc4DZJIoajl8UF0Yk2xA1v33a7U8hYWFfsXQQybMROOaBqDZgNrmGEghVphUt7ixev42IUFy/5j7sXj7YljVo5CNcVDVH6JJcorOFLMSjjrJFhyqJ/uJunqYh03V9pHX0OTkyShpKEFqZCoarXb8/UBtUH0H3VC0bciYs7cAeTt/ihP9EkRovl9dDX4//f+h3hyPSikUD8wbA731CJ42P4bI5n4Yo3PgNqT6dd20V7DsmyoQBqo5I3F9878w81gJmgx6hDtbsGkqFZSepkZJVTHbaMM9t9Qjvq4eFdHAlccHY3j/g1pE5cixsbjUNhj9pUxtqKMJ/h5ZMYq7dolSadpbVIHLGqajxaa0PSfg7YiIREwibHFRmkATtEhwWj23u4RipE4ItLIox4B1MWIgnWpQ0ChHYGx+FVJrl8NqjERcayWmj1kZ1IKdlxSPlVaPoauqIrw+G7Ano9nuLn5VoKA5tAo0rIAEjvsFdULwptp1SNCnIR8tCLWtg8WxB66QBOhaK9Cs1iB8y3BsrElGY6IZEeVWZBfq0PqL2xCZ4EJafDakwsNYt1aPhLFvQ5IVlCspQUW91HHW0NofVybfLkQAdVH9u3A99CVthegtzgjEyE44lFA4Wt3XK9qu4vItNnwyzqT5yj2S34yRVdQBGNFWM6dzwdHqvY6RSDt0BD898g/YY1NhrC7BoOJi7Jo0yX8qerMDVzSPQ4vs/jm6VBV7dMV+13ZI2TE0Na1DVYQTrdIJjLadgErZxYDrX+wCzN4cs6j1cv97dr8hCVvzxiHCIeHbW6b2UKHT2NiIw4cPa9s002Pnzp3il19aWpooHL7pppswbtw4UXhM7eXUku7twmIYphtDjsneP4G9eG4svrU8gcXQTTBAXrtKpKgItdUMZ/lcGJM/CDJDvCzzMk2gbH9tJbacLNAiEyMj4iDZyIbBJ4ICBRbUBb1VMi7UTCjL6/BA6To8mzxMEyRkWJpSP8CvBd7VdBL9mmqFwBHIMv704BwU6yKREReOJDOVoz6NycN2oqRsG2p2V0GnvujXdeMuWPbvTAqEbtylljhkl5TA2OJWelmF+4NbeOna0Cf0pvLym/HDCVdh+po1KDHISK1X8E3uZfhbSS2yYEIhbLhp6tVwGONh3FkpuucoVULXrzJUEq3cqTYFCc4wyGmxcBVXCYFHNzCK+vSD2b/OPMD3k27kVV6RIx4P/oztmbxSAXWr6aQQOjSdOmLYDxFb70JocTWS5GqEKMNRrPsB0ka22X20Lo/HhHl5GD51EGpKDqI4XMFzyz/BtCPzxXsmkbNuwLuYOPFGDFj9jBDc4rs4ZzHqvtiAwqf+gAaTCZE2Gy6armLlyFroXLXi/dRFyXht0nTsmtJmkzHyq514bexkz88Y2FrWiJHVe/DNJ09AH1EN1ZUA+eLgFvRB+6zaNbJKTeJ/A4vjdXo76uUw1ETqRGdelEPF3aNTMfCTI6g26ZDc5MIVerpost/3cWX//2HE0Tna562O2ocr12xGk34rwltcCL/ncRTutwFRBZotRZotBxZdFHSKJKw0/q46kGvLQYnpkPbvKNWWjc9TvoQt1Cpe6wl9KK45OBJ5g9oiUcsLpuHL+PWwRMQjvikJzpAmjK4d4f9zlSREyW1F5n1G6GzdulUUEnvxdkSRuHn99dcxf/58nDx5Eo8++qgYGDhq1Ch8/vnnQQXKDMN0Q8wpbsdkMhP0ubGI/YGH+ggf+u9Tc4fjkaV7xV+YOknC7y66FdNz79JEjVeUeAUKOUtvqaa2V/f5aL2rqRoXYz2+xBSt+HgOVsGcemeHb5s6yK7dNwDTistwNLpBRHKS6jPgggIdZHFTeS7p37jnwQVoeuIZrUAj6fFFiM7JCPqLNTFxlFhOmI5i98sfwTK7QqttcS5PQHRiKWpHJbuFAKk7+gwBNRHjr/g+sGeX9lrjb78BdxQX48W0VC0NcfuRE/jB8RiUGGWk2hUMvnwgQvImInH4DCTWHBECc645BZNt5f7XMRuon5yM+iIrojPNeP9EFX7tsGqC6YkwMxZOnoqNh/dhR+F+jM4aguG1sX7eWzFz3f5ZvvuUaRZgU8dRJ7s9whMr8k+n0fRf7fOT2NEpcLTGIkRxN5vYD14G42eb4UxqQURxMyLKa+G8VAdz/0FiMdrKcWjXQpRE74fZ0Q/WsJOwhzUgdezvgJG3AJ7r0WLXYf1vF2DL9y/Xok4Xb92KXQNKUBVJdTIyfpr3OH6Tlt6WApVl7Jo+BmpoWzt/SvpA/FWfiYcMD8PWmgCTrgKH8p/CB7nZ2nX8SZWEBPLd8n7nlXBvt3rbZ1WBqpmpWBIVonWXPRgShdHT0pGdlyAmlZsdu7F92YtIb7wdOujE93Gb+RVsTNqJPZZt2uclYXLFbU9jtD0GhvQ0NIdGI/yRb2BotsAVYhd+aE1qKG6JssEMiWQ3fnJhFmauDoO9uZ8W4TOGGPCmLMHmeY/0eZZWDcGyiouRHlGKY43JKHOFIjJ7G2rCK8WSbE9o97NlRrcVWXcWktpRRWAvxrdG59ChQ+KXZFRUVFe/LYbpvbU6nhtLeyLnVJRZ7Tha1eQTHTk1FA1+4403gvbfNDkJlm+e0IqPzVf8Hhhz42lf27al3O+mfWRKAx6r+CMSm2NRHlqNe6bdJyJKLeXlosCSbiSiyFJ81kJ3NKudz7rizy8i6tP/gz3VAGOJE/Xf+wlqZ1yKhz7JR6tRhxC7C5flKvggNlGLHvxMasQvL5wW/FoAdu/Yj92FxzEiqz9GjB7i53Du7Yaj61hUZRMu13QdSx1OHLE3C7dsr6u9F3ps3IZ8v0AN3c63TMoNOra91/LdZ2s4isUvv+0XUaNIg9BxIjKkYEfcTvzx8jkoLfqT1pmXsO8mRJ+Y3vZCEtBwUTpWLz3sbgKSgJwDbyGlzD1mhHDRbKVP/oPkAcO1fUsLlvrVXnmjgL6Ur1mDJatXBwnL+VPGomFkshCDh50mzNtZGPSz/Gd2IrJb7NpIhne3FONvS9ciVSpHiZqIn86djpw4E3YV12FkWjSGWyJQ/ofNflGvA7oTWB9yQIueDNYNxf1TB2qmpu1ef/qOLR6GMsShUu6PeOU4JF0tZqcmw9dGlj7z8h8u1/4oIPLXlwoPO28z1YzrByNmWIz27yymqhlVL+0J+qy/THsWe0wF7vNCQuPhh+BqaSv7oD9Gfn1NPf666ylxvUc1DcLNx3+kTZP21n5NuXU2wrKicS7wlp6c7v7dZ4XO2V4ohmG6N/RvmFLbgROeybPLjMZvJbQCb+TlgZGQQLb/UxRfa3cRima1I6pOHDqK0n0FSB6ajZScjHZF3aGycuSXVyA3MQE5Sd+++YJuvg8v3aN1G18xJwf/abZ5JAXw9KBUXJfcNpLj69qGdm/q74/KwpQY/46x01K0DtvfeAjLcLFH7CjYFrcDFcYKrZWfOt1enf0qhkf314ZRuvZIQdEimtnUWOsQEY0iHMR/XliAOz5ToFPdIufFy2T8+JevIy8xz+8tnO5nVrBtG95etixo/w1z5mDg2LGnFH8k08jhXHQTeYZsUgr2dOI8UEB/GbUR463D0Sg7EaEY8NTAzfgi64rTX3/xXfOPlC6NjDitsCO819EcbxQWL4Hf+UAxpkoqbhr4W5wMqdHO21I3zi/i+uTcYZifl6Zd7/5qIlx/Owqb6mir/ZLCkPjQeL9xFN8FFjpnCAsdhuk9bN++PWjCM918OgXPX9lB9Uj37zkrcXUuoZvulD/41DqFymienugXvQiMFpxNROdMr4lVDUcNouGSG/DDtCj/upV2og6nihZ5oZvp7PdnI9rqQmKtivIYCXVmXbvnOSOB/OyzfkXr9O7u/9nP/BpV3imtxi8OloAqpEiyTTu0A4PLjgWL6jNobvH9bB9VfoLn1v1VixReP/kB/LY8/cyufzuR0tOK8TMgUIyR0GzIRdB5z1bUeQVrZ9+/u7xGh2EYprMnPHdmh5m4EXWR0KF0lVfkEIopJKggmG7cRfZm7SZKa4ryeG/qdJP986DUsxc5PjVa5mX3w6w2AqoOC/tfjUWlX/hFHdq7IQcOovSFjqfnUfSiJqrj85yRBcoVV5zWAoWiXjMskeJahVRV4rO1bSLH1wj3TL5zvp9trtm/448+g9FcfWbXn65vwHfLt6j+22IKmHhO75VKpQPPS+Kmo5Rye+fpCljoMAzTq/i2E57PZ4dZV0E1Od4Bi4Rsaw2adEc30kxj6Clv6vTYtxI5Xih1l3WRFnlotxj6WxA4EuC73NzPVCDTdaDFKiv4/DRGuGdDoDg5p9f/W9KR0OyK83wXOnZp68VQIXJubi7y8vzzuQzDMN+pw8xrrNlBh1lnQX9tU/ca1VAQIU4V14RFCHGD00QLaB/VhJyTmyxdg8yp2rWgmzrV0nzXyMO5Oo94i2YzMjMzz0gke41wvTNiThUF+i6c0+vfx+EaHa7RYRimG3SYnU8CaymoDqcrowW9BbpvdEmalBFwMfIZwkKHYRiGYXrv/bvPpq4YhmEYhun9sNBhGIZhGKbXwkKHYRiGYZheS58VOtx1xTAMwzC9Hy5G5mJkhmEYhulxcDEywzAMwzB9HhY6DMMwDMP0WljoMAzDMAzTa2GhwzAMwzBMr4WFDsMwDMMwvZY+K3S4vZxhGIZhej99vr2c2tKio6NRUlLC7eUMwzAM04Pay1NTU1FXV9ehqWoI+jgNDQ1iTReLYRiGYZiedx/vSOj0+YiOoigoLS1FZGQkJElq9xhKb23ZsuWsHvMqzZ4WKeros3bn1/q25zrb553p8Wdy3OmOae/xnvq96szvVnf4Xp3tc8/lsd/28Z763eLvVff4nZXXBd8rki8kcpKTkyHLp67E6fMRHbo4/fv37/AYnU53yh9QR48R9FhP+qVxus/TXV/r257rbJ93psefyXGnO6ajx3va96ozv1vd4Xt1ts89l8d+18d72neLv1fd43eWrou+Vx1FctDXi5HPhrvvvvtbPdYT6czPcy5f69ue62yfd6bHn8lxpzuGv1td/zrf5Vxn89xzeSx/r7r/63TW96ozf2fd3Y2/V30+dXW+YA8t5nzA3yvmfMHfLaa3fq84onOeCA0NxcKFC8WaYc4V/L1izhf83WJ66/eKIzoMwzAMw/RaOKLDMAzDMEyvhYUOwzAMwzC9FhY6DMMwDMP0WljoMAzDMAzTa2GhwzAMwzBMr4WFTjeADMnGjRuHUaNGYdiwYXjppZe6+i0xvQAauT5jxgzk/v/27uYlqjaM4/j1iImogamkVogQISSpECiBgloQLZREt2kiCCKhFLrpD2ghA4K4iVpoKYhBBUEgxajgW5QUtBAxwoWviBHMQIp64rrBgXqexTw6Z45zz/cDA53TMHOpFzO/uV/mXL4sRUVFMjo66nVJsERdXZ2cOXNGGhoavC4FMezNmzdSUFAgly5dkidPnrj2PGwvPwH29/dlZ2dHUlJSJBgMmrDz8eNHyczM9Lo0xLC1tTXZ2NgwAXp9fV2uXr0qi4uLkpqa6nVpiHHj4+PmGkMDAwPy4sULr8tBDNrb2zMfwvx+v/lCQX19mp6eduV9jxGdE0CvEaIhR2ng0exJ/sRx5ebmmpCjcnJyJCsrS7a3t70uCxbQkUK9EDJwVB8+fJDCwkI5f/68pKWlya1bt2RsbEzcQNAJw+TkpNTU1JgrpOoVzl+9evWv+/T390t+fr4kJydLWVmZ+SP+3+mr4uJic4HRrq4u86YEu0Wjrw59+vTJjBzqVYRht2j2FeLX5DH7bHV11YScQ/rvlZUVV2ol6IRBp5M0hOgf7b+MjIzI/fv3zddcz8/Pm/vevHlTNjc3Q/c5XH/z903/2Co9PV2+fPki379/l+HhYTPlALtFo6+UjuI0NjbK48ePo/JzIT76CvEtGIE+ixpdo4Pw6a/s5cuXf5wrLS112tvbQ8f7+/vOuXPnnEePHh3pOdra2pzR0dFj14rY4VZf/fr1y6moqHAGBwcjWi9ig5uvV36/36mvr49YrYivPpuamnJu374d+v+Ojg5naGjIlfoY0Tmm3d1dMy1w48aN0LmEhARzPDMzE9Zj6OiNLuxTeoVXHRLUleiIX5HoK339uXv3rlRXV8udO3dcrBbx1FdAJPqstLRUvn79aqarAoGAvH371oz4uCHRlUeNI1tbW2btQ3Z29h/n9XhhYSGsx1heXpbW1tbQIuR79+7JlStXXKoY8dJXU1NTZvhYt5Yfzp8/e/aM3opjkegrpW9YOtWu0xe6rlC/uuDatWsuVAxb+ywxMVF8Pp9UVVXJwcGBdHd3u7bTmKBzAmiy/fz5s9dlwDLl5eXmBQSItHfv3nldAixQW1trbm5j6uqYdHeUbg//e/GwHuuWXuAo6Cu4gb5CPPYZQeeYkpKSzBcdvX//PnROP0XrMUO5OCr6Cm6grxCPfcbUVRh0odTS0lLoWLeA61RTRkaG5OXlmS10TU1N5jIOOg3V29tr5q6bm5s9rRsnG30FN9BXiIZALPWZK3u5LKPbKPVX9fetqakpdJ++vj4nLy/PSUpKMtvqZmdnPa0ZJx99BTfQV4gGfwz1Gde6AgAA1mKNDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAsE4wGJTGxkZJS0uT3Nxc8fl8UllZKZ2dnV6XBiDKCDoArNPV1SUTExPy+vVrGRsbk/HxcZmfn/e6LAAeSPTiSQHALYFAQJ4+fSrPnz+X69evm3MDAwNy4cIFr0sD4AFGdABY5du3b7K7uytlZWWhcxkZGVJQUOBpXQC8QdABAADWIugAsMrFixfl1KlTMjc3Fzr348cPWVxc9LQuAN5gjQ4Aq+hOq5aWFrMgOTMzU86ePSsPHz6UhAQ+1wHxiKADwDo9PT1mUXJNTY2cPn1aHjx4ID9//vS6LAAe+MdxHMeLJwaAaNLv0SkpKZHe3l6vSwEQRYzlAgAAaxF0AACAtZi6AgAA1mJEBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAAAQW/0GWusKCOrhxpMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ds.I.plot.line(x='q',xscale='log',yscale='log',marker='.',ls='None',add_legend=False);" ] }, { "cell_type": "markdown", "id": "10d84ef0", "metadata": {}, "source": [ "## Defining the Fit\n", "The first step to AutoSAS is to define which models we'd like to fit. Let's start with a single model\n", "\n", "The model inputs are defined as a list of dictionaries, where each dictionary specifies:\n", "- `name`: A user-defined name for the model\n", "- `sasmodel`: The name of the model in the sasmodels library to use\n", "- `q_min`: the minimum q_value to consider in the fit\n", "- `q_max`: the maximum q_value to consider in the fit\n", "- `fit_params`: A dictionary of parameters for the model, where:\n", " - the `value` field determines the initial starting value for the parameter optimization\n", " - the `bounds` field determines the range that the optimizer can use to fit the data. Restricting this range is very important to achieving a proper fit\n", " - Parameters with \"bounds\" will be fit within those bounds\n", " - Parameters without bounds will be held constant at the specified value\n", "\n", "In the example below, \"power\" and \"scale\" will be fit since they have bounds,\n", "while \"background\" will be held constant at 1.0\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "dc5b21d3", "metadata": {}, "outputs": [], "source": [ "model_inputs = [\n", " {\n", " \"name\": \"surface_fractal\", # your name for the model, can be anything\n", " \"sasmodel\": \"power_law\", # the name of the sasmodel in the sasmodels library\n", " 'q_min':0.001,\n", " 'q_max':1.0,\n", " \"fit_params\": {\n", " \"power\": {\"value\": 4, \"bounds\": (3, 4)},\n", " \"scale\": {\"value\": 1.0, \"bounds\": (1e-6,1e-3)},\n", " \"background\": {\"value\": 1.0,},\n", " },\n", " },\n", "]" ] }, { "cell_type": "markdown", "id": "cc651207", "metadata": {}, "source": [ "Now we'll create a `Pipeline` with a single `AutoSAS` pipeline operation.\n", "\n", "The AutoSAS pipeline operation takes several key arguments:\n", "\n", "- `sas_variable`: The name of the variable containing the SAS intensity data\n", "- `sas_err_variable`: The name of the variable containing the uncertainty in the intensity data\n", "- `q_dim`: The name of the dimension containing the q values\n", "- `output_prefix`: A prefix to add to all output variables from the fit\n", "- `model_inputs`: A list of dictionaries defining the models to fit, as described above\n", "\n", "Additional optional arguments include:\n", "- `sample_dim`: The name of the sample dimension (default: 'sample')\n", "- `fit_range`: A tuple of (qmin, qmax) to restrict the q range used for fitting\n", "- `max_evals`: Maximum number of function evaluations for the fit (default: 1000)\n", "- `method`: The optimization method to use (default: 'leastsq')\n" ] }, { "cell_type": "markdown", "id": "254188b5", "metadata": {}, "source": [ "## Building and Executing the Pipeline" ] }, { "cell_type": "code", "execution_count": 14, "id": "9b922aa6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PipelineOp input_variable ---> output_variable\n", "---------- -----------------------------------\n", "0 ) ['q', 'I', 'dI'] ---> ['fit_all_chisq']\n", "\n", "Input Variables\n", "---------------\n", "0) q\n", "1) I\n", "2) dI\n", "\n", "Output Variables\n", "----------------\n", "0) fit_all_chisq\n" ] } ], "source": [ "with Pipeline() as p:\n", " AutoSAS(\n", " sas_variable='I',\n", " sas_err_variable='dI',\n", " q_variable = 'q',\n", " output_prefix='fit',\n", " model_inputs=model_inputs,\n", " )\n", "p.print()" ] }, { "cell_type": "markdown", "id": "a075d4fa", "metadata": {}, "source": [ "Now we're ready to fit! " ] }, { "cell_type": "code", "execution_count": 15, "id": "c5f26b01", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ba4489e9ae734d3cbee4e75bb67063a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1 [00:00\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 35kB\n",
       "Dimensions:                    (sample: 10, q: 100, models: 1,\n",
       "                                surface_fractal_params: 3,\n",
       "                                fit_q_surface_fractal: 100)\n",
       "Coordinates:\n",
       "  * q                          (q) float64 800B 0.001 0.001072 ... 0.9326 1.0\n",
       "  * models                     (models) <U15 60B 'surface_fractal'\n",
       "  * surface_fractal_params     (surface_fractal_params) <U26 312B 'surface_fr...\n",
       "  * fit_q_surface_fractal      (fit_q_surface_fractal) float64 800B 0.001 ......\n",
       "Dimensions without coordinates: sample\n",
       "Data variables:\n",
       "    I                          (sample, q) float64 8kB 5.465e+03 ... 1.03\n",
       "    dI                         (sample, q) float64 8kB 545.9 429.3 ... 0.1025\n",
       "    model                      (sample) object 80B 'surface_fractal' ... 'sur...\n",
       "    sas_fit_sample             (sample) int64 80B 0 1 2 3 4 5 6 7 8 9\n",
       "    fit_all_chisq              (sample, models) float64 80B 1.023 ... 1.083\n",
       "    probabilities              (sample, models) float64 80B 1.0 1.0 ... 1.0 1.0\n",
       "    surface_fractal_fit_val    (surface_fractal_params, sample) float64 240B ...\n",
       "    surface_fractal_fit_err    (surface_fractal_params, sample) float64 240B ...\n",
       "    fit_I_surface_fractal      (sample, fit_q_surface_fractal) float64 8kB 5....\n",
       "    residuals_surface_fractal  (sample, fit_q_surface_fractal) float64 8kB -0...
" ], "text/plain": [ " Size: 35kB\n", "Dimensions: (sample: 10, q: 100, models: 1,\n", " surface_fractal_params: 3,\n", " fit_q_surface_fractal: 100)\n", "Coordinates:\n", " * q (q) float64 800B 0.001 0.001072 ... 0.9326 1.0\n", " * models (models) " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data_index = 0\n", "ds_result.isel(sample=data_index).I.plot.line(x='q',xscale='log',yscale='log',marker='.',ls='None',add_legend=False);\n", "ds_result.isel(sample=data_index).fit_I_surface_fractal.plot.line(x='fit_q_surface_fractal',xscale='log',yscale='log',add_legend=False);" ] }, { "cell_type": "markdown", "id": "4a1ff133", "metadata": {}, "source": [ "The residuals (differences between the model and data) provide a key way to assess the quality of the fits. A good fit should show residuals that:\n", "\n", "1. Are randomly scattered around zero\n", "2. Have no clear systematic trends or patterns\n", "3. Are roughly within ±2-3 standard deviations of zero\n", "\n", "Let's plot the residuals for the first sample to assess the quality of our surface fractal fits:\n" ] }, { "cell_type": "code", "execution_count": 17, "id": "ebd345da", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAG1CAYAAAABTQXdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAANxVJREFUeJzt3Ql8VNXZ+PEnYZM17MgOIoLsi6AIIiDVCkVRq1SlCq+vVorKVinYviIVQUWUqrhRZfGFSrGAW0EUARUqi0ArVkQoAq+GJSpbULbM//Oc/jMmIQmTyb0z95z7+34+88ksN5MzN3dmnnvOc56TEolEIgIAAGC51GQ3AAAAwAsENQAAwAkENQAAwAkENQAAwAkENQAAwAkENQAAwAkENQAAwAklJUSysrLk66+/looVK0pKSkqymwMAAGKgJfUOHz4sderUkdTUgvtjQhXUaEBTv379ZDcDAADEYffu3VKvXr0CHw9VUKM9NNk7pVKlSsluDgAAiMGhQ4dMp0T293hBQhXUZA85aUBDUAMAgF3OlDpCojAAAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AAHACQQ0AOCT94PeyenuG+QmETagWtAQAl81bt0vGLvhEsiIiqSkik65tLQM6NUh2s4CEoacGABygPTPZAY3Sn/ct2EyPDUKFoAYAHLAjIzMa0GQ7FYnIlxlHk9UkIOEIagDAAY2rlzdDTjmVSEmRRtXLJatJQMIR1ACAA2qnlTU5NBrIKP058dpW5n4gLEgUBgBHaFJw9/NqmCEn7aEhoEHYENQAgEM0kCGYQVgx/AQAAJxAUAMAAJxAUAMgEKiEC6C4yKkBkHRUwgXgBXpqACQVlXABeIWgBkBSUQkXgFcIauAL8iMQKyrhAvAKQQ18yY/o+vB7ctP0Nean3gYKQiVcAF5JiUQieTp+3XXo0CFJS0uTgwcPSqVKlZLdHCdpz4wGMjmHE/RL6sMxPfmSwhmPHSrhAijO9zezn5Cw/Ai+qFAYKuECKC6Gn+Ap8iMAAMlCUANPkR8BAEgWhp/gOVYKBgAkA0ENfEF+BAAg0Rh+AgAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATrAmqJk0aZJ06tRJKlasKDVr1pT+/fvL559/nuxmAQCAgLAmqFm5cqUMHTpUPvroI3nnnXfkxIkTcvnll0tmZmaymwYAAAIgJRKJRMRC+/fvNz02Gux07949pt85dOiQpKWlycGDB6VSpUq+txEAABRfrN/fJcVS+sJU1apVC9zm2LFj5pJzpwAAADdZM/yUU1ZWlgwfPly6du0qrVq1KjQPRyO77Ev9+vUT2k4AAJA4Vg4/DRkyRBYvXiwffvih1KtXr0g9NRrYMPwEAIA9nB1+uuuuu+TNN9+U999/v9CARpUpU8ZcAACA+6wJarRD6e6775aFCxfKihUrpHHjxsluEgAACBBrghqdzj137lx57bXXTK2aPXv2mPu1O6ps2bLJbh4AAEgya3JqUlJS8r1/xowZMmjQoJiegyndAADYx7mcGktiLwAAkCRWTukGAADIi6AGAAA4gaAGAAA4gaAGAAA4gaAGAAAUKv3g97J6e4b5GWTWzH4CAACJN2/dLhm74BPJioikpohMura1DOjUQIKInhoAAJAv7ZnJDmiU/rxvwebA9tgQ1ACwvssZgD92ZGRGA5pspyIR+TLjqAQRw08ArO9yBuCPxtXLm/d/zsCmREqKNKpeToKInhogSYLcC2JblzMAf9ROK2tOaDSQUfpz4rWtzP1BRE8NkARB7wUprMs5qB9mAPyhn03dz6th3v/aQxPkzwB6aoAEs6EXJLvLOacgdzkD8JcGMl2aVAt0QKMIaoAEsyHxzrYuZwBQDD8BCWZL4p1NXc4AoOipARLMpl4QW7qcAUDRUwMkAb0gAOA9ghogSTSQIZgBAO8w/AQAAJxAUAMAAJxAUAOnKuECAMKLnBo4VQkXCCI9AdD6RDqdnzwqwD8ENSh2JVydxcMHNZA/TgSAxGH4CU5VwgWCxIYlMQCXENQgZqwHBBQNJwJAYhHUwMlKuEAQcCIAJBY5NSgSKuECRT8R0CEn7aHhRAAISFDz+uuvx/ykV111VbztgQWohAsU70SA2VBAkoOa/v37x7RdSkqKnDp1qjhtAgBnTwSYDQUEIKcmKysrpgsBDQDkj9lQgL9IFAaABGE2FBDQROHMzExZuXKl7Nq1S44fP57rsXvuuceLtgGAk7OhcgY2zIYCkhzUbNy4Ufr06SNHjx41wU3VqlUlIyNDypUrJzVr1iSoAYB8MBsKCGBQM2LECOnXr58899xzkpaWJh999JGUKlVKBg4cKMOGDfO+lQDgCMoiAAHLqdm0aZOMGjVKUlNTpUSJEnLs2DGpX7++PProo3Lfffd530oAcIgGMl2aVCOgAYIQ1GivjAY0SoebNK9Gaa/N7t27vW0hAAABpLPWVm/PYPaa7cNP7du3l3Xr1knTpk3l0ksvlfvvv9/k1Lz88svSqlUr71sJAECAuFRvKN2hYpBx9dRMnDhRateuba4/9NBDUqVKFRkyZIjs379fnn/+ea/bCABAYLhUb2jeul3S9eH35Kbpa8xPvR26npoLLrggel2Hn5YsWeJlmwAAsLLekE09HekFBGeayG7T6yh2T02vXr3kwIEDp91/6NAh8xgAAK5yZfX1HQ4Wg4wrqFmxYsVpBffUDz/8IB988IEX7QIAIND1hjSQUbbWG2rsSHAW9/DTP//5z+j1f/3rX7Jnz57obV3zSYeh6tat620LAQAIGBfqDdV2sBhkSiQSydP5VDCdxq2rcKv8fq1s2bLy1FNPyX/9139JEOnwmE47P3jwoFSqVCnZzQEAIBC5NV8GPDiL9fu7SD01O3bsMMHMOeecI2vXrpUaNWpEHytdurRJGtZifAAAhJGN06Nrp5W1pq1nUqSgpmHDhuZnVlaWX+0BADjOhi/+eNpoS+2adAv2f0KndE+aNElq1ap12jDTSy+9ZGrV/Pa3v/WqfQAAh9jwxR9PG22ZHj3Pgv2f8NlPWmCvefPmp93fsmVLs8glAAA2Fq2Lt402TI9Ot2D/JyWo0VlP2RWFc9Icm/T0dC/aBQBwjA1f/PG20Ybp0Tss2P9JCWp0Re5Vq1addr/eV6dOHS/aBQBwjA1f/PG20YbaNY0t2P9Jyam5/fbbZfjw4XLixIloBeFly5bJ6NGjZdSoUV63EQDgABvqohSnjUGvXVPbgv2f0Do12fRXxowZI08++WS0svBZZ51lEoR1xe6gok4NACSfDXVRbGhjmF7boRi/v+MKarIdOXJEPvvsM1N0r2nTplKmTBkJMoIaIBhcnlIKwJLie3lVqFBBOnXqVJynABAyrk8pBZA8cQc169evl7/85S+ya9eu0xa3XLBggRdtAxKK3gP/2VLLA0CIZj+98sorcvHFF5uhp4ULF5qE4U8//VTee+890z0E2Nh70PXh9+Sm6WvMT70N74VhSikQ5pOW1dszklr3Jq6gZuLEifLEE0/IG2+8YdZ8+uMf/yhbtmyRG264QRo0oBsZdglDQaqgCMOUUiCM5gXkxDCuoGb79u3St29fc12DmszMTLN694gRI+SFF17wuo2Adb0HQThjCSIbankAsPfEMK6cmipVqsjhw4fN9bp168rmzZuldevWcuDAATl6lG5k2Nl7kDOwKU7vAYmwdtfyAODdiWGi399x9dR0795d3nnnHXP9+uuvl2HDhpmCfDfeeKNcdtllXrcRsKb3IEhnLEGm+7ZLk2oENIADGgdoWDmunpqnn35afvjhB3P9d7/7nZQqVUpWr14t1113nfz+97/3uo2ANb0HQTpjAYCwVSouclBz8uRJefPNN+WKK64wt1NTU011YcB2+gYs7pvQ66EsALDBgIAMKxd5+KlkyZJy5513RntqAPyIRFgAYVU7AMPKcQ0/de7cWTZt2iQNGzb0vkWA5YJyxgIAYRNXUPPrX/9aRo4cKbt375aOHTtK+fLlcz3epk0br9oHhHYoCwBQNHEtaKl5NKc9UUqKWb1bf546dUqCiAUtkRPLIgCAHXxd0HLHjh3FaRuQdNSSAQD3xJwo3KFDB/nuu+/M9VmzZkmNGjVMTk1+F7+8//770q9fP6lTp47pEVq0aJFvfwvuopYMcGZUxYbTQY0uXqnLIajx48fLkSNHJNH077dt21amTZuW8L8Nd7CoImDHOj5AUcU8/NSuXTsZPHiwdOvWzeTOPPbYY1KhQoV8t73//vvFD1deeaW5wM2clkTluFBLBih6T6bO6CP3DM4ENTNnzpRx48aZwns69LN48WJTsyYvfcyvoKaojh07Zi45E40QzJyWa9rXlYUbv0pIjkuQql8CQUNVbIQiqGnWrJm88sor0dlPy5Ytk5o1a0qQTZo0yQyVIfhngn/d8FX08UScGVJLBsgfPZmJx0zMJC9omZWVFVNA07dvX0lPT5dkGTt2rJn+lX3RujoI5plgXonIcQlC9UsgaKiK7Vb+UnrIEr7jmtJdlNlK33+fvB1ZpkwZc0HwzwTz4swQSB56Mt3IX5oXwtIVcfXUAF6fCV7XoS5nhkCA0JNp90zM9JCWrvC1p8ZrOo1827ZtuYoA6hpUVatWlQYN3I4+w3Am+JsrmnFmCCA0/Mxf2hHShG+rgpr169dLz549o7d1/Sl16623mtlZsCvxLO/6SKyXBCBM/JyJ2TikCd9WBTU9evQwNXJQuDCOowKAjfzKX6od0tIVVgU1ODMKZwGAXfzqpR4QwoRvX4Oa++67z+S7IHHCOo4KADhd2Ib145799PLLL0vXrl3N4pI7d+40902dOlVee+21XHViKleu7E1LUaRx1JzCMI4KJIsrdUBceR0It7iCmmeffdYk6fbp00cOHDggp06dMvdrAKOBDZKHwllA4riy8KMrrwNIicSReduiRQuZOHGi9O/fXypWrCj/+Mc/5JxzzpHNmzebZN6MjAwJIl37KS0tzVQXrlSpkrhMz7bCNI4KJOM9pgFA3tklH47padV7zpXXAbfF+v0dV06N1odp3779afdr9d7MzMx4nhIeC9s4KpBoruSvufI6gLiHnxo3bmyK3uW1ZMkSOf/889mzAJznSv6aK68DiDuo0XyaoUOHyrx580zdmLVr18pDDz1kEoNHjx7NngXgPFfy11x5HUDcOTVqzpw58sADD8j27dvNbZ0FNX78eLntttsCu2fDlFMDIDFcyV9z5XXATbF+f8cd1GQ7evSoWZOpZs2aEnQENQAA2Mf3ROGTJ09K06ZNpVy5cuaivvjiCylVqpQ0atQo/pYDAAAkKqdm0KBBsnr16tPuX7NmjXkMAGxHMTrAPnH11GzcuNFUE87roosukrvuusuLdgHWrDYO97AoLBCioCYlJUUOHz582v061pVdXRgoLr5YvENwGDsWhQVCNvzUvXt3mTRpUq4ARq/rfd26dfOyfQhpV35BXywMBRQdJfC9K0YHwMGemkceecQENs2aNZNLLrnE3PfBBx+Y7OT33nvP6zYihD0uVDn1Br0O8Rejy7tsAMXoAEd7anTtp3/+859yww03yL59+8xQ1C233CJbtmyRVq1aed9KWCveHheqnHqDXoeioxgdELKemuxie7qoJeBHj0v2F4sGQLp9GL5Y/Mh7odchPtqTqL1ZFKMDQhLUZBfe27Vrlxw/fjzX/W3atCluu+CI4nyphumLxa+k6DAGh15hUVjAPnFVFN6/f78MHjxYFi9enO/jQZ0BRUXh5H1h5/1SZRZT7h4aTeDNG/h9OKanZ1+qlMAHYDNfKwoPHz5cDhw4YIrt9ejRQxYuXCh79+6VCRMmyJQpU4rTbjgoTD0u8UhEUjS9DgDCIK6gRmc4vfbaa3LBBRdIamqqNGzYUH7yk5+Y6Emndfft29f7lsJqfKkWjLwXAEji7KfMzMzoApZVqlQxw1GqdevWsmHDBo+aBoQDs22A4GPZDId7arQ+zeeff24Wrmzbtq08//zz5vpzzz0ntWvX9r6VgOMYogOCi+rmjgc1w4YNk/T0dHN93Lhx8tOf/lTmzJkjpUuXlpkzZ3rdRiAUGKIDgocClo4GNZp5nJ1xPHDgwOj9HTt2lJ07d5rCew0aNJDq1av701IAABJc74nq5o7m1GjujFYPVr169TKzn7KVK1dOOnToQEDjIMaRAYR5nTOqmzsa1FSoUEG++eYbc33FihVy4sQJP9uFAGAhRAC28GsRXBL5HR1+6t27t/Ts2VPOP/98c/uaa64xOTT5YVFL+zGODMAmfg4TkcjvYFDzv//7vzJr1izZvn27rFy5Ulq2bGmGneAmxpEB2MTvek8k8jsW1JQtW1buvPNOc339+vXyyCOPSOXKlf1sG5KIgnAAbMI6Z4hrSrfm0ugiljqlm6DGXXxAJHd1bQBFxzARihzUlCpVSn744Qd/WoNA4QPizCjKBQQLw0ThFtcyCUOHDjXDTydPnvS+RQgU/XDo0qQaHxIJnG0BAEhgReF169bJsmXLZOnSpWa9p/Lly+d6fMGCBXE2B7AHydQA4EBQo7k01113nfetAfkZFiGZGgAcCGpmzJjhfUtAfoZlSKYGgGBJiUQieTrQ3aXrV6WlpcnBgwej61gFqYdGq/bmPev/cExPviQDTv93JFMjyOgBRli+v+PqqWncuLGk/P+S0fn597//Hc/Thhr5GfZitkXwhflL3c8e4DDvVwRTXEHN8OHDT6tds3HjRlmyZInce++9XrUtVMjPAPwR5mFdP5c7CfN+hWNBzbBhw/K9f9q0aabaMIqO/AzAe2Ffw8yvHuCw71c4FtQU5Morr5SxY8eSSBwnit0B3gr7sK5fPcBh369wrPheQV599VWpWrWql08ZOhS7A7z/Us8pTMO62T3A+pqVVz3AYd+vcKynpn379rkShXUC1Z49e2T//v3yzDPPeNk+p5FkB/iLYV1/eoDZr3BqSvf48eNz3U5NTZUaNWpIjx49pHnz5hJUQZrSTZIdkDhMu/cH+xVB+/6mTk0SUJMGAADvv7/jyqnZsGGDfPLJJ9Hbr732mvTv31/uu+8+OX78eDxPGSqFJdkBAGI/QVy9PYNFZFG8oOZXv/qVbN26NVpob8CAAVKuXDmZP3++jB49Op6nDBWS7ACg+EP42uN90/Q15qfeBuIKajSgadeunbmugcyll14qc+fOlZkzZ8pf//pXr9voHL9mJABAGBRUJyfsPTbp9FzFN/tJ03CysrLM9XfffVd+9rOfmev169eXjIwMb1voKGrS+IuZZYC7qJNzOiafFCOoueCCC2TChAnSu3dvWblypTz77LPm/h07dkitWrXiecpQYs0gf/DmDh6CTH+Edb+yrExuVHguZlAzdepUufnmm2XRokXyu9/9Ts4999xo8b2LL744nqcEPMGbO3gIMv0R5v1KnZzc6LkqZlDTpk2bXLOfsk2ePFlKlCgRvf3nP/9ZrrrqKilfvnw8fwYoMt7cwUKQ6Q/2K0P4OdFz5dMyCWeddZaUKlUq1yypvXv3evkngEIxsyxYKF/gD/brf7CszH8w+cSnBS3zClFdPwQE3dLBwhmkP9ivyIueqwQENUAy8OYODoJMf7BfkZ/aTD4hqIGbeHMHB0GmP9ivwOkIagAENsgM65TlMAbv/K/hBYIaAIEU5inLYcP/GoGc/ZRXw4YNc82GAoBYUAY/PPhfI+lBze7du+X//u//orfXrl0rw4cPlxdeeCHXdps3bzZLJwBAUTBlOTz4XyPpQc1NN90ky5cvN9f37NkjP/nJT0xgo9WF//CHP3jaQADhWwyPekPhkYz/dZCOdQQgqNEemM6dO5vrf/nLX6RVq1ayevVqmTNnjlmpG4B9OQ1dH35Pbpq+xvzU28lEMbHwSPT/OmjHOgKQKHzixAkpU6ZMdJVuXQpBNW/eXNLT071tIYBQltxnynJ4+Pm/zjmrSgXxWEeSg5qWLVvKc889J3379pV33nlHHnzwQXP/119/LdWqVfOweQDCvF6WS1OWkfj/dd5ZVf/drXFgj3UkcfjpkUcekeeff1569OghN954o7Rt29bc//rrr0eHpfwybdo0adSokVln6sILLzS5PADiR/4KwtID+acPdnCsOy6uoEaDmYyMDHN56aWXovffcccdpgfHL/PmzZORI0fKuHHjZMOGDSaYuuKKK2Tfvn2+/U3AdeSvICw9kFmivTXncKw7LCVi0aqT2jPTqVMnefrpp83trKwsM2X87rvvljFjxpzx9w8dOiRpaWmyf/9+qVSp0mmPp6amSsmSP47IHT9+vMDnSklJyVWDpyjbak5SQbvdr21V6dKl49r25MmTZl97sa22V9vt57anTp0yFy+21eNBj4ugbKv7QPdFQUqUKGEu8Wy7+5vDsjPjqDTMJ6ch3ufVY0yPNS+2zfn+9GvbM72X+Yyw5zNCe2p6TF7+Y2CTWlJKpqbKh2N6mvfbv/cezvdYz/u8QXjfB+Uz4qQP28b6GZH9/X3w4MF8v7+LnFPTvn376D/5TLQXxWv6gfDxxx/L2LFjo/fpP7F3797y97//Pd/fOXbsmLlk052ipkyZEk10zqlp06Zy8803R29Pnjy5wJ2tQ2CDBg2K3p46daocPZp/XYU6deqYXqycQ2gHDhzId9saNWrI0KFDo7e19o8GYfmpXLmyqQ+UbcaMGSavKT/lypWT0aNHR2/rTLUvv/wy3231Da3T83P2kH3xxRdSkAceeCB6fcGCBfKvf/2rwG3vu+++6Afcm2++KZs2bSpw23vvvVfKl/9Pct/bb78t69atK3Bb3Q+6P9SyZcvMbLyC/PrXv5aaNWua6x988IGsWLGiwG1vv/12qVu3rrn+0UcfmRyygujxoMeF0mP1b3/7W6FlEc477zxz/ZNPPpFFixYVuO31119v8tjUZ599JvPnzy9w2/79+0u7du3M9W3btsncuXML3LZPnz7R4eJdu3YVOnNRyzZ07drVXNfJANOnTy+0J1cvSo/dZ555psBtL774Yrn88svNdf2w0vdRQfSERvP4lL7X9P1ZEN0Hui+UvocnTpxY4LYtWrSQG264IXq7sG35jLDrM6Ljdwdl2Wf7JCIRqdypv0y86SITxCxdupTPCLHvMyIWMQc12R8QyaJDXRqp1qpVK9f9envLli35/s6kSZNk/PjxCWohACBIWtVNk4bVysmBoyfk3uGXSPOGtZPdJPjMmuEnPbvQaFij6y5dukTv1zOLlStXypo1a2LqqdHhKoaf7O9aLmxbhp/s61qOZVuGn/zdVvEZUfRt+YywdPgp2apXr25e2N69e3Pdr7fPPvvsfH9Hh5jyG2bSN1jON1lBYtkmnm2Lsh5WELbN+SFuw7Y53zCubasfXLEea0HYVr8YbNpWBWHbILzv+YzwZtvcq4//eAzwGRHf+9OX2U8aMT722GNmrE0DiqpVq+a6+EFfdMeOHU2+RDaNBvV2zp4bAACCgOrFiRdXUKN5Ko8//rgMGDDAdAXpNOtrr73WRGc5E8K8pn9Hk49mzZplkqGGDBkimZmZMnjwYN/+JgAARcXq48kR1/CTZsVrcKEzETSI0QJ8TZo0kTZt2pjs73vuucefUtoDBph8mPvvv98spKkZ3EuWLDkteRgAgGQKcqVul8XVU6MBRevWrc31ChUqmN4a9bOf/Uzeeust8dNdd90lO3fuNAnAmhystWsAAAgSKnVbFNTUq1cvunCl9tDonH+lNQLyS8wFACBMqNRt0fDTNddcYxJ0tZdEq/kOHDhQXnzxRVOcZ8SIEd63EgDgmdwzcspa89y2YaV5S+vUaEVfvWi1zX79+klQxTrPHQBclXflau1N0C/foD83wu1QjN/f1hTf8wJBTW6cUQUf/yN4fTzp1OKcCaw6LKLrIRX3+PLzuYFDfhbfmz17dqGP33LLLfE8LRKIM6rg438Em2bkMNsHQRBXUDNs2LBct7XEsS7UpgXydFE0gho76yfo2C8fPsHA/wh+zsjJ25vixYwcP58b8HX203fffZfrcuTIEfn888+lW7du8uc//1nC+AW0enuGNUWVCjujQjDwP4JtM3KY7YMg8GztJ00Sfvjhh81MqIJWzXaRjUMEnFEFH/8j2Dgjh9k+sLKnprAFxXQ17bCwtQw2Z1TBx//IXjb03Opx1KVJNV+OJz+fG/Clp+b111/PdVsnUGkxvqefflq6du0qYWFzYhxnVMHH/8g+NvbcAhL2oKZ///6nLR1eo0YN6dWrl0yZMkXCwvYhAv2S5Isy2Pgf2YPkbsDSoCYrK8v7llg8RKAfXNpDwxABEF4299wCrvAsUTisGCJAslGgLxhs77kFQhXUjBw5MuYnffzxxyVMGCJAspDDERz03AIWBTUbN27MdXvDhg1y8uRJadasmbm9detWKVGihHTs2NH7VgI4DTkcwUPPLWBJULN8+fJcPTEVK1aUWbNmSZUqVcx9WoRv8ODBcskll/jTUgC5kMMRvp5bhhoBH3JqdIbT0qVLowGN0usTJkyQyy+/XEaNGhXP0wIoAnI4woWhRsCn4nu6Wub+/ftPu1/vO3z4cDxPCaCIKNAXHrYW+gSs6Km55pprzFCT9th07tzZ3LdmzRq599575dprr/W6jQCKkMPBEIV7GGoEfAxqnnvuOfnNb34jN910k1mh2zxRyZJy2223yeTJk+N5SgAe5HAwROGvZAWMDDUCsUmJ6BoHccrMzJTt27eb602aNJHy5ctLkOmwWVpamhw8eFAqVaqU7OYAnn/hdn34vdO++D4c05OzeQ8kO2DUv593ujgBK8LiUIzf38UqvqdBTJs2bYrzFAA8whCF29PnmS4OnFnMQY3mysycOdNESGfKm1mwYEGsTwsgSUMU5N7YFzBS6BPwKKjRbh9duDL7OgB7K9omeyjFNuS0ACHIqbENOTUIA+2BKWyIgtyb+JDTAjiaU/P999+LxkLlyv3nLGXnzp2ycOFCadGihSm+ByB5zjREEZShFNuQ04JEYng4PnEFNVdffbXJq7nzzjvlwIEDplZN6dKlJSMjwyyhMGTIkDibA7/wBkE2hlLiR05L0fHZU3QMDye4orAuZpm9xtOrr74qZ599tumtmT17tjz55JPFaA78eoPocMNN09eYn3ob4UUlYiQKnz1FR/XoJPTUHD161CxoqXQNKO21SU1NlYsuusgENwiOIExFRfAwlAK/8dkTX+8Vw8NJ6Kk599xzZdGiRbJ79255++23o3k0+/btIwE3YAp7gyDc9AOyS5NqfFDCF3z2xNd7lT08nBPDwz4HNffff79ZJqFRo0Ymn6ZLly7RXpv27dvH85TwCW8QhPEsePX2DLrrk4zPnviGlhgeTsLw089//nPp1q2bpKenS9u2baP3X3bZZWaxS9hZuwSwHQmWwcFnz+liHVpieDhJdWq2bdtm1n7q3r27lC1b1kzzzi7QF0RhrlNzptolgO2ovxNMfPb8iGPU/+/vuIafvvnmG9Mrc95550mfPn1Mj43SVbpHjRoVf6vhG/In4DpyOIKJz54fMbQU0OGnESNGSKlSpWTXrl1y/vnnR+8fMGCAjBw5UqZMmeJlG4HAoOZGcPcR9XdgA4aWAhjUaEKwznqqV69ervubNm3KlG44i3yNMwcsydxH5HDAFhRxDFhQk5mZGV0iIadvv/1WypQp40W7gECh5saZA5Yg7CPOgoFwiyunRqsJa/XgbJocnJWVJY8++qj07NnTy/YBgRD2fI1YpqIGZR+RwwGEV1w9NZMnT5ZevXrJ+vXr5fjx4zJ69Gj59NNPTU/NqlWrvG8lkGRhz9eIZSqq7fsoaPlSQWsP4GRPzYkTJ+See+6RN954w9Sq0cUtdThKl0rYuHGjNGnSxJ+WAkkU9lkLsRRSs3kfBW2NoqC1B3C6Tk2NGjVk9erVJjHYJmGuUwNvhLnmhn6x5k3CzS8J2LZ9FLTaIUFrD2DT93dcw08DBw6UF198UR5++OHitBGwTphnLcSahGvbPgraAoJBaw9gk7iCmpMnT8pLL70k7777rnTs2FHKly+f6/HHH3/cq/YBCBDbApZYBC0XKGjtAZwPajZv3iwdOnQw17du3ZrrsSAvkwAAQa9vE7T2AKFZ+8k25NQA7vFqllDQcoGC1h7A2ZwaAAgCLysYB21oLWjtAZwtvgfkPaNcvT0jVyE2IAgFAQGECz01KBbWQ0KyisS5NkuIYntA8RHUIG5BWOsH4Q1qXZolxMkB4A2Gn3wShiGZoKz1g3AO/9hcwThI+xFwCT01PgjLWZdLZ8qwc/gn3lW5gzTUE4T9CLiCnhoHzrqS1Svkypky/FsPKhHHelFX5Q7aukrJ2I+wTxh6/71AT43lZ13J7hWK90wZ9kt0kTgvjvUg5oFRbA9B/5y3CUGNxUMyQfmApp5GeCUqqPXqWA/qUA8nBwj657wtGH6yeEiGRF0EQVGHf5J5rAd5qCcR+xH24XO+aOipsfisi0Td4CV9QgJ9rDPUA9vwOV80rP3kwFhr3g/oMI21+j3WTMDk5rHOukqwSdg/54vy/U1Q44CwfkDr69bZK3nPYD4c09OT/UByXvCE9VgHwn7sH2JBy/AIa6Kun0mfJOcFU1iPdYBjPzYkCsNafiZ9kpwHAPbVziGogbX8nGkW5FkyAJBs8wJWxDIbOTWwnl9jzSTnAUDi8xnzQ04NQsOvsWYKogEIq/RCZn4GtYilIqgBCkFyHoCwmXeGmZ9Brp1DTg0AAIh5UeYgL2ZsTU/NQw89JG+99ZZs2rRJSpcuLQcOHEh2kwAAcMqOGIeWgjo8b01PzfHjx+X666+XIUOGJLspAAA4qXERZn4Gcb0ya4Ka8ePHy4gRI6R169bJbgoAIIQ1UMKgdoCHlpwaforHsWPHzCXnlDDbsPYQgLBhiZLkGhDQoSUJe1AzadIk08NjK97YAMKGJUqCobalMz+TOvw0ZswYSUlJKfSyZcuWuJ9/7NixplBP9mX37t3iUgY6ALiGJUpgbU/NqFGjZNCgQYVuc84558T9/GXKlDEXGwW5uBEA+CXINVAQfEkNamrUqGEuOB1vbABhTlTNu0SJnydz5C66w5qcml27dsm3335rfp46dcrUq1HnnnuuVKhQQVyTjDc2AIQtUZXcRbdYs6ClDlPNmjXrtPuXL18uPXr0cHZBy/wWa/TzrIIzFgBhkYyFGREf5xa0nDlzprmEPQPdz7MKzlgAhAm5i+6xpvge/J0RxWwrAGFTlOq5sANBjUX8nOrINEoAYavya3v1XFg8/AR/Z0S5PtuKXCGgeFwdnra5ei5OR0+NRfw8q3D5jEU/jDUZ8Kbpa8xPvQ0gdq4PTwdxYUbEh54ay/h5VuHiGQsl14HiI6EWtiCosZCfa3LYut5HQfgwBorP9eFpuIPhJziN2Q1A8bk8PA230FMDp1GZGfCGi8PTcA9BDZzHhzHgDdeGp+EeghqEYno2H8YA4D6CGljF1VoZAIDiI1EY1nC9VgYAoHgIamANlnIAABSGoAbWYHo2AKAwBDWwBrUyAACFIVE4gVhUsfiYng0AKAhBTYIwa8c7TM8GAOSH4acEYNYOAAD+I6hJAGbtAADgP4KaBGDWDgAA/iOoSQBm7QAA4D8ShROEWTsAAPiLoCaBmLUDAIB/GH4CEkBnuq3ensGMNwDwET01gM+oUQQAiUFPDeAjahQBQOIQ1AA+okYRACQOQQ3gI2oUAUDiENQAPqJGEQAkDonCgM+oUQR4Q3PRdEhXe0B5HyE/BDVAAlCjCCgeZhEiFgw/AQACjVmEiBVBDQAg0JhFiFgR1AAAAo1ZhIgVQQ0AINCYRYhYkSgMAAg8ZhEiFgQ1AAArMIsQZ8LwEwAAcAJBDQAAFtIp7au3ZzC1PQeGnwAAsAzFCPNHTw0AABahGGHBCGoAALAIxQgLRlADAIBFKEZYMIIaAAAsQjHCgpEoDACAZShGmD+CGsAimgio4+na/cyHGBBuFCM8HUENYAmmcAJA4cipASzAFE4AODOCGsACTOEEgDMjqAEswBROADgzghrAAkzhBIAzI1EYsARTOAGgcAQ1gEWYwgkABWP4CQAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOIGgBgAAOCFUaz9FIhHz89ChQ8luCgAAiFH293b293hBQhXUHD582PysX79+spsCAADi+B5PS0sr8PGUyJnCHodkZWXJ119/LRUrVpSUlJR8t+nUqZOsW7euwOfI73GNIDVQ2r17t1SqVElscqbXG8S/U5znKsrvxrptLNvFc1zZfGxxXAXj2OK4Csbfive5OK5+pKGKBjR16tSR1NSCM2dC1VOjO6JevXqFblOiRIlC/xmFPa732/QBEcvrDeLfKc5zFeV3Y902lu2Kc1zZeGxxXAXj2OK4Csbfive5OK5yK6yHJhuJwnkMHTq0WI/bJlGvx8u/U5znKsrvxrptLNtxXAX/7yTquErkscVxFYy/Fe9zcVwVXaiGn/yiXW4aQR48eNCqsx4EH8cW/MBxBVePK3pqPFCmTBkZN26c+Ql4iWMLfuC4gqvHFT01AADACfTUAAAAJxDUAAAAJxDUAAAAJxDUAAAAJxDUAAAAJxDUJNiBAwfkggsukHbt2kmrVq1k+vTpyW4SHKBlyXv06CEtWrSQNm3ayPz585PdJDjimmuukSpVqsjPf/7zZDcFlnvzzTelWbNm0rRpU/nTn/7ky99gSneCnTp1So4dOyblypWTzMxME9isX79eqlWrluymwWLp6emyd+9eEyzv2bNHOnbsKFu3bpXy5csnu2mw3IoVK8yaO7NmzZJXX3012c2BpU6ePGlOupYvX24K9Oln1OrVqz3/7qOnJsF0zQwNaJQGNxpTEleiuGrXrm0CGnX22WdL9erV5dtvv012s+AA7QHURYCB4li7dq20bNlS6tatKxUqVJArr7xSli5dKl4jqMnj/fffl379+pmVQHUl70WLFp22zbRp06RRo0Zy1llnyYUXXmj+WUUdgmrbtq1ZXPPee+81X0BwWyKOq2wff/yx6RHU1XLhtkQeVwi394t5rH399dcmoMmm17/66ivP20lQk4cOCWnAof+c/MybN09GjhxpSkFv2LDBbHvFFVfIvn37ottk58vkveg/VVWuXFn+8Y9/yI4dO2Tu3Llm2ABuS8RxpbR35pZbbpEXXnghIa8L4TiugEwPjrWE0Jwa5E93z8KFC3Pd17lz58jQoUOjt0+dOhWpU6dOZNKkSXH9jSFDhkTmz59f7LbCHn4dVz/88EPkkksuicyePdvT9sIOfn5eLV++PHLdddd51laE71hbtWpVpH///tHHhw0bFpkzZ47nbaOnpgiOHz9uuvZ79+4dvS81NdXc/vvf/x7Tc2ivjCbdKV3JVLv0NBsc4eXFcaWfM4MGDZJevXrJL3/5Sx9bizAdV4BXx1rnzp1l8+bNZsjpyJEjsnjxYtOT47WSnj+jwzIyMkyuQq1atXLdr7e3bNkS03Ps3LlT7rjjjmiC8N133y2tW7f2qcUIy3G1atUq0/2r07mzx7pffvlljq0Q8+K4UvrFpMPlOvygeYBaLqBLly4+tBguH2slS5aUKVOmSM+ePSUrK0tGjx7ty6xfgpoE02h106ZNyW4GHNOtWzfzQQF47d133012E+CIq666ylz8xPBTEegsJZ2SnTexV2/rNFogHhxX8APHFcJ4rBHUFEHp0qVNwaBly5ZF79OzY71NdyzixXEFP3BcIYzHGsNPeWgC07Zt26K3ddq1DhdVrVpVGjRoYKas3XrrrWapAx1Kmjp1qhlrHjx4cFLbjWDjuIIfOK6QKEdsOdY8n09lOZ26qLsl7+XWW2+NbvPUU09FGjRoECldurSZxvbRRx8ltc0IPo4r+IHjComy3JJjjbWfAACAE8ipAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoAQAATiCoASylxcDvuOMOs/ZKSkqKVK5cWYYPHy6uOXr0qFx33XVSqVIl8zoPHDiQ7CbJli1b5KKLLpKzzjpL2rVrJ0Gk+2rRokXJbgaQUCxoCVhqyZIlMnPmTFmxYoWcc845kpqaKmXLlo0+3qhRIxPk2B7ozJo1Sz744ANZvXq1VK9eXdLS0pLdJBk3bpyUL19ePv/8c6lQoYJvf+fLL7+Uxo0by8aNGwMbPAFBQlADWGr79u1Su3Ztufjii8VFx48fl9KlS5vXef7550urVq0kKLRNffv2lYYNGxa4zYkTJ6RUqVIJbRcQeglfQhNAsenKuDlXym3YsGHk0ksvjQwbNsw8rtfzrqYbixkzZkTq168fKVu2bKR///6Rxx57LJKWlhbT727atCnSo0ePSIUKFSIVK1aMdOjQIbJu3Trz2Lhx4yJt27bNtf0TTzxh2p3zNV199dWRCRMmRGrXrh1p1KjRaa9Db6vZs2dHOnbsaP5WrVq1IjfeeGNk7969uZ5/8+bNkb59+5q26HbdunWLbNu2Lfr49OnTI82bN4+UKVMm0qxZs8i0adNiep1596u+th07dpjrr7zySqR79+7mOXVfZmRkRH7xi19E6tSpY/Zpq1atInPnzs31fKdOnYo88sgjkSZNmpjVjXX/6z7I729lv/61a9dGevfuHalWrVqkUqVK5m9+/PHHp7Vz4cKFMb0mwBX01AAW+uMf/yhNmjSRF154QdatWyclSpSQ66+/Pvr4ggULpG3btibn5vbbb4/pOdesWSO33XabTJo0Sfr372+Gt3SYJVY333yztG/fXp599lnTnk2bNhW5p2LZsmUmd+add94xt7UnasyYMbJ582bzmrTnJrsX5MEHH5RmzZrJvn37ZOTIkTJo0CD529/+Zh7/6quvpHv37tKjRw957733zHOuWrVKTp48aR6fM2eO3H///fL000+bNuvwju4nHVK69dZbC21jenq69O7dW37605/Kb37zGzP8lJGRYR7Ttk6ZMsU8p+bb/PDDD9KxY0f57W9/a9rw1ltvyS9/+Uvzv+vcubP5nbFjx8r06dPliSeekG7dupnn15wdtXbtWrPdu+++Ky1btoy+/sOHD5t2PvXUUya3Sv9mnz595IsvvpCKFSsWaZ8DTkl2VAUgPnl7OnL21Ch9TLeJlfZ29OnTJ9d9AwYMiLmnRntEZs6cme9jsfbUaK/LsWPHcm2nrym7h6Ig2iOkH2eHDx82t8eOHRtp3Lhx5Pjx4/lur70ieXtMHnzwwUiXLl0isdDXoq8pW3ZPzdSpU8/4u9p7NGrUKHP90KFDpldHe43yk/28GzduLPQ5tbdH9/8bb7wRvY+eGoQRs58AGJ999plceOGFue7r0qVLzL+vvSX//d//bXoxHn74YZN3UlStW7eO9kYU5uOPP5Z+/fpJgwYNTM/EpZdeau7ftWuX+am9RJdcckm+PUWZmZmmbdorpb0s2ZcJEybE1eacLrjggly3T506ZXqU9HXpLDX9O2+//Xa0nbrPjx07JpdddlmR/s7evXtNz1LTpk1N4rT2Ah05ciT6vEBYEdQA8MQDDzwgn376qUmg1SGfFi1ayMKFC81jOjPrP50HP9IhpLx0+OdMNCi54oorzBe5DiPp8Fv239HkYpVzFlhe+uWvdMhHg5/siw5xffTRR0V81YW3f/LkyWaoUIefli9fbv6Otj2WdhZGh570ufS5dVaYXq9WrVr0eYGwIqgBHKU9HtpTECudYaR5NTkV9Uv+vPPOkxEjRsjSpUvl2muvlRkzZpj7a9SoIXv27MkV2OgXcTw03+Sbb74xvUHaG9O8eXOTV5NTmzZtzDTw/AKnWrVqSZ06deTf//63nHvuubkuOn3aS5rHc/XVV8vAgQNNjpNOvd+6dWv0ce1p0cBGc4nyk91rlff/qM97zz33mDwazbUpU6ZMNK8HCDOCGsBRWqfm/fffN0mzsXzh6ZekJgc/9thjJuFUk2j1diy+//57ueuuu0zNnJ07d5ovXe1B0UBJacLu/v375dFHHzVDPNOmTZPFixfH9bp0yEm/7DVJVgOT119/3Qzx5KRtOXTokPziF7+Q9evXm9fz8ssvm7oyavz48SYh+sknnzRBxieffGICsMcff1y8pEGLJj1rb4oONf3qV78yQ0fZNJlYe3FGjx4ts2fPNvtGA8kXX3zRPF6zZk0T9Oj/QX/v4MGD0efV16PPqYGoJmnH2+sDuISgBnDUH/7wB1O8TWfaaE/JmWiFXB2S0SEN7VXQ3pbf//73Mf0tne2kvSe33HKL6a254YYb5MorrzTBg9Lg5plnnjHBjD63zurRmUPx0NeiRQfnz59vhri0x0YDsZx0KEaHwHSoSfNtdAaSvrbsHBvN/fnTn/5kAhnNd9Ft9Dm97qnR/dehQwcz5KSB3dlnn21mluX0P//zPzJq1CgzG0v304ABA6I9TyVLljSB1/PPP296l7TXR2nQ891335nn1tlUGpBqAASEXYpmCye7EQCCSb/otSJxEJYmAIAzoacGAAA4gaAGCAkdDso5hTnnZeLEiWf8fU1ILej3dRaSK3RfFPQ6dR8CCC6Gn4CQ0IRhTejNj9ZQ0UthNAE4v9lE2TOKXKlk++2335pLfjQZt27duglvE4DYENQAAAAnMPwEAACcQFADAACcQFADAACcQFADAACcQFADAACcQFADAACcQFADAADEBf8PIPTq9dqDHvkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ds_result.isel(sample=data_index).residuals_surface_fractal.plot( x='fit_q_surface_fractal', xscale='log', marker='.', ls='None', add_legend=False)\n", "plt.gca().axhline(y=0, color='k', linestyle='--', alpha=0.5)\n" ] }, { "cell_type": "markdown", "id": "eaad3f15", "metadata": {}, "source": [ "Vary the `data_index` variable from two cells up and see how well we fit each individual data.\n", "\n", "\n", "We can also plot the fit parameters" ] }, { "cell_type": "code", "execution_count": 18, "id": "d92d25fd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'Sample index')" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAculJREFUeJzt3Qd40+X2B/DTvVs6KG1pKd3svbdsUIZb/qjgQAEHThTvVUTlAiJehggoblGcIFyZsvfesy2UQumAQvdu83/Om/5C2qalaZP8kvy+n+cJpEmavBlNTs57zvvaqFQqFQEAAAAoiK3cAwAAAAAwNQRAAAAAoDgIgAAAAEBxEAABAACA4iAAAgAAAMVBAAQAAACKgwAIAAAAFAcBEAAAACgOAiAAAABQHARAUG+xsbE0ePBg8vLyIhsbG1q9ejWZsw0bNlC7du3I2dlZjDcjI4MsSdOmTWn8+PFyDwNkMHfuXAoPDyc7OzvxGjZnOTk59Oyzz1JAQID4O3vllVfIknz77bdi3AkJCXIPBYzE3lhXDMoxbtw4unz5Ms2cOZMaNGhAnTp1InOVnp5OjzzyCLVs2ZIWL15MTk5O5ObmZrLbX7duHR08eJDef/99k90mWIdNmzbR1KlT6fHHHxevHz8/PzJn//nPf0QQ8e6771JERAQ1b97cZLedl5dHH3/8MfXr108cAHRBAAT1kp+fT/v27aN//etf9OKLL5K5O3ToEGVnZ9OHH35IAwcONPntcwDEgRcCINDX1q1bydbWlr766itydHQkSxhvt27daPr06Sa/bQ6AZsyYIY4jAILqYAoM6qSgoIDKysroxo0b4mfO/FiCtLS0Wo+X30Sh9nJzc+UeglWSXof82nVxcbGI4Ecab23+zqT3EjAPZWVl4jlRBN4NHqxPVlaWasqUKarQ0FCVo6OjqmHDhqqBAweqjhw5orkMnzdu3Lgqv9u3b19xkGzbtk3FL5Wff/5Z9a9//UsVFBSksrGxEdfPp2sf+DpZQkKCatKkSaro6GiVs7OzysfHR/XQQw+pLl++XOX2bt++rXrllVc0Y23cuLHqiSeeUN24cUNzmYKCAtV7772nioiIEJcJDg5Wvfnmm+L02uL7VHm80v3n81q2bKk6fPiwqnfv3ioXFxdx/9jq1atVw4cPVwUGBorbDg8PV33wwQeqkpKSKrexf/9+1bBhw1QNGjRQubq6qlq3bq2aP3++OI9vq/Lta/8Jzp07V9W9e3fxWPFj1qFDB9Vvv/1W5Taqe95qwrfzwgsvqH788UfxnDg5OYnr37FjR4XL1fZ5++abb8R1bt++XVyeX198n+tyHbt27VK99NJLKj8/P5WXl5fqueeeUxUWForXBb8O+Hr5wM93WVlZhevg1yTfD3d3d5WHh4eqVatWmsfbVDZt2qTq2bOnGLubm5u439OmTatyPyvff+nviv+XVPc61PW64etlX3/9teqee+4RzwG/Pps3b676/PPPdY513bp1qj59+mger06dOqlWrFhR5TU8ZMgQlaenp7h9vvzu3btr/XhI96vyge9/de8l/Fynp6erXn/9dfEc8uPI4xs6dKjq+PHjVW4jPz9fNX36dFVUVJR4LQcEBKjuv/9+VVxcnLgdXbfPl2cnTpwQfz9hYWHidxs1aqR66qmnVDdv3qxwG9U9bzXh2+DfOXfunOrhhx8W94Ff/y+//LIYs7bi4mLxPsLvJ/y88d81v26039NeffVV8fvar/sXX3xR3MaCBQs0p6WkpIjTtJ/32r5nktZ7Q4sWLVT29vaqVatWqZQAU2BWauLEifT777+LaakWLVqI2pfdu3fTuXPnqEOHDnW6Tp424m+fb7zxBhUWFtLw4cNFQe6rr75KY8aMET+7u7trppr27t1Ljz32GAUHB4tCwiVLloh09NmzZ8nV1VVTKNm7d28xrqefflqM7ebNm7RmzRq6du2aqHPgbyQjR44U43/uuedELcGpU6fov//9L128eLHWRdc8TRcTE0NffPEFffDBBxQWFiZqEyT8GA0bNkyMmessGjVqJE7nOga+X6+99pr4n1P77733HmVlZYmiVMnmzZvpvvvuo8DAQJoyZYoo/uT79b///U/8/Pzzz9P169fF5X744Ycq41uwYIG4n2PHjqWioiJauXIlPfzww+L37733XqqvHTt20C+//EIvv/yyqH36/PPPaejQoaImqVWrVno9b5LJkydTw4YNxeMhZYD0vY6XXnpJPFY8ZbF//37x/HDmgK+jSZMmopaEpw75seZxPvnkk5rHm193AwYMoDlz5ojT+PHes2ePeLxrcvv2bSotLb3rY8ZjrTxebWfOnBHPeZs2bcRrih/XuLg4MYa60vU65Lo6flz4uVq+fLm4XI8ePcT//NhyTRu/duzt7Wnt2rXieeG/mxdeeEFzvfw65r8xvuy0adPEY3zs2DHRFPB///d/4jL82ubb7tixo5i64im3b775hvr370+7du2iLl263HX8/PfJr29+X+Dn//XXXxen8+tEKiiu/F7Cx/m1wX/L/Jrnv83U1FRatmwZ9e3bV5wXFBQkfpefN37Mt2zZIh4jfq55WptfD6dPnxZT2/yYTJo0ie6//3564IEHxO/xc8T4cpcuXaKnnnpKvO74OeTHlv/n1x8XPtcX1xnye+OsWbPEdS5cuFC85r7//nvNZbhA/LvvvqOHHnpIPEYHDhwQl+fX8KpVq8Rl+L2R3+d4bNLfKD8P/Lzw//y3LJ3G+vTpI/7X9z1z69at9Ouvv4rPC37P5bErgtwRGBgHfxvlqL4m+maA+JtKXl5ehctK37Y4e6Gt8uXYvn37xGW///57zWn8DYVP+/PPP6tcXvrW88MPP6hsbW1FpkDb0qVLxe/u2bNHVVvSt7pDhw5Vuc98Ol9nZbruy/PPPy8yPNK3Kc4G8TdKfkz526yu+8H4Oanuz67y7RQVFYlvw/379zdIBogPnFmQXLlyRWRo+Juzvs+b9Dj26tWrSiZM3+vgbIP2Y8RZMM4KTJw4UXMa3wZ/g9V+XXJmhLMUujJxd8OPoa4sQXVZg+r897//FZfTzlZWpm8GqLrXIT/nnBmpTNfjzY8p/71KMjIyRDaia9euVTIR0mPP/3NGpfLzwdfPr+1Bgwap9H2M7733Xp33Wdd7Cf8tlZaWVjiNHzPO0nCmRMIZL76OTz/9tMptSuPm56O650/X48UZKb78zp07DZIBGjlyZIXTJ0+eLE7n7BPjrBb//Oyzz1a43BtvvCFO37p1q/g5LS2tQmaHn0d+L+TsEmeuJJxh0s4U6fOeSUTismfOnFEpDWqArBR/u+NvFJxxMGS3F9cg1Ib25YqLi8W32sjISDGuo0ePas77448/qG3btuKbWmXSN7HffvtNfINp1qyZyA5JB/5WyrZt22aAe0fi2zt/K6zpvvA3Tb5t/mbGtRnnz58Xp/M3ae6E41bfynUPtf1GqX07/G0xMzNT3I7241Uf3bt3F9/sJZxdGTVqFG3cuFGTDant8yaZMGGCaMmu7n7U5jqeeeaZCo9R165dOUIUp0v4NjgLwt/cJXx9nHXib/T6WrFihfi9ux2kbFN1pOf6r7/+MlgdS3Wvw+poP978muHXJ2dN+LHinxnfF37tvv3222L5B23SY3/8+HGxpAVng/g5k/7O+DHmLNvOnTsNdh91vZfw/ebMBuPXI4+BM66cta38nsFZCs4cVlabvzXt2+VaF76PXKzNDPW3pp15Y9JYOZOp/T9nlbVJ2bK///5bkzXj9z1+7BlnFvlv4c033xQZMn6+pAxQr1696vye2bdvXzFToDSYArNS3ALKbzIhISHiQ4+np/jNnNcQqStOS+vTHcbpXE6fJyUliQ80ifSmzOLj4+nBBx+s8br4j5zTwvxmUFNhc301btxYZ4Epp5///e9/izQxT3tpk+4L3w8mpanrgqe6PvroI/FBxNMCEkOk5FlUVFSV06Kjo0Ugx8XsPB1Q2+etpteEvtfBgZg2Xk+K8Wu38ukcGEp4mofT9jxlw88dr0XFUw88rXc3PXv2JEN49NFHxZQUT2dwcMGBAk+58LSG9GFuqNdhdfhDkaeruBuzcuE+P978uNXm9Sl9mPL7RnX4+ry9vam+dL1uOLjiaWCemuUvE9pTlL6+vprjfF84KOLpvrq4deuWmG7lKebK7x26Xp+G+FvjqXZ+PUhTgFeuXBE/8xcDbfw3yEE1ny/hL0FSwMSBDn8R4IOPj4/4madIT5w4oZnGrMt7Zpge7+3WBAGQleIPAv7D4blkXj+E6ye4TuLPP/8UHxg1fbDyG0/lb/Wsttkf6RsPfwByRoQzD9IiiTxnr++3SL5869at6dNPP9V5fuUPyrrSdf94kUT+duTp6SlqPPiNjL9B8zfFt956y2DfiPmNjOfseQ6fPwC4jsjBwUE8hj/99BOZir7Pm67HTN/r0PVaq+507WDK399fBIucwVq/fr048O1yoM+1FTXhgK82NUCcgZDq2nTh+8/fzvkbNX9r53oarrPib9r8d8f3oaa/s+qus7Y4GOCgi7/p898H/y1w8MQfmFzvoc/rU7osv1dUt8hiTY+FPnTdR6714jWDuE6Ja4T4A56DBH4dGbJLjN8bub6Msyh8P/k+8fVz4GysbrTqXgO1+XLDmZ0vv/xSZPT4fYLf1/n3+HT+mWujeNx8el3fM130eM1ZEwRAVow/RPlbMh844ucCY16sUAqA+JucrlWQ+dtHfTJFjAuw+ZvkvHnzKqSbK98eBxRcuFgTvgx/w+E3ekNlQ2pr+/btIhXPgaNUYMj4G2rlMTKpCLM61Y2f0/ocWPGHOU8FSPgD3VCkb/jauCCSi3ylb4q1fd5qYojrqC3+sB8xYoQ48Js+v9a5cJY/SCt/u9bWuXPnCt+yq8OZlbut2cQf0vza5AN/4PAHORfcc1DErwUpY1L5/tfm9u+GC545W8hNA9qZtMpTHNqvz+oeF+kyHOzLsUYWv27uuecesc6RNn7ctBd95HHy9D5Pr/KXBH3+zjiDyMXTnAHiwv2a/jbqg69PO6vChfH8+pSKi0NDQ8XPfDntBSJ5WovvL58vkQIbnsbkBgPONDJ+P+Jibw6AeDFX7eltOd8zLQlqgKwQf7OsnMrlb8v8h6I9tcJ/JNyhwB1H2tMwV69erfcY+Juv9rd1tmjRoirfenn6i/9Qpa4HbdLv8zc2nkrhb0G6pluMuf6MlIXQvi/8eHGWRhsHl/yGN3/+/CofdNq/K606XfkyUqZA+/HhdLkhtxXhKRLtGgd+nrl2haeOpPtZ2+etJoa4jtrgwLRyICJ1+mi/zo1ZA8TTKZVJ2RNpDFJgIdVxMH4suPPIGK9P/tuvHDjzc+zh4SGmJiuv8SL9Ln+A8lg/+eQT0Z1ZmbTml7Hoet1wLQv/7Vd+z+B6ls8++6zKdUi/L3Xu6fo7076chP9uDYkXO638+mfSl08uSdB1u1LGRrvrk99XeFqUM3oc9EnTtxwYcQaQA0euYdKeEpTzPdOSIANkhbjYkdtPuQ6BC4w5xfvPP/+Ibw/a38q5boH/eDj1y38w/Mf0448/VmgNrytuU+VWWJ7+4OI6/vDlMWjP5TNOQ/MYuPWVU9/8JswfKvyNdunSpWL8TzzxhKj14NZ+/mbLbwD8AcIFyHw6Z02Mtf0GtxrzN3jOaHDLKQcpfL8qv4Hyhy9/G+NMBH8AchErZ+B4jFxDxGNk0rc0vq4hQ4aIN2SeGuI3PH7z4+eC5/I5Y8dvovxt/eTJkwa5L1z/wbep3QbPpBVz9XneamKI66gNfv3ya4Wnm/j1zhkV/qDhx/9u2y4YqgaIp0U5sOHnj7+18/PGjyuPh6coGLed8wcUt57zeHlqh+tPSkpK6n37HNhIWTBeZoEDF/7Q4y88ycnJmstxVoc/QPkx4+wXv8b4dc1fPrhuiKcM+TXM9Uz8Ic1j5tcwf/DyByn/3fF1cMbJWPh1w48n3y7/3XHbNgeqlbPRHJRyOzkXEPOyABwI8Ac6v8Y4A8iF/Tylw689no7kOjd+zPn1zwfOnHCNJAcTfP94qrJyRre++Pp4Spv/nvn1z++r/Jjz+xnj//k9hYNgaZqd7ws/D6NHjxaZMG18H/k1w9NaUkaRv3TxFyrO4mrX/zA53zMtitxtaGB4vIgcL3jVtm1b0frKrbN8XNfiaPPmzRMLD3KrKS/mxm3S1bXB61qUr7o2eG4F58XFeHE7XnSNW2vPnz+vs4WbF0Djxb14HNKCXXwZ7YXJuCV8zpw5YpE4Hqu3t7eqY8eOqhkzZqgyMzMN0gbP160Lt4x269ZNLArHC7dNnTpVtXHjxiotzIwXjON2Yelxb9OmjWrRokWa87llmxf940XruNVb+0/wq6++0izs1qxZMzFWqa3WkAshSrfRvn37KuOv7fNW3eNoiOuQ7nPl1vLKbeC///67avDgwSp/f3/xumnSpIlYniA5OVllKlu2bFGNGjVKvC54DPz/mDFjVBcvXqxwufj4eLEQqbTw3jvvvKPavHlztQsh6lJdG/yaNWvE64yXNGjatKn4O5FaxSu3cPNle/ToIV7LvIRAly5dRAu4tmPHjqkeeOABla+vrxgvP2+PPPKIuK+GaoPX9V7CbfC8ECIvOMrj4/cjXj6h8vuR1MrOCylye76Dg4NYCJEX2+THWbJ3717xHsHPi3ZL/LVr18TSD7y4Ji8Xwi3l169fr9I2X582+LNnz4rx8PsAv1fx+5uuhRD5/Uu6DyEhIVUWQpQsXrxYXC8vMKqNX1N8uq7nprbvmVT+3qBENvyP3EEYABgXZ664NVfXtAEAGAbXi3FGlacLzX2zWkANEAAAACgQaoDAKnDhJxf31YTX2LA2KSkpNZ7PtRDSujoA9cV1JHcrhr7b0gGWiGurdBWGa6tuzR0wXwiAwCrwfkB3W/vFGmd7udC6JlxoyXtAARgCdw7ebdG82iwdYGm4M067WUAXQxdSg/GhBgisAm+WeLdtP+RY28TYuPOlJrz0gRKXuAfj4BZ63mCzJty1Vd91xMwNL0KovQ2LLtz1V3mbETBvCIAAAABAcVAEDQAAAIqDGiAdeIlynk7hlVOxjDgAAIBl4EktXgyYp//vtiExAiAdOPgx1AabAAAAYPqCfV6RvSYIgHTgzI/0APLy7wAAAGD+srKyRAJD+hyvCQIgHaRpLw5+EAABAABYltqUr6AIGgAAABQHARAAAAAoDgIgAAAAUBwEQAAAAKA4CIAAAABAcRAAAQAAgOIgAAIAAADFQQAEAAAAioMACAAAABQHK0EDABhQaZmKDl6+RWnZBeTv4UxdwnzIzhabKgOYGwRAAAAGsuF0Ms1Ye5aSMws0pwV6OdP0ES1oaKtAWccGABVhCgwAwEDBz6Qfj1YIflhKZoE4nc8HAPOBAAgAwADTXpz5Uek4TzqNz+fLAYB5kDUAWrJkCbVp00az63r37t1p/fr11V7+yy+/pN69e5O3t7c4DBw4kA4ePFjhMuPHjxe7wGofhg4daoJ7AwBKxTU/lTM/2jjs4fP5cgBgHmQNgIKDg2n27Nl05MgROnz4MPXv359GjRpFZ86c0Xn57du305gxY2jbtm20b98+CgkJocGDB1NSUlKFy3HAk5ycrDn8/PPPJrpHAKBEXPBsyMsBgJUXQY8YMaLCzzNnzhRZof3791PLli2rXH7FihUVfl6+fDn98ccftGXLFnryySc1pzs5OVFAQIARRw4AcAd3exnycgCgoBqg0tJSWrlyJeXm5oqpsNrIy8uj4uJi8vHxqZIp8vf3p5iYGJo0aRKlp6fXeD2FhYWUlZVV4QAAUFvc6s7dXtU1u/PpfD5fDgDMg+wB0KlTp8jd3V1kbSZOnEirVq2iFi1a1Op333rrLQoKChK1QNrTX99//73ICs2ZM4d27NhBw4YNEwFWdWbNmkVeXl6aA0+tAQDUFq/zw63uukhBEZ+P9YAAzIeNSqWStS2hqKiIEhMTKTMzk37//XcxrcVBy92CIK4d+vjjj0W2hwupq3Pp0iWKiIigf/75hwYMGFBtBogPEs4AcRDEY+LibACA2uBW9xd+Olah2wvrAAGYDn9+cyKjNp/fsi+E6OjoSJGRkeJ4x44d6dChQ7RgwQJatmxZtb/zySefiACIg5qagh8WHh5Ofn5+FBcXV20AxNknPgAA1Eef6IZVWt3/eqEn+Xui9gfA3Mg+BVZZWVlZhWxMZZz1+fDDD2nDhg3UqVOnu17ftWvXRA1QYCC+fQGAcV1IyRb/+7k7UYiPizgefyNX5lEBgNkFQNOmTaOdO3dSQkKCqAXin3lKa+zYseJ87uzi0yRc0/Puu+/S119/TU2bNqWUlBRxyMnJEefz/2+++aboIuPr5DogbqvnDNOQIUNku58AoAznktUBUIsgT4r29xDHY9PUpwGAeZF1CiwtLU0EObxWD8/Z8XTWxo0badCgQeJ8rg2ytb0To3GLPNcMPfTQQxWuZ/r06fT++++TnZ0dnTx5kr777jvKyMgQBdK8ThBnjMxhigubJAJYt7PJmeL/FoGeZGNDtOV8Gl1MRQAEYI5kDYC++uqrGs/nbJA2zurUxMXFRQRQ5gibJAJYv7PXszQZoNKyMnH8Yoo6Qw0A5sXsaoCsETZJBLB+nOE9X14DxBmg6EbqKbCLadkkc7MtAOiAAMjIsEkigDJcSc+lvKJScnawpTA/N4po6E48w52RV0w3sqtv7AAAeSAAMjJskgigDGeT1dNfMQGeorbP2cGOQn3dxGkXUzENBmBuEAAZGTZJBFBY/U/gncXXohu5i/9RCA1gfhAAGRk2SQRQVgaIC6AlmjogBEAAZgcBkJFhk0QAZTiXrCsDhAAIwFwhADLhJonVBUHYJBHAst3MKaTUrEKx9k+zAHXQox0AxabmoBMMwMwgADIBXudnyeMdKMCr4jSXnY0NffZ/7bEOEICVZH/CfN3IzenO8mrcDWZva0PZhSU1NkMAgOnJvhmqUnCQM6hFgOj2unY7j2asPUM5haVUii+FAFZTAN1cq/6HOdqrW+Jj03LENFhQA/X+YAAgP2SATIinubpH+NLDnUJoQu8IcdqS7fFIjQNYSwG0Vv2PBHVAAOYJAZBMxvUIJVdHO5E6337xhtzDAQADt8BXDYCwFhCAOUEAJJMGro70f12aaLJAAGCZCopLKf5GTpUWeAnWAgIwTwiAZPRM7zBysLMRdUFHrmAlaABLdCElm3gnG183R/L3cKpyfpRWJ1gZtrwBMBsIgGQU6OVC97dvLI4v2X5J7uEAQH3W/wnyJBvug6+kqa8rOdrZUn5xKSVl5MswQgDQBQGQzJ7vGyHWDvnnXCpS5ABWVgDN7O1sKbyhmyZbBADmAQGQzHjH6KEtA8TxpagFArDcAmgd9T9VCqHTEAABmAsEQGZgYl91S/xfJ66LNYIAwDJwTY80Bda8mgwQiylfHfoiMkAAZgMBkBloG9KAekb6UmmZipbvuiz3cACglhJv5VFuUalY8DDcTz3NpUuUv9QJhlZ4AHOBAMhMTO4XKf5feSiR0nMK5R4OAOhR/8P7f3Gtz90yQHE3csQXHQCQHwIgM9EjwpfaBHtRQXEZfbs3Qe7hAEA9F0DUFuLtSs4OtlRUUkZX0nNNNDoAqAkCIDPB7bOTymuBvtubQDmFJXIPCQBq2wFWQwE0s7W1oUhMgwGYFQRAZmRwywBRR5BVUEI/H0iUezgAUNs1gO6SAWLYEwzAvCAAMrPNUqWOsOW7L1FhSancQwKAatzKLaLkzAJxvBkCIACLgwDIzIxqH0QBns6UmlVIq44myT0cALhL9odXenZ3sr/r5WO0tsQAAPkhADIzTvZ29GzvMHF82c5L6BgBMPMC6JrW/9EWVb4p6qWbOVRcWmbUsQHA3SEAMkOPdWlCXi4OdPlmLm08kyL3cACgDltgVNa4gQu5OdpRcamKEm6iEwxAbgiAzBCn08d1DxXHl2yPJ5UKWSAAS9wCo3Knp7Qz/AXUAQHIDgGQmRrfM0ysG3IqKZN2x92UezgAoKWguFQsaqhPAMSiy6fB0AoPID8EQGbKx82RHuvcRJMFAgDzEZemXtHZ29VBNC3UltQJFosMEIDsEACZMS6Gtre1ob3x6XT8aobcwwEAHdNfPLWlbwCEKTAA+SEAMmPB3q40sl2QOL4UWSAAiy2ArhwAXUnPwzpfADJDAGTmpO0xNp5NEWl3ALC8AmhJI08n8nS2F9Nnl26gEwxATgiAzBx3jQxq0Yi4EWzZDmSBAORWVqbSZIBquwaQhKfLsCI0gHlAAGQBJvVTZ4FWH0+i6xn5cg8HQNGu3c4XmxU72tlSREN1V5c+ogMQAAGYAwRAFqBDE2/qGuYjFlD7avdluYcDoGhnkzPF/9EB7uRgp/9baHT5rvAXUjClDSAnBEAWYvI9keL/nw8m0u3cIrmHA6BYmvofPae/qrTCpyEDBCAnBEAWok+Un3jDzSsqpe/2Jcg9HADFOpucXb8AqHwKLPFWHuUXoRMMQC4IgCwEF09KtUDf7k2gvKISuYcEoOhd4FsEedXp9/3cncRCp9zYgM5OAPkgALIgw1oFUKivK2XkFdPKg1flHg6A4mTkFVFSeSNCs0B1Jqcu7myJgWkwALkgALIg9na29HwfdRZo+a5LVFRSJveQABRFan8P8XEhT2eHOl8PWuEB5IcAyMI80KExNfRwouuZBfTX8SS5hwOgKPUtgJZIu8IjAAKQDwIgC+PsYEfP9AoTx5fuiBeLsgGAqbfAqFv9jyRGEwChBghALgiALNDYrk3Iw9me4m/k0uZzqXIPB0Ax6roFRnU1QFxPxIsqAoDpIQCyQB7ODvREt1Bx/PPt8aTidhIAMCrevFTq2qpvANTA1ZH8PZzE8VhMgwHIAgGQhXqqZxg52dvSiasZtO9SutzDAbB6HPyUlKnIy8WBgryc6319KIQGkBcCIAvFhdCPdAoRx5dsxyapAKYsgOZ1ueorStMKjzogADkgALJgz/UJJztbG9oVe5NOJ6n3JwIAIxdA13P6q2ohNDJAAHJAAGTBQnxc6b42geL4kh3IAgGYIgPUvJ4t8BK0wgPICwGQhZO2x1h/Kpku38yVezgAVokbDe60wBsqAFJPgaVmFVJmXrFBrhMAag8BkIVrFuBJ/Zv5Ey8H9MVOZIEAjOHa7XzKLighBzsbivRXBy71xStJS8XUF7EzPIDJIQCyoizQH0eSKDWrQO7hAFgdKfsT5e9BjvaGe9vENBiAfBAAWYHOTX2oU6g3FZWW0de7L8s9HAAr3gHeMNNfkpgAdQAUi04wAJNDAGQlJt+jzgL9uP8K6gkAzHQPsMqiyqfTLqQgAwRgagiArMQ9Mf6irTa3qJR+2J8g93AArIqhW+ArL4YYixogAJNDAGQleGE2qRbomz0JlF9UKveQAKxCZn6xKII2ZAt85U6wmzlFlJ5TaNDrBgAzDoCWLFlCbdq0IU9PT3Ho3r07rV+/vtrLf/nll9S7d2/y9vYWh4EDB9LBgwertKu+9957FBgYSC4uLuIysbGxpAS8JlCwtwul5xbRb0euyj0cAKuq/2ncwEVsg2FIro72FOLjIo5jRWgABQVAwcHBNHv2bDpy5AgdPnyY+vfvT6NGjaIzZ87ovPz27dtpzJgxtG3bNtq3bx+FhITQ4MGDKSkpSXOZjz/+mBYuXEhLly6lAwcOkJubGw0ZMoQKCqy/O8rezpae7xMuji/bcYmKS8vkHhKAxTPUDvB3WxEa02AACgqARowYQcOHD6eoqCiKjo6mmTNnkru7O+3fv1/n5VesWEGTJ0+mdu3aUbNmzWj58uVUVlZGW7Zs0WR/5s+fT//+979FIMXZpe+//56uX79Oq1evJiV4uFMI+bo5UlJGPv3v5HW5hwNg8Qy9AGJ1rfAohAZQaA1QaWkprVy5knJzc8VUWG3k5eVRcXEx+fj4iJ8vX75MKSkpYtpL4uXlRV27dhUZIyVwdrCjp3uFaTZJLeMVEgHAbDNA0eV1QGiFB1BYAHTq1CmR9XFycqKJEyfSqlWrqEWLFrX63bfeeouCgoI0AQ8HP6xRo0YVLsc/S+fpUlhYSFlZWRUOluzxbqHk7mQvagq2XUiTezgAFquopIzi0nKMmgGSOsEupGaLLDYAKCQAiomJoePHj4t6nUmTJtG4cePo7Nmzd/09rh3ijBEHTM7O6uXk62rWrFkiUyQduLbIknGh5thuTTRZIACom/gbOWKBUQ9ne9FgYAwRDd3J1kbdbXYjG51gAIoJgBwdHSkyMpI6duwoApG2bdvSggULavydTz75RARAmzZtEnU+koCAAPF/ampqhcvzz9J5ukybNo0yMzM1h6tXLb+D6pmeYeRoZ0uHr9ymg5dvyT0cAItfAJGXmjDWtHVTXzdxHJ1gAAoKgCrjomaekqoOd3l9+OGHtGHDBurUqVOF88LCwkSgIxVFM57O4uxSTXVFPP0mteJLB0vn7+lMD3YMFseXbI+TezgAFl0Abej1f6pbD4inwQBAAQEQZ1527txJCQkJohaIf+ZW97Fjx4rzn3zySXGaZM6cOfTuu+/S119/TU2bNhV1PXzIyVF/a+JvaK+88gp99NFHtGbNGnGdfB1cJzR69GhSGm6J59T6tgs3NGuZAID5FEBXWREaARCAMgKgtLQ0EaBwHdCAAQPo0KFDtHHjRho0aJA4PzExkZKTkyssnFhUVEQPPfSQWOhQOvCUmGTq1Kn00ksv0XPPPUedO3cWwRFni+pbJ2SJmvq50bDWgeL40h2oBQLQBxckG7sFvnIAhF3hAUzHRoW2gyp42oyLobkeyNKnw04nZdJ9i3aLTND2N+6hJr6ucg8JwCLwWlo9Z28le1sbOvPBEHKytzPabfEaQEPm7yQPJ3s6+f5go9UbAVi7LD0+v82uBggMq1VjL+oT3ZB4OaAvdiELBKDv9Fekv7tRgx8W5ucmAq3swhJKzrT+VesBzAECIAWY1Fe9Seqvh6+hzRaglqS6OWPX/zBHe1sRBDEUQgOYBgIgBegW7kPtQhqIRd2+2XNZ7uEAWFwLvCmgEBrAtBAAKQDXE0zup84C/bDvCmUVFMs9JACzd9aEGaCKhdBYCwjAFBAAKcTA5o1ELQPXGKzYnyj3cADMGn9JSLyVZ+IMkHotIHSCAZgGAiCFsLW1oYnltUBf7b5MBcWlcg8JwGydT1YHIUFeztTA1dEktxkdIE2B5WATYwATQACkICPbBok39Js5hfTH0WtyDwfAbJ29nmnS6S8W6uMqtq/JLy6la7fzTXa7AEqFAEhBuNNkQp9wcXzZjktUUlom95AAzJKpFkDUZm9nS+ENpT3BMA0GYGwIgBTm0c4h5O3qIOob1p1OkXs4AGbJ1AXQkpjyabCLaQiAAIwNAZDCuDra0/geYeL4ku3xYrl/ALijuLRM04nVItDLpLet6QRLQQAEYGwIgBRoXI9QcnW0Ewu97bh4Q+7hAJiVSzdyxZpZvC1FsLeLSW8brfAApoMASIG4q+X/ujTRZIEA4I6zyeoC6OaBnqJ70pSkVvi4GzlUik4wAKNCAKRQz/QOIwc7Gzpw+RYduXJb7uEAmN0K0M0D1dkYUwrxdiVnB1uRgbqSnmvy2wdQEgRAChXo5UL3t28sjiMLBCB/ATTjjFOUP6bBAEwBAZCCPdcngmxsiP45l4q2WwAi0RRwZw8w0xZAS6KwIjSASSAAUjDeGmNIiwBxfOkOZIEAUrIK6HZeMdlxJqY8EDG1O4XQCIAAjAkBkMJNKt8kdc3x63TttnrvIwCl4s5IFtnQnZwd7GQZQwwCIACTQACkcG1DGlDPSF8qKVPR8l2X5R4OgKw0018y1P9IpMzT5Zu5Yk0iADAOBEBAk/pGiv9XHkqk9JxCuYcDoKgtMCpr3MCF3BztqLhURQk30QkGYCwIgEBkgFo39qKC4jL6bm+C3MMBMIMWePkCIBsbrj9ST4NdwDQYgNEgAALxhju5vBbou31XKKewRO4hAZgcv+4T0vNkWwNI14KIaIUHMB4EQCAMbhlA4X5ulJlfTD8fSJR7OAAmd758+ivA05l83Z1kHQv2BAMwPgRAIHDb7/N9w8Xx5bsvUWFJqdxDAlDMAojVBkDYFR7AaBAAgcbo9o2pkacTpWYV0upjSXIPB8Ck7iyAKH8AFBOgDoCupOdRQTG+jAAYAwIg0HCyt6MJvdVZoGU7LmEzRlDkGkDmkAHy93AiT2d78TfIu9MDgOEhAIIKHuvShLxcHOjSzVzaeCZF7uEAmERJaRmdL6+3MYcMEDcmSNNgsZgGAzAKBEBQgbuTPY3rHqrZJJX3RgKwdrzoYGFJmVh/p4mPK5mD6PJpsAsohAYwCgRAUMW4Hk3J2cGWTiVl0p64dLmHA2CyAuhmgZ5iR3ZzEO2PVngAY0IABFVwC/BjnZuI40t2xMk9HABFFUBXzgBhCgzAOBAAgU7P9g4je1sbkQE6cTVD7uEAKKYFXiLVACXeyqP8InSCARgaAiDQKdjblUa2C9LUAgFYK65zM8cMkJ+7E/m4ORKX4cWlYRoMwNAQAEG1JvZVb4+x8WwK3oDBaqVlF1J6bhFx6Y+0/o65uLMlBqbBAAwNARDUmIIf2LyR+Ab6xU5kgcC6p78iGrqTs4MdmRPNitAIgADkDYCKi4vJ3t6eTp8+bfiRgFmafI86C7TqWBIlZ+bLPRwAg9NMf5lR/Y8EARCAmQRADg4O1KRJEyotRUGeUnRo4k1dw3youFRFy3ddlns4AMYrgDaj+p+qARCmoAFknwL717/+Re+88w7dunXL4IMB8zSpnzoL9PPBRLqdWyT3cAAM6lx5Bqi5WQZA6hqgpIx8yikskXs4AFbFXt9f+OyzzyguLo6CgoIoNDSU3NzcKpx/9OhRQ44PzEDf6Ibi2zF/U/5+3xWaMjBK7iEBGERuYQldTs812wCogauj2BeMC7VjU7OpfRNvuYcEoNwAaPTo0cYZCZgt3peIs0Av/XyMvt17mSb0CSNXR71fOgBmh/f/4iJ/DjIaejiROeJpMA6AuA4IARCA4ej9KTZ9+nQD3jxYimGtAijU15WupOfRyoNX6eleYXIPCcAqF0DUFQDtjruJOiAAc2iDz8jIoOXLl9O0adM0tUA89ZWUlGTo8YGZsLezpef6hIvjX+6Mp10Xb9Bfx5NoX3w6lZZhw1SwTOfMuABagrWAAMwkA3Ty5EkaOHAgeXl5UUJCAk2YMIF8fHzozz//pMTERPr++++NM1KQ3YMdgmnO+vOUnFVIT3x9UHN6oJczTR/Rgoa2CpR1fADW1AIviUIrPIB5ZIBee+01Gj9+PMXGxpKzs7Pm9OHDh9POnTsNPT4wI9svpFFWQdVOlJTMApr041HacDpZlnEB1AVnLs+nWE4GKDWrkDLziuUeDoByA6BDhw7R888/X+X0xo0bU0pKiqHGBWb4YTFj7Vmd50kTYHw+psPAUly+mUsFxWXk4mBHob4Vu1nNiYezAwV5qb9sXsTO8ADyBUBOTk6UlaX+1qTt4sWL1LBhQ0ONC8zMwcu3KDmzoNrzOezh8/lyAJZUAN0s0IPseCMwMxZdvkcZpsEAZAyARo4cSR988IHYFkNqkeban7feeosefPBBAw4NzEladoFBLwcgN3PcAf6uK0KnIAACkC0AmjdvHuXk5JC/vz/l5+dT3759KTIykjw8PGjmzJkGGxiYF38PZ4NeDkBultACL4nylzrB0AoPIFsXGHd/bd68mfbs2UMnTpwQwVCHDh1EZxhYry5hPqLbiwuedVX58ARCgJezuByAJbCkDFBM+RRYLGqAAOTLAHGbe2FhIfXs2ZMmT55MU6dOFcFPUVERWuCtGNdIcKs7q65ags8391oKAGmq9mZOIfHLtVmA+QdAkeUZoJs5RZSeUyj3cACUGQA99dRTlJmZWeX07OxscR5YL17nZ8njHUSmpzLeHwzrAMmDO+94QUosTFl755LVmZQwPzdycbQjc8dbzzTxcRXHMQ0GINMUmEqlEoXPlV27dk1Mj4F14yBnUIsA0e3F36L/PplMm86m0v5L6XIPTZF47SVefkC7Qw8LU+qzAKLlvGfxekCJt/JEJ1j3CF+5hwOgnACoffv2IvDhw4ABA8je/s6vlpaW0uXLl2no0KHGGieYEZ7mkt6AOzf1oW0X0mj/pVt04FI6dQ3HG7Mpgx9egFJVzcKUnK1DEFRzAXTzQHVtjSXgFaH/OZeGVngAUwdA0i7wx48fpyFDhpC7u3pOmjk6OlLTpk3RBq9AQQ1c6OFOIfTTgURatDUOAZCJF6bUNdnFp3GOls/nbB3qsqo6ez3TYgqgJTHlrfCxmAIDMG0AJO0Cz4HOo48+WmEbDFC2yf0i6NdDV8WO1Ueu3KKOoegEM6eFKTFdUlFeUQlduplrMS3wkqjyLTEupGZXW4oAAEYsgh43bhwVFBRgN3jQCPZ2pYc6BovjC7bEyT0cRcDClHV3IYUDCCI/dyeLWrcqoqG76FrLzC+mG9noBAMweQDEu8FHR0fTnDlz6JNPPqGMjAxxOu8GzwERKNPkfpFiqmXnxRt0LPG23MOxeliYUhkLIGpzdrCjpuV7lnEWCABMHAC9+uqr2A0eqmji60r3t28sjnMtEJhmYcrq8OQIn4+FKas6JwVAFlT/U3kaDK3wADIEQIcPHzbYbvBLliyhNm3akKenpzh0796d1q9fX+3lz5w5IwqtuQ6J57/nz59f5TLvv/++pltNOjRr1kyvcUHdvHBPpEjRbz2fRqeuVV0rCgyHs22PdAqp8TJYmPJuLfCWFwDdKYRGBgjAoneDDw4OptmzZ9ORI0dEYNW/f38aNWqUCHR0ycvLo/DwcPE7AQEB1V5vy5YtKTk5WXPYvXu3XuOCuuFF5Ua1U2eBFm6NlXs4Vq2sTEVbzqeK466VFvJzcbBDC3wN3XPnyzcUtcwMkDoAwhQYgIXvBj9ixAgxdRYVFSXqingzVW6v379/v87Ld+7cmebOnUuPPfaYCMSqw2sUcYAkHfz8/PS8l1BXL/aPJG5O2Xw2lc6UtxqD4a09eZ1OJ2WRu5M9bX+jH/08oRu9NihKnMcdQr2j9PsyohRX0nMpr6iUnB1sRcBuaaK1WuH5eQYAK9gNnhdTXLlyJeXm5oqpsPrg+qSgoCCRLRo7dqwI0GrCe5txVkv7AHXvVBnRJkgcX4SOMKMoLCmlTzZdEMcn9g0nf09n0er+Uv8oaurrSgUlZbTprH7T0UorgI4J8LTI6UEO2uxtbSinsISu17AMAgAYIQCSdoNfu3YtLVy4kF588UVat24d7dixg9zc9P9GderUKZH14YzOxIkTadWqVdSihXrTzbro2rUrffvtt7RhwwZRY8QrVPfu3VvsVVadWbNmifslHUJCaq6tgNplgTacSaHzKQgmDW3F/kS6eiuf/D2c6OleYZrTORs7urwQfdWx6zKO0HxZ0g7wujja38lcYUVoABMHQJJevXpV2A2+rmJiYsTq0gcOHKBJkyaJdYbOnj1b5+sbNmwYPfzww6K4mles5uCMW/V//fXXan+H2/d5g1fpcPXq1TrfPqjT9MPL60/QEWZYWQXFtKi8vurVQdFik0xtUife7tgblJaFDIG1tMBriw5AITSALJuhskOHDtG2bdsoLS2NysrKKpz36aef6nVdvI0GT6Gxjh07iutesGABLVu2jAyhQYMGor4oLq76D2LOPtVUUwT6e2lAJP19KpnWnUoWb9RS8SbUz7Id8XQ7r5giGrrRw+WLT2oL9XWjDk0a0NHEDFpz4jo92ztclnGaK0vPALFofw/6m5LpQgpa4QFMmgH6z3/+I6aZvvnmG9G5dezYMc2BMzn1xQEV1+QYCtcrxcfHU2AgOmJMqVmAJw1tGSBW3EUWyDB4k9Ovdl8Wx6cObUb2drr/fKUs0OrjWJld282cQkrLLhTTs83KsyiWiHeFZ7FpyAABmDQDxNmZr7/+WiyGWF889cRTVk2aNBE1Oj/99BNt376dNm7cKM5/8sknxfpCXKPDioqKNNNjfJy33uCgi2uIpCzSG2+8IbrLQkND6fr162IPMzs7OxozZky9xwv6Z4G4Dog7ll4eEEWR/nc20AX9zf/nIhUUl1HHUG8a3KJRtZe7t02Q2AiVu8SQfau6AGKYrxu5OdUp+W1mU2A5YjkEWwss5gawyAyQra0t9ezZ0yA3zlNoHORwHdCAAQPE9BcHP4MGDRLnc/cWr+Mj4YCmffv24sCn81YcfPzZZ5/VXObatWsi2OHrfOSRR8jX11e01eu7RhHUX8sgLxrYvJHIAn2+DVmg+uBA5tfD6tq0d4Y3q3EjTB83R+oX4y+OrzqGLFDl6a/mFjz9xUJ9XMnRzpbyi0vp2u18uYcDYLHs67IVxuLFi3Wuwqyvr776qsbzORukjVeAvtvaF9xKD+bj5QGR9M+5VDEdw1mgpha49oo5mLPhApWpSGR+OobefXsLngbjx/2v49fpjcExyBJYSQE046nPCH93kdHiTjDehgYATBAA8RTTvffeSxEREaJd3cHBocL5vCkqgKRNcAO6J6YhbbtwgxZvi6O5D7eVe0gW51DCLRHM8Lo1XPtTGwOa+5OHkz0lZeSL3+8a7ktKZw0F0Np1QBwA8YrQA2uYDgUAA06Bvfzyy6IDjDureHpJe/0cPgBUxpkf9uexJLp6K0/u4VgUznjOWndOHOe9v2pbR8U7hw9vrS78xzQYUUFxKcXfyLGKDFDFFaFRCA1gsgzQd999R3/88YfIAgHURvsm3tQnuiHtvKjOAs1+sI3cQ7IYG8+kipZ23t/r1YHqQLK2eFHEXw5fFcsRvD+ypQiKlOpCSraYQvR1cxQLSFpLAIRd4QFMmAHy8fER018A+pgyQN2l9/uRa3TtNrJAtVFSWkYfbzwvjj/bO0xseaGPrmE+FOTlTNkFJbTtfBopmdQBxtmfmgrILa0VPu5GjtjgFQBMEAC9//77orWcd2YHqC0u3O0Z6UslZSpasj1e7uFYBM7eXLqRK7q6nuuj/4KGXPg8qnxNIJ5+VDJNAbQV1P+wEG9XsaFrUUmZ2OAVAEwQAPH+X+vXr6dGjRpR69atqUOHDhUOANV5ub96Cofbua9noH23JnlFJTT/H/WWFy/1jyQP54rNBrUlLYq4/UIa3c4tIlJ6AbQV1P9IwW2UvzQNhjogAJPUAI0ePbpONwTAnUg8LXPg8i2xpcOMUa3kHpLZWr7rMt3ILqQmPq40tmtovWpFOOvBGRCuBXq8W92vy1LxYoHSFJilrwGkLaqRO51KyhR1QEPxpwRg/ACIp78A6mrKgCj6v+UH6OdDV2nyPZHUSM+6FqVs2cABIntjSIzYAbw+OAvEARB3gykxAEq8lUe5RaXicQy3onWoYjSF0MgAAdRF/d5ZAfTUPcKXOjf1FrULS8s/5KGiRVtixQd268ZedF95K3t9jGwXRLwO4pErtykxPU+x9T+8/1d1+6dZdicYAiCAutD73aC0tFRsQdGlSxcKCAgQXWHaB4CacAeOtC7QTwcSKS27QO4hmZWEm7m04kCiOD5tWDODrODMWbaekX6K3SDVmhZA1LUnGBfK8xcKADByADRjxgz69NNP6dFHH6XMzEx67bXX6IEHHhB7hHGHGMDd9Ir0o/ZNGlBhSRl9ufOS3MMxK3M3XRCdcn2jG1KP8qDFEEa3K98h/ljSXbeTsTbWsgVGZbzEgbuTvXi9JKATDMD4AdCKFSvoyy+/pNdff53s7e3FxqPLly+n9957T2w6CqBPFujH/Ymi5gWITlzNoL9PJhMvU/P2sNpteVFbQ1sFiMUUL93MpRPXMkmRawBZWQaI/46klcExDQZgggAoJSVFtL8zd3d3kQVi9913H/399991GAIoUb/ohtQm2EvsaM0dT0rHWZnZ689ripYN3a3k5mRPg1s20mSBlOJWbhElZ6qnWZtZWQBUsRAaK0IDGD0ACg4OpuTkZHGcV4TetGmTOH7o0CFycrL8JebBdN9euSOMfb8vQXxQKdn2izdo36V00an0+uAYo9wGb43B1p64TsWlZYrK/jT1dRXTRdaGW+HZxRRkgACMHgDdf//9tGXLFnH8pZdeonfffZeioqLoySefpKefflrvAYBy9W/mTy2DPCmvqJS+2q3cWiDeymBOefZnfI+m1LiBi1Fup3ekH/m5O1J6bhHtir1BSiqAtqb1f7TFlBdCX0xDAASgL72/Es2ePVtznAuhQ0NDae/evSIIGjFihN4DAOWSaoGe/+EIfbf3Ck3oHU4NXB1JaXh9nvMp2eTpbE+T+xlvnz1uAR/RNoi+2ZNAq45dp/7N1FNi1szatsCorhWeuwd5x3slb3gLYNQMUHFxscjyXL58p2ajW7duohMMwQ/UxaDmjcT6LDmFJfT1ngRSGv7Q+nTTBXGcF4Y0dgAobY2x6UwKZRcUk7Wzti0wKuOd7Tlw5v1QuR0eAIwUADk4ONAff/yhz68A1IjXuZE6wr7Zc5ky863/Q1nbd3sT6HpmAQV6OYvpL2PjxRXDG7qJJQg2nE4haw8uebd0aw6AOIsqTYPFYhoMwLg1QLwX2OrVq/X9NYBqDW0ZQNGN3Cm7oIS+VVAWKCOviBZvixPHXxsUbZLpC/7AfKA8C2TtiyLGpuaI+ipvVwcKsOItV6LKp8EuoBAawLg1QFzr88EHH9CePXuoY8eO5OZWcW+dl19+Wd+rBIXjLNBL/aPopZ+PiWLop3s1rfPu55bk8+3xlFVQIqYAH+gQbLLbHdWuMX2y6SLtjU+nlMwCCvBytu71f4I8ReBnraI1awGhFR7AqAHQV199RQ0aNKAjR46IQ5WiVgRAUAfDWwfS/H8uUvyNXPp+3xV64Z5IsmZJGfn07V51tuutoc3IzgBbXtRWiI+r2I/tUMJtWnMiiZ7rY7zCazlZewF05S0xsBgigJGnwLgAurrDpUvKbWWG+rErzwKxL3ddEkXR1mzepgti/6Zu4T7UL6ahyW///vbqjNOfR613GszaW+Ard4JdvZ1H+UWlcg8HwGJYz9bIYPHuaxNIYX5ulJFXTD/uv0LWiqdmuPWdTRvWXJbpmXtbB5Kjna1ov5emiqxJWZnKavcAq8zP3Yl83RyJt3iLS8M0GEBt1Wlp1GvXrtGaNWsoMTGRiooqruDLG6UC1HWdGp76euO3E2KT1Ce7h5Kro/Wt3jtnw3nxYXVvm0BqG9JAljF4uTrQPc0a0sYzqaIY2tqyJNdu54ssIgd5EQ3VNTLWjFeETr90iy6kZlPrYC+5hwNgEfT+dOFVoEeOHEnh4eF0/vx5atWqFSUkJIi9jDp06GCcUYJijG4XRAu3xFLirTxasT+RJvQJJ2uyN/4mbb9wg+xtbehNI215oc80GAdAfx27TlOHmLYOydjOJqv3KIwOcCcHO+tPdPM02P5LtygWdUAAtab3O8O0adPojTfeoFOnTpGzs7NYF+jq1avUt29fevjhh/W9OoAqWaAXywugl+28ZFU1DTwtI214+n9dm1BTv4odlKbGGSBeRC8lq4AOXEonq1wA0coyW3erA+IMEAAYKQA6d+6c2PeL2dvbU35+vtgVnlvj58yZo+/VAVRxf4fGYj+smzmF9PPBRLIWf59KppPXMsnN0U6z+KOcnOzt6N42QeK4VJNkLc4mZysyAOK1jwDASAEQr/sj1f0EBgZSfHy85rybN2/qe3UAVfCUhdQGv3RHvFjR19Jxx9fcjeotL7jtnAtXzYG0Ncb60ylWlW27swaQMupheCFRaXkFJWxxAiBLAMR7f+3evVscHz58OL3++us0c+ZMsUcYnwdgCA92bExBXs6Ull1Ivx6+SpbupwNXRF0TBz7P9g4jc9Ep1JuCvV1EwfA/51LJWlbY5kCANQtUZ0asHe8hx/uCsVh0ggEYJwDiLq+uXbuK4zNmzKABAwbQL7/8Qk2bNhWLJAIYanpmUvnO6Eu2x1NhieVmJ/gb+cKt6i0vXhkYRW5O9ma1CvfoduVbY1jJNJjU/h7i40KeClhRvOo0GOqAAIwSAHH3V5s2bTTTYUuXLqWTJ0+KYujQ0FB9rw6gWo90DhF7OCVnFtBvh6+Rpfpi5yW6lVtE4X5u9GjnEDI3o8unwXZcvEHpOYVk6ZRWAF05AMKWGAC1U+f+0MOHD9MPP/wgDpW3xAAwVBZoYt9wTRaI62gsTVpWAS3fdVkcnzo0xixbsiP93alNsBeVlKnofyeTyXq2wFBG/U/lOiBsiQFQO7Z1WQSxd+/e1KVLF5oyZYo4dO7cmXr16iXOAzCkx7o0oYYeTqKm48+jlvf6mr8llvKLS6lDkwY0pGUAmStpGswausE0GSArXwG6MuwJBmDkAOjZZ5+l4uJi0Q5/69YtceDjZWVl4jwAQ3J2sKPnyxdDXLw9jopLLScLFH8jh345pC7gflumLS9qa0TbILEQ4vGrGXT5Zi5ZKq4Vk7aDUFoAFFW+K3xqViFl5qETDMDgAdCOHTtoyZIlFBNzZxVbPr5o0SLauXOnvlcHcFdju4aSn7sjXb2Vb1GFuh9vOE+lZSoa2NyfuoT5kDnjLFuvSD+LzwJx8MNTeV4uDqKLUEk8nO/c54tpyAIBGDwACgkJERmgykpLSykoSL2oGoAhuTja0XPlWaDPtsVRiQVkgY5cuSW2meDdJd4a2owswQMd7nSD8dY2ll4Abc4ZN2PBNBiAEQOguXPn0ksvvSSKoCV8nGuBPvnkE32vDqDWWSAfN0e6kp5Ha05cJ3PGwcOsdeotLx7uGEJR5d055m5Qi0bk6mgn1is6mphBlkgpO8DftRMsBQEQgMEDoPHjx9Px48fFWkBOTk7iwMePHj0qFkP08fHRHAAMhdfOkRYQ/GxrnJhaMlebz6bS4Su3ydnBll4dFE2WwtXRnoaWF2qvOmZ5BefaGSBr292+ttAKD1B7eq/INn/+fH1/BcAgnuzeVKypc+lmLv3v5HUaVd65ZE54em7OBnX25+meYRRgYXUovA/bn8eSRDv8e/e1JEd782vbrynzdqcFXqkBEFrhAYwWAI0bN07fXwEwCHcne3qmZxjN23yRFm2NoxFtgsRKxubktyPXKP5GLnm7OtDE8pWsLUmPCD9REH0ju1AsjMjTYpbi2m3eB6uEHOxsxNpGSiTd7/TcIrGopa+Z7DkHYI4s5+sdAAfgPZuSp7O96PZZd9q8Fu3LKyqh/26+KI6/2D/KIrdh4Fb4UW3VzQyW1HHHpOxPlL+HRWWuDD2N2cTHVRzHNBhAzZT5LgEWi4OKp3upa4EWbYmjMjOqBfp692WxeStvLvp4tyZkqXgajG0+l0qZ+ZaznoxSF0CsDNNgALWDAAgszlM9wsjDyZ4upGbTprMpZA54r6+lOy6J428OiRHbeFgqrp/hD1HeemSDmWXZanJO4fU/VQuhEQAB1AQBEFgcL1cHGt+zqTi+YEucWaxZs2hrLOUUllDLIE9Rm2TJeP0caYNUS1oUUekt8BIEQABGCIB4AUR7e3s6ffq0Pr8GYHDcYeXmaCe+9f9zLk3WsSSm59GP+6+I428Pa2Z2hdl1IXXY7b90S+zDZu54qo6LoJXcAi+J0kyB5ZjFlwMAqwiAHBwcqEmTJmLVZwA5ebs50pM91FmghVtiZX2j/2TTBSouVVHvKD/qHdWQrEHjBi7ULVy9ltdfx5MsZvqLx83bYChZREN3sQI5B4XczQcABpoC+9e//kXvvPOO2AQVQE4TeoeLlYtPJWXStgvyZIFOXcvUrExtKVte1Nb90jTYUfPfGgMF0BU3EG7q6yaOc50cABgoAPrss8/Epqe87xdvgtqhQ4cKBwBT4a0xnugWKlstEN/e7A3nxPHR7YKoVWMvsiZDWwWKdvLYtBw6Ux5gmCulL4BYGVaEBjDCQoijR4/W91cAjObZ3uH03b4EOnE1g3bG3qS+0aabguLb2xOXTo52tvT64BiyNjyVNKh5I/r7VLJYE8icAzxkgCriLr4NZ7AnGIBBA6Dp06fr+ysARsOrFvNGqV/tvkwL/rlIfaL8TLILOK8/NHu9esuLJ7qHUkj54nPWhrvBOAD668R1mja8uVgo0dxwu35smvqDHhkgNWkD3ovljwsAGKgNPiMjg5YvX07Tpk3T1ALxZqhJSeZfLAnW5/k+4WKqhncw3xufbpLbXH08SRTeejjb04v3RJK14owab+vBxbR742+SOYq/kSOK0Pm54EUogSgmQB0AxaITDMBwAdDJkycpOjqa5syZQ5988okIhtiff/4pAiIAU/P3dKb/66JeeXnBP8bvCCsoLqV5m9RbXkzqFyE60qwVB5b3la9rxMXQZj39FehpkuyfJeAiaHtbG7E21fXMArmHA2AdAdBrr71G48ePp9jYWHJ2vrPT9fDhw0VxNIAcJvaNELU4BxNuibVrjOmHfVfE2jgBns5iPSJrJy2KuOFMitjvzFwLoJW+/k/lwDXMT90JhgURAQwUAB06dIief/75Kqc3btyYUlLMY1sCUJ4AL2d6tHOIZl0gY+G1VT7bFieOvzYoWrQcW7sOTRqIDTbzikpp89lUMjcogNYtunwaDIXQAAYKgJycnCgrq2pL7MWLF6lhQ+tYBA4s08R+EeRgZ0P7LqXTwcvGyQIt2R4vgqAof3d6oHzTUGunvTXGn2Y2DcbTnWiB1y3aH63wAAYNgEaOHEkffPCB2BZDenNMTEykt956ix588EF9rw7AYHgV4Ic6hmj25jK06xn59M2ey5pFD+3tlLOVnrQo4q7YG2a1ujDXt3BAyvUu0hYQoBYToH48pA45AKhI73fwefPmUU5ODvn7+1N+fj717duXIiMjycPDg2bOnKnXdS1ZsoTatGlDnp6e4tC9e3dav359tZc/c+aMCLKaNm0qAq/58+frvNzixYvFZbhGqWvXrnTw4EF97yZYqMn9IsSH4a7Ym3Tkym2DXvd/N1+kwpIy6tLUhwY09ycl4XqSdiENqExFtLZ85Wtzmv6K9HcnJ3vrn46sSys8d4Lxsg0AUM8AyMvLizZv3kxr166lhQsX0osvvkjr1q2jHTt2kJubuuiutoKDg2n27Nl05MgROnz4MPXv359GjRolAh1d8vLyKDw8XPxOQECAzsv88ssvolCb1yvi1vy2bdvSkCFDKC1N3g0zwTR4PR5pasqQtUAXUrLpj6PXxPG3hzdTZLfR/Wa4Q7y0Bxjqf6oK9XEVjQH5xaWajWIBoB4BUEGBuqWyV69eNHnyZJo6dSoNHDiQ6mLEiBGieywqKkq01nMGyd3dnfbv36/z8p07d6a5c+fSY489JmqRdPn0009pwoQJ9NRTT1GLFi1o6dKl5OrqSl9//XWdxgiW54V7IsWCfTsu3qDjV9XLNNTXnA3nRfZjWKsA6tDEm5TovjaBIrvGe6/Fmcm0inYLPFTEU7QR/uppMOwJBmCAAKhBgwbUp08fevfdd2nr1q1iGswQeIf5lStXUm5urpgKq4uioiKRTdIOyGxtbcXP+/btq/b3CgsLRWG39gEsV6ivG41up85WLDJAFmj/pXTaej5NBFVvDrG+LS9qy9fdSbPVyOpj5jENpimARgao2i0xGFrhAQwQAP3zzz80dOhQOnDggCiI9vb2Ftkg3iWep8b0derUKZH14YzOxIkTadWqVSJzUxc3b94UgVSjRo0qnM4/19SiP2vWLDG1Jx1CQtSFtGC5XrgngnjXhi3n0+h0Uma9uoxmlW95MaZLCIU3VHahrdQNxithy11XklVQTIm38sRxZIBq3hQ1FgEQQP0DIA523nnnHdq0aZNYBXrbtm2iCPrjjz8WgZG+eEf548ePi4Bq0qRJNG7cODp79iyZEq9gnZmZqTlcvXrVpLcPhseBysi2QfWuBVp3KkVstOrqaEdTBkST0g1q0YjcnexFTclhAxeZ6+t8svpDPcjLmRq4Wu9q3IYIgC6gFR6g/puhSmv+bN++XXPgKaT77ruP+vXrp/d1OTo6igCKdezYUSy0uGDBAlq2bJne1+Xn50d2dnaUmlpxsTb+ubqiacbZp+pqisByvdg/UmziuelsqqgV0XeapLi0jOZuVGd/JvQOFxuvKh0v/Mh1UL8duSaKobuE+cg2lrPX1Zk9TH/dfQqM90srLVOZ5Wa2ABaTAeIVn7t160YbNmwQ/3PbOk898dTVlClT6j2gsrIyEVDVBQdTHERt2bKlwvXxz3WtKwLLFenvodnHqi7rAq08mEgJ6Xnk5+5IE/qEG2GElt0N9vfJ61RYUirbOLAA4t2FeLuSs4MtFZWU0ZX0XLmHA2DZARCv9szt6FxTwwfOrtS1EJqnnnj/sISEBFELxD9zRmns2LHi/CeffLLCBqtc5MzTZXzg47z7PB+Pi1NvTcC4Bf7LL7+k7777js6dOyem1biwmrvCQHle6q/OLq4/nSJa2WuLN5FcUD519vKAKDHtA2pdw33FPmhZBSW07bx8y0ugAPrubHmBSM2K0KgDAqhXAMQBBwc+b7/9tsjUcD0QTz316NFDFELrg9fm4SCH64AGDBggpr82btxIgwYNEufzCtPJycmay1+/fp3at28vDnw670bPx5999lnNZR599FFx+nvvvUft2rUT4+VsVeXCaFBODcTw1gF6Z4G+3HmJbuYUUVNfVxpTvtM8qPE0yqj2QbKuCcTTk9IWDy0CvWQZg6XVAWFLDICKbFTc5lJH6enpImPz119/0c8//yymm7gLy9JxGzx3g3FBNK9QDZaN63+GL9xFvHbh5lf7iKmxmqRlF1C/udvF5p+L/68D3dsm0GRjtRTnU7Jo6PxdYqG9g/8aYPIiZM7mDZm/kzyc7OnE9MEi0wG6LdsRLzoZ+XXMr2cAa5alx+e33hmgP//8k15++WWxhQVnVXiKibfG4C0yeOVlAHPDUySDWzQiDvU/23pnurQ63DXGwU/bkAaa7BFU1CzAk5oFeFBRaRn9fepOltZUziarC6CbB3oi+LkLtMIDGCgA4rV6eCrqueeeo2PHjolpLCko4m0nAMwR1/GwNSeu06Ub1U8F8Hk/H1QvgzBtmDK3vKgtacuR1TJMg0krQDcPrDmbB0TRAerH6NKNXFEMDQB1DIA44Pn999/FHmCtW7fW99cBZNGqsRcNbO4vtrP4bFv1WaC5Gy+IduH+zfypW7ivScdoaUa2bSymFQ8l3Kar5QsSmgoKoGuP10niIv6SMhUloBMMoO4BEOM6nz/++IM++ugjceAMkDXU/oB1e6m/Ogv01/HrlHCz6gfB0cTboluMZ1TeGtpMhhFalgAvZ+oRoQ4S/zpuuiwQly3e2QMMBdB3w1nMKGyJAVD/AIhbzps3by66tzjw4cMTTzxBLVu2pPj4eH2vDsBkuKanX0xDkeH5fHtclQ/V2evUix4+2CGYYsqnDaBm97cPFv//eSxJPIamkJJVQLfzikU3mvTBDjWLllrh9VgKAsDa6R0Aca1PRESE2C6Ci575wO3qYWFh4jwAS8gC/Xk0qcK0zZZzaXQw4RY52dvSq4Ow5UVtDWnZSCy0x/UlvEu8KUjZn8iG7mJlari7OxkgtMID1DkA2rFjh9j3y8fnzhL4vr6+NHv2bHEegDnrGOpNvaP8RD3EZ9tiaV98uljLZvqa0+L88T2bUlADF7mHaTE8nB1oUIsAk64JdA71P3qTMpoX05ABAqhzAMR7ZmVnV/0j4lZ43ooCwNxNKe8I++XQNRrz5X569ZfjlJRRQDZaUwVQe/eXL4q49sR1Kik1fpcRtsCoeys8174VFKNeE6BOARBvesot8Lx7O8/582H//v2iPX7kyJF4VMHs3czRvdccV7C88dsJ2nDa9OvaWLLeUQ3J181RrJy9K+6mCVvgEQDVlr+HE3m5OIguSJ6uBIA6BEALFy4UNUC8uaizs7M49OzZU+zozru4A5gzLoCesfZsjZfh8/lyUDsOdrY0om2QSdYE4j3aeINahjWA9OsEk3aGRycYgJreOzw2aNBAbH3B3WC82SjjrjAOgADM3cHLtyg5s6Da8zns4fP5ct3LW7zh7ka3b0zf7k2gjWdSRJBirM1jz5dPf/FmrL7uTka5DWsV1chDrNmEAAhArdbvUrzP19y5c2nNmjViJ3bevHT69Onk4oKCUbAcvM+XIS8Ham2DvSjcz40u3cyljadT6MGO6vZ4Q8MCiHUXg01RAeo2BTZz5kyx87u7uzs1btxYTHe98MILtf11ALPg7+Fs0MvBnSkWzgKx1UZcFPHOAogIgPSFxRAB6hgAff/99/T555/Txo0bafXq1bR27VpasWKFyAwBWIouYT4U6OUsOr504dP5fL4c6Gd0O3UAtCfuJqVmGSeDhhb4+meArt7Oo7yiErmHA2A5ARAvdjh8+HDNzwMHDhTf+nhjVABLwasHTx/RQhyvHARJP/P5fDnQTxNfV+oU6i06jdYcN/z7ArfYny9fyRgZIP1xzRR36/GC3XFpmAYDqHUAVFJSIjq+tDk4OFBxcbExxgVgNENbBdKSxzuIvay08c98Op8PdSNNgxljUcTLN3OpsKSM3BztqImPq8GvXwmwIjRAHYqgeb2f8ePHi4UQJQUFBWL9Hzc3N81pvDcYgLnjIIdXMOZuLy545pofnvZC5qd+7m0dSDPWnhHFyhdSsg26p5pUAN0s0JNs8TzVeRps/6VbFIs6IIDaB0Djxo2rctrjjz9u6PEAmAwHO2h1NyxvN0fqF+NPm8+miizQ28OaGey6UQBtmFZ4dgEBEEDtA6BvvvnGuCMBAKvwQPvGIgD663gSTR0SY7BsDVrgDbclRiymwAD0XwkaAKAm9zTzJw9ne7Gg5IHLtwxynTwFjwxQ/UmrQSdl5FN2Aeo3QdkQAAGAQTk72IlaILbq2DWDXGdadiGl5xYRJ5MMWVekNA1cHcW+YCwWnWCgcAiAAMDg7i/vBlt/KsUgu49L018RDd1FgAV1JwWQKIQGpUMABAAG17mpDzVu4ELZhSW05Vxava9PM/2F+p96i/IvL4ROQQYIlA0BEAAYHBc+j2oXZLBpME0BNOp/DFYHFJuGDBAoGwIgADDqNNj2CzfoVm5Rva7rXHkGqDkCoHqLLp8C43WaAJQMARAAGG3NmVaNPamkTEV/n6z71hi5hSV0OT1XHEcAVH9R/u6awvLMPHSCgXIhAAIAo2+QWp+tMXj/L96/iruXGpZ3MEHdeTg7iPosdhHTYKBgCIAAwGhGtg0SretHEzMo4aY6i6MvLIBovD3BMA0GSoYACACMxt/TmXpFNRTHVx+vWxYICyAac0VoBECgXAiAAMCo7m+v7gZbfSxJrOisr3PIABktAMKu8KBkCIAAwKgGtwggFwc7SkjPo2NXM/T63dIyFZ1PQQbIWK3wF5EBAgVDAAQARuXmZE9DWwVoskD6uHwzlwqKy0QAFerrZqQRKk+kvzvZ2JDYXuRmTqHcwwGQBQIgADC60eVrAq09cZ2KS8v0LoBuFuhBdgbaVR6IXB3tKcTbVRxHFgiUCgEQABhdzwhf8nN3ott5xbTjwo1a/x4KoE2wIjTqgEChEAABgNHZ29ne2RpDj24wtMCbohAaGSBQJgRAAGDSrTH+OZtKWQW1W4EYGSDjQQAESocACABMomWQpyi+LSwpow2nU+56+bTsAlGgy6U/zQIQABmzFb4uyxMAWDoEQABgEjY2Npos0Kqjd58GO5eszkyE+bmRi6Od0cenNOEN3URwmZlfLPYFA1AaBEAAYDJSHdD+y+l0PSO/dtNfQV4mGZvSODvYUdPypQUwDQZKhAAIAEwm2NuVuoT5iM1N15y4XqsC6OaB6qkaMDysCA1KhgAIAExKexqsptqTs9czxf8ogDbBitDYFBUUCAEQAJjU8NaB5GhnSxdSszV1PpXlFZXQpfLd49ECbzzRAeUZoDQEQKA8CIAAwKS8XBxoQHP/GneIv5CSLabJePFEfw9nE49QibvCoxMMlAcBEADItjXGX8eTxIanlWEBRNPgImh7WxvKKSyh65kFcg8HwKQQAAGAyfWLaSgyQalZhbQvPr3K+eekAAj1P0blaG8r2uEZOsFAaRAAAYDJOdnb0X1tAsXxVTp2iL/TAo8AyNiipE4wFEKDwiAAAgBZu8E2nE6m/KJSzek8JXa+/MMYGSDji0ErPCgUAiAAkEXHUG8K8XGh3KJS2nT2ztYYV9JzKa+olJwdbMUq0GCiVnhMgYHCIAACAPm2xminzgKt1poGkwqgYwI8yY73agCTTIHFpeVQmY6CdABrhQAIAGQzqnwabGfsTbHxKcMO8KYV6uMqiqHzi0vp2u2atycBsCYIgABANhEN3altsJeo+1lbvjUGWuBNy97OVjwPjBenBFAKBEAAYBbF0NI0GDJApheDOiBQIARAACCr+9oGiVqfE9cy6VDCLUrLLiQbG6Jm5ds0gAlb4REAgYIgAAIAWfF2F32i/MTxaX+eFP8HeDiTs4OdzCNTDuwKD0qEAAgAZCe1u8elqTdATc4qoF5ztoo1gsB0awHF38ihktIyuYcDYP0B0JIlS6hNmzbk6ekpDt27d6f169fX+Du//fYbNWvWjJydnal169a0bt26CuePHz9etNdqH4YOHWrkewIAdcVBzjd7EqqcnpJZQJN+PIogyASCvV3IxcGOikrK6MqtPLmHA2D9AVBwcDDNnj2bjhw5QocPH6b+/fvTqFGj6MyZMzovv3fvXhozZgw988wzdOzYMRo9erQ4nD59usLlOOBJTk7WHH7++WcT3SMA0Ad3f81Ye5Z0rT4jncbn69owFQzH1taGIv3VhdCxqAMChZA1ABoxYgQNHz6coqKiKDo6mmbOnEnu7u60f/9+nZdfsGCBCG7efPNNat68OX344YfUoUMH+uyzzypczsnJiQICAjQHb29vE90jANDHwcu3KLmGXcg57OHz+XJgmjqgCymoAwJlMJsaoNLSUlq5ciXl5uaKqTBd9u3bRwMHDqxw2pAhQ8Tp2rZv307+/v4UExNDkyZNovT0qrtNayssLKSsrKwKBwAwvrTsAoNeDgywJUYaMkCgDPZyD+DUqVMi4CkoKBDZn1WrVlGLFi10XjYlJYUaNWpU4TT+mU+XcIbogQceoLCwMIqPj6d33nmHhg0bJoIkOzvdXSWzZs2iGTNmGPieAcDd+Hs4G/RyUHfR5csOYAoMlEL2AIizNMePH6fMzEz6/fffady4cbRjx45qg6C7eeyxxzTHuUiai6wjIiJEVmjAgAE6f2fatGn02muvaX7mDFBISEidbh8Aaq9LmA8FejmLgmddVT68E1iAl7O4HJhmCuzSjVxRDM3bYwBYM9lf4Y6OjhQZGUkdO3YUmZi2bduKWh9duJ4nNTW1wmn8M59enfDwcPLz86O4uLhqL8M1Q1InmnQAAOPjBRCnj1B/2am87an0M5+PTVGNL8jLmdyd7KmkTEUJ6erlCACsmewBUGVlZWWiJkcXnirbsmVLhdM2b95cbc0Qu3btmqgBCgwMNPhYAaD+hrYKpCWPdxCZHm38M5/O54Px8ZIhUdgSAxRE1ikwnnri+pwmTZpQdnY2/fTTT2KqauPGjeL8J598kho3biwyQ2zKlCnUt29fmjdvHt17772iaJrb57/44gtxfk5OjqjlefDBB0VWiGuApk6dKjJMXCwNAOaJg5xBLQJEtxcXPHPND097IfNjWtH+HnQsMYMupmQTtZF7NABWHAClpaWJIIfX6vHy8hL1Ohz8DBo0SJyfmJhItrZ3klQ9evQQQdK///1vUdzM7fOrV6+mVq1aifO5yPnkyZP03XffUUZGBgUFBdHgwYNFuzxPcwGA+eJgp3uEr9zDUDSpEBpbYoAS2KhUKqwwVgkXQXNAxoXZqAcCAKXYFXuDnvjqIIX7udHWN/rJPRwAo35+m10NEAAAyNsJxkXQBcWlcg8HwKgQAAEAgODv4UReLg7EO49wOzyANUMABAAAmk4wzYrQ6AQDK4cACAAAqkyDIQACa4cACAAANBAAgVIgAAIAAI07iyGiFR6sGwIgAADQiCnPAF29nUd5RSVyDwfAaBAAAQCAhq+7E/m6ORKvEBeXhiwQWC8EQAAAUE0dEAIgsF4IgAAAoAK0woMSIAACAIAKotAJBgqAAAgAACqIKd8UNRZTYGDFEAABAEAF0f7qACgpI5+yC4rlHg6AUSAAAgCACrxcHaiRp5M4HotOMLBSCIAAAKCKKH91IfSvh67Svvh0KuUdUgGsiL3cAwAAAPOy4XQyHU3MEMdXHroqDoFezjR9RAsa2ipQ7uEBGAQyQAAAUCH4mfTjUcorKq1wekpmgTidzwewBgiAAABA4GmuGWvPkq7JLuk0Ph/TYWANEAABAIBw8PItSs4sqPZ8Dnv4fL4cgKVDAAQAAEJadoFBLwdgzhAAAQCA4O/hbNDLAZgzBEAAACB0CfMR3V42NVymgYuDuByApUMABAAAgp2tjWh1Z9UFQRn5xfSfdeeopLTMpGMDMDQEQAAAoMHr/Cx5vAMFeFWc5uLM0LBWAeL4V7sv07hvDtLt3CKZRglQfzYqlQr9jJVkZWWRl5cXZWZmkqenp9zDAQAwOW51524vLnjmmh+e9uIM0bpTyfTGbyfEOkEhPi70xROdqHkg3ifB8j6/EQDpgAAIAKB651OyaML3h+nqrXxycbCjeY+0peGtsUI0WNbnN6bAAABAL80CPGnNC72oV6Qf5ReX0uQVR2nuxvNYIBEsCgIgAADQm7ebI337VGea0DtM/Lx4W7zICmUVFMs9NIBaQQAEAAB1Ym9nS/+6twX999G25GRvS1vPp9Hoz/ZQXFqO3EMDuCsEQAAAUC/3tw+m3yf2EJ1il27m0ujFe+ifs6lyDwugRgiAAACg3loHe9GaF3tRl6Y+lFNYQhN+OEyLtsRSGeqCwEwhAAIAAINo6OFEPz7blZ7oFkrcXzxv80VRIJ1bWCL30ACqQAAEAAAG42hvSx+ObkWzH2hNDnY2tOFMCj3w+V66kp4r99AAKkAABAAABvdYlya08rluIit0ITWbRn62h3bF3pB7WAAaCIAAAMAoOob60NoXe1HbkAaUmV9M474+SF/sjCesvwvmAAEQAAAYDe8p9stz3eihjsHE9dD/WXeeXv3lOBUUl8o9NFA4BEAAAGBUzg52NPehNvT+iBZiP7HVx6/TQ0v3UlJGvtxDAwVDAAQAAEZnY2ND43uG0Q/PdCFvVwc6nZRFIxftpgOX0uUeGigUAiAAADCZHhF+Yr2gFoGelJ5bRGOXH6Dv9yWgLghMDgEQAACYVIiPK/0xqQeNaBtEJWUqeu+vM/T2H6eosAR1QWA6CIAAAMDkXBztaOFj7ejtYc3Ixobol8NXacwX+yktq0DuoYFCIAACAADZ6oIm9o2gb8Z3Jk9nezqamEH3LdpNRxNvyz00UAAEQAAAIKt+Mf7014u9KMrfndKyC+mxZfvp10NX5R4WWDkEQAAAILswPzda9UJPGtyiERWVltHUP07S9L9OU3FpmdxDAyuFAAgAAMyCu5M9LX28I70yMEr8/N2+K/T48gOUnlMo99DACiEAAgAAs2Fra0OvDIymL57oSG6OdnTg8i2xj9jppEy5hwZWBgEQAACYncEtA2j1Cz2pqa+rWDGaV47+63iS3MMCK4IACAAAzFJUIw/664Ve1De6IRUUl9GUlcdp1rpzVMqbigHUEwIgAAAwW16uDvT1+M6iXZ4t23mJxn9zkDLziuUeGlg4BEAAAGDWeANVXjBx0Zj25OxgS7tib9LIxbvpYmq23EMDC4YACAAALAJvncFbaDRu4EJX0vNo9OI9tOF0itzDAguFAAgAACxGyyAvWvtSL+oe7kt5RaU08ccj9Onmi1SGuiDQEwIgAACwKD5ujvT9M13oqZ5Nxc8Lt8TScz8coewC1AVB7SEAAgAAi+NgZ0vTR7SkuQ+1IUd7W/rnXCrd//leunQjR+6hgYVAAAQAABbr4U4h9Ovz3amRpxPFpeXQqMV7aNv5NLmHBRYAARAAAFi0diENRF1Qx1Bvyi4ooae/O0Sfb48jlUol1gzaF58uFlHk/y11DSHcD8OzUfErRCZLliwRh4SEBPFzy5Yt6b333qNhw4ZV+zu//fYbvfvuu+J3oqKiaM6cOTR8+HDN+Xx3pk+fTl9++SVlZGRQz549xW3wZWsrKyuLvLy8KDMzkzw9Pet5LwEAwBQKS0rp/TVn6OeD6p3kO4Q2oKTb+ZSadWcvsUAvZ5o+ogUNbRVIlmLD6WSasfYsJWcWaE7D/aj/57esGaDg4GCaPXs2HTlyhA4fPkz9+/enUaNG0ZkzZ3Refu/evTRmzBh65pln6NixYzR69GhxOH36tOYyH3/8MS1cuJCWLl1KBw4cIDc3NxoyZAgVFNx5wAEAwPo42dvRrAfa0EejW5GtDdHRKxkVgh+WkllAk348Kj6MLQGPk8erHTQw3A8LzwDp4uPjQ3PnzhVBTmWPPvoo5ebm0v/+9z/Nad26daN27dqJgIfvSlBQEL3++uv0xhtviPM5CmzUqBF9++239Nhjj9VqDMgAAQBYLp5W6TLzH0rPLar2Mv4eTvTbxO5ikUVzvh8PLd1HN7IrBnHWdj9siCjAy5l2v9W/3vdDn89vezITpaWlYnqLA5zu3bvrvMy+ffvotddeq3AaZ3dWr14tjl++fJlSUlJo4MCBmvP5gejatav43eoCoMLCQnHQfgABAMAyHbx8q8bgh6VlF1LfudvJ0lnD/VARicwQP2/dI3xNdruyB0CnTp0SAQ9PUbm7u9OqVauoRYsWOi/LwQ1nc7Txz3y6dL50WnWX0WXWrFk0Y8YMA9wbAACQW1p27Uoe7G1tzD5zUlKLImFruR9ptXzerCYAiomJoePHj4t01e+//07jxo2jHTt2VBsEGcO0adMqZJY4AxQSEmKy2wcAAMPx93Cu1eV+eKarSTMO+uIuqTFf7lfM/fCv5fNmNW3wjo6OFBkZSR07dhSZmLZt29KCBQt0XjYgIIBSU1MrnMY/8+nS+dJp1V1GFycnJzFXqH0AAADL1CXMR3QXVZcT4dP5fL6cOcP9sPIAqLKysrIK9TjaeKpsy5YtFU7bvHmzpmYoLCxMBDral+FsDneDVVdXBAAA1oWng7i1mlX+0JV+5vPNedqI4X5YcQDEU087d+4Ua/pwLRD/vH37dho7dqw4/8knnxSnSaZMmUIbNmygefPm0fnz5+n9998X7fMvvviiON/GxoZeeeUV+uijj2jNmjXiOvk6uDOM2+UBAEAZeF2ZJY93EN1F2vhnPt1S1s/B/bDSGqC0tDQRoCQnJ4turTZt2tDGjRtp0KBB4vzExESytb0To/Xo0YN++ukn+ve//03vvPOOWNyQO8BatWqluczUqVNFJ9lzzz0nFkLs1auXCJqcnU07twgAAPLiD9VBLQJEdxEX2HKNCU+zmHvGpDLcD4WsA2QOsA4QAACA5bGYlaABAAAA5IAACAAAABQHARAAAAAoDgIgAAAAUBwEQAAAAKA4CIAAAABAcRAAAQAAgOIgAAIAAADFQQAEAAAAiiPrVhjmSlocm1eUBAAAAMsgfW7XZpMLBEA6ZGdni/9DQkLkHgoAAADU4XOct8SoCfYC06GsrIyuX79OHh4eYod5Q0enHFhdvXoV+4yZATwf5gXPh3nB82Fe8HzcHYc0HPwEBQVV2ExdF2SAdOAHLTg42Ki3wS9evIDNB54P84Lnw7zg+TAveD5qdrfMjwRF0AAAAKA4CIAAAABAcRAAmZiTkxNNnz5d/A/yw/NhXvB8mBc8H+YFz4dhoQgaAAAAFAcZIAAAAFAcBEAAAACgOAiAAAAAQHEQAAEAAIDiIAAyocWLF1PTpk3J2dmZunbtSgcPHpR7SIo0a9Ys6ty5s1jp29/fn0aPHk0XLlyQe1hQbvbs2WIF9ldeeUXuoShaUlISPf744+Tr60suLi7UunVrOnz4sNzDUqTS0lJ69913KSwsTDwXERER9OGHH9ZqvyuoHgIgE/nll1/otddeEy2MR48epbZt29KQIUMoLS1N7qEpzo4dO+iFF16g/fv30+bNm6m4uJgGDx5Mubm5cg9N8Q4dOkTLli2jNm3ayD0URbt9+zb17NmTHBwcaP369XT27FmaN28eeXt7yz00RZozZw4tWbKEPvvsMzp37pz4+eOPP6ZFixbJPTSLhjZ4E+GMD2cd+AUs7TfGe7q89NJL9Pbbb8s9PEW7ceOGyARxYNSnTx+5h6NYOTk51KFDB/r888/po48+onbt2tH8+fPlHpYi8XvSnj17aNeuXXIPBYjovvvuo0aNGtFXX32lOe3BBx8U2aAff/xR1rFZMmSATKCoqIiOHDlCAwcOrLDfGP+8b98+WccGRJmZmeJ/Hx8fuYeiaJyVu/feeyv8nYA81qxZQ506daKHH35YfDlo3749ffnll3IPS7F69OhBW7ZsoYsXL4qfT5w4Qbt376Zhw4bJPTSLhs1QTeDmzZtiDpcjeG388/nz52UbF6gzcVxrwun+Vq1ayT0cxVq5cqWYGuYpMJDfpUuXxJQLT9u/88474nl5+eWXydHRkcaNGyf38BSZkeOd4Js1a0Z2dnbi82TmzJk0duxYuYdm0RAAASk963D69GnxbQrkcfXqVZoyZYqox+IGATCPLwacAfrPf/4jfuYMEP+dLF26FAGQDH799VdasWIF/fTTT9SyZUs6fvy4+OIWFBSE56MeEACZgJ+fn4jaU1NTK5zOPwcEBMg2LqV78cUX6X//+x/t3LmTgoOD5R6OYvH0MDcDcP2PhL/h8vPCNXOFhYXi7wdMJzAwkFq0aFHhtObNm9Mff/wh25iU7M033xRZoMcee0z8zB15V65cER2tCIDqDjVAJsBp444dO4o5XO1vWPxz9+7dZR2bEnHdPwc/q1atoq1bt4rWUpDPgAED6NSpU+JbrXTg7AOn9/k4gh/T4ynhyktDcP1JaGiobGNSsry8PFE3qo3/LvhzBOoOGSAT4bl0jtT5jb1Lly6iu4Xbrp966im5h6bIaS9OJf/1119iLaCUlBRxupeXl+iqANPi56By/ZWbm5tYfwZ1WfJ49dVXReEtT4E98sgjYs2yL774QhzA9EaMGCFqfpo0aSKmwI4dO0affvopPf3003IPzaKhDd6EOJ0/d+5c8YHLLb4LFy4U7fFgWrzIni7ffPMNjR8/3uTjgar69euHNniZ8fTwtGnTKDY2VmRJ+UvchAkT5B6WImVnZ4uFEDlrzdPFXPszZswYeu+998QMA9QNAiAAAABQHNQAAQAAgOIgAAIAAADFQQAEAAAAioMACAAAABQHARAAAAAoDgIgAAAAUBwEQAAAAKA4CIAAwKoXvVy9enWdf3/79u3iOjIyMuo1Dl5gc/To0fW6DgAwLARAAFBnN27coEmTJokl+p2cnMTmvkOGDKE9e/aQNeDtIJKTk8U2KQBgXbAXGADU2YMPPkhFRUX03XffUXh4OKWmpopNftPT08ka8DYDHNQBgPVBBggA6oSnhXbt2kVz5syhe+65R+wUzhv98v5RI0eO1FyON21s3bq12OA0JCSEJk+eTDk5OZrzv/32W2rQoIHYeyomJoZcXV3poYceEjtgc2DVtGlT8vb2ppdffplKS0s1v8enf/jhh2JPJL7uxo0b0+LFi2sc89WrV8Xmnnx7Pj4+NGrUKEpISKj1FJg01o0bN1Lz5s3J3d2dhg4dKrJEEh4j75vFl+MNXadOnUqVdxziXbxnzZol9tjiDXjbtm1Lv//+uziPLztw4ECRSZN+79atWxQcHCz2fgIAw0AABAB1wh/+fOAam8LCwmovZ2trKzb+PXPmjAhotm7dKoICbRzs8GVWrlxJGzZsEIHH/fffT+vWrROHH374gZYtW6YJEiS8uTAHD7w79ttvv01TpkyhzZs36xxHcXGxCCp493kO3HiaTgpgOItVWzzWTz75RIxp586dlJiYSG+88Ybm/Hnz5olA6euvv6bdu3eL4IU3sdTGwc/3339PS5cuFY8L777++OOP044dO0TAxY/ToUOHxGPCJk6cKAI8BEAABsSboQIA1MXvv/+u8vb2Vjk7O6t69OihmjZtmurEiRM1/s5vv/2m8vX11fz8zTffcJpDFRcXpznt+eefV7m6uqqys7M1pw0ZMkScLgkNDVUNHTq0wnU/+uijqmHDhml+5utdtWqVOP7DDz+oYmJiVGVlZZrzCwsLVS4uLqqNGzfqHOu2bdvEddy+fbvasS5evFjVqFEjzc+BgYGqjz/+WPNzcXGxKjg4WDVq1Cjxc0FBgbhve/furXBbzzzzjGrMmDGan3/99VfxuL799tsqNzc31cWLF2t4VAFAX8gAAUC9aoCuX79Oa9asEZkUztx06NBBZEAk//zzDw0YMEBkMDj78sQTT4gaIc6kSHjaKyIiQvNzo0aNxBQXZ2i0T0tLS6tw+927d6/y87lz53SO9cSJExQXFyfGIGWveBqsoKCA4uPja32fK481MDBQM67MzEwxHda1a1fN+fb29tSpUyfNzzwGvu+DBg3SjIMPnBHSHsfDDz8ssmCzZ88WGaeoqKhajxEA7g5F0ABQL87OzuLDnA/vvvsuPfvsszR9+nTR+s31Nffdd5/oFJs5c6YIOHha6JlnnhHTThxMMAcHhwrXydNAuk7j2pm64rqjjh070ooVK6qc17Bhw1pfj65xVa7xuds42N9//y2CQm3cSSfhIOnIkSNkZ2dHsbGxtb5+AKgdBEAAYFAtWrTQrL3DH+ActHBdDNcCsV9//dVgt7V///4qP3Nxsi6cmfrll1/I39+fPD09yRi4XZ4zQgcOHKA+ffqI00pKSsTjwLcvPT4c6HDtUN++fau9rtdff108ZuvXr6fhw4fTvffeS/379zfKuAGUCAEQANQJT2PxNM3TTz9Nbdq0EVNLhw8fpo8//lh0V7HIyEhRfLxo0SIaMWKEKDzmwl9D4evj2+NFBrn4+bfffhOZFV3Gjh0riqZ5bB988IHoqrpy5Qr9+eefoiibfzYELsTmaSuesmrWrJnogtNeSJEfJy6a5sJnDg579eolps74vnBgNm7cOHEfuIh63759InB68803xeknT54UHXEAUH+oAQKAOuG6Fa51+e9//yuyHa1atRJTYBMmTKDPPvtMXIY7tDgA4FZ5Pp+nn7gDylA4S8JBV/v27emjjz4St8WdXrrwdBt3bfGijQ888IDIFPFUHNcAGTIjxGPiOicOWLgmiQMeruXRxu37/FjxY8Hj4PopDnq4LZ4Xl+Rxvf/++5qs0YwZM0QNFHeDAYBh2HAltIGuCwDAZLhI+pVXXhEHAAB9IQMEAAAAioMACAAAABQHU2AAAACgOMgAAQAAgOIgAAIAAADFQQAEAAAAioMACAAAABQHARAAAAAoDgIgAAAAUBwEQAAAAKA4CIAAAABAcRAAAQAAgOL8P/CoCJeO6ui8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the power parameter (index 1 in surface_fractal_params)\n", "ds_result.sel(surface_fractal_params='surface_fractal_power').surface_fractal_fit_val.plot(marker='o')\n", "plt.ylabel('Power parameter')\n", "plt.xlabel('Sample index')\n" ] }, { "cell_type": "markdown", "id": "a08b975d", "metadata": {}, "source": [ "## Conclusion\n", " \n", "In this tutorial, we demonstrated how to use the AutoSAS module to fit small-angle scattering (SAS) data. We:\n", "\n", "1. Loaded synthetic dataset with 10 samples and fit it using a surface fractal model\n", "2. Visualized the fits by plotting the data and model curves on log-log axes\n", "3. Analyzed the quality of the fits by examining the residuals between the model and data\n", "4. Explored how the model parameters vary across different samples\n", "\n", "The AutoSAS module provides a flexible framework for fitting SAS data with different models, evaluating fit quality, and extracting physical parameters. \n" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 5 }