{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "[](https://colab.research.google.com/github/usnistgov/AFL-agent/blob/main/docs/source/how-to/building_xarray_datasets.ipynb)\n", "\n", "# Build an xarray.Dataset from Scratch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this `How-To` we'll go through the process of building up an xarray.Dataset that could be used as an input to `Pipeline.calculate`. We'll generate random compositions and fake data to go along with these compositions. \n", "\n", "\n", "The dataset generated in this notebook is the basis for the `Building Pipelines` tutorial." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Google Colab Setup\n", "\n", "Only uncomment and run the next cell if you are running this notebook in Google Colab or if don't already have the AFL-agent package installed." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# !pip install git+https://github.com/usnistgov/AFL-agent.git" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## First Steps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To begin, let's import the necessary libraries for this document and then make an empty :py:class:`xarray.Dataset`" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=\"dark\"],\n", "html[data-theme=\"dark\"],\n", "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1f1f1f;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 0 20px 0 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: inline-block;\n", " opacity: 0;\n", " height: 0;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:focus + label {\n", " border: 2px solid var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: \"â–º\";\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: \"â–¼\";\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: \"(\";\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: \")\";\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: \",\";\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset> Size: 0B\n", "Dimensions: ()\n", "Data variables:\n", " *empty*</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-bb2cd0ff-79f9-4f50-b17b-cc9916aed639' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-bb2cd0ff-79f9-4f50-b17b-cc9916aed639' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-87eddf5a-1696-4d4d-8418-d395e321a448' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-87eddf5a-1696-4d4d-8418-d395e321a448' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-3def2f4c-e617-4dd0-ab7f-0540881b9d59' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-3def2f4c-e617-4dd0-ab7f-0540881b9d59' class='xr-section-summary' title='Expand/collapse section'>Data variables: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-8f27c922-9484-449f-b86e-f29e6dce32f9' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-8f27c922-9484-449f-b86e-f29e6dce32f9' class='xr-section-summary' title='Expand/collapse section'>Indexes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-ff8a35a2-ca0b-4eb8-98c5-84184b7ff4b7' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-ff8a35a2-ca0b-4eb8-98c5-84184b7ff4b7' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset> Size: 0B\n", "Dimensions: ()\n", "Data variables:\n", " *empty*" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import numpy as np\n", "import xarray as xr\n", "import matplotlib.pyplot as plt\n", "\n", "ds = xr.Dataset()\n", "ds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compositions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we generate random 'compositions' that we'll do simulated/virtual measurements at. We'll generate the compositions for a 2-dimensional space with components \"A\" and \"B\" as placeholders. You could imagine that A and B are the concentrations of two different preservatives in a liquid mixtures. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1.93506959, 4.33877746],\n", " [ 3.99993228, 15.11981127],\n", " [ 5.14403166, 1.65850983],\n", " [ 4.57883235, 12.34183192],\n", " [ 8.05567528, 10.47358865],\n", " [ 1.04161007, 22.83361697],\n", " [ 5.85757901, 18.81270953],\n", " [ 4.29558185, 16.91442648],\n", " [ 3.14950211, 2.08947439],\n", " [ 7.65251749, 13.05015789],\n", " [ 5.58833051, 7.55301393],\n", " [ 8.75864958, 13.90004698],\n", " [ 9.03579843, 1.04110731],\n", " [ 6.94709288, 22.03909555],\n", " [ 6.30872735, 23.08178649],\n", " [ 8.38214203, 24.28281802],\n", " [ 6.09861924, 5.67560421],\n", " [ 0.12177663, 1.50263558],\n", " [ 5.4271795 , 24.05339109],\n", " [ 3.32773495, 12.91733508],\n", " [ 8.22656778, 18.12750637],\n", " [ 7.77255352, 1.61982803],\n", " [ 1.58024907, 8.89957219],\n", " [ 0.62964449, 13.64241493],\n", " [ 4.87628903, 11.61657773],\n", " [ 5.13234999, 15.35880089],\n", " [ 3.02453785, 10.78092744],\n", " [ 6.29667967, 9.70296135],\n", " [ 2.87889006, 21.23149213],\n", " [ 7.33476093, 23.21218938],\n", " [ 6.96178175, 14.54078124],\n", " [ 9.94068744, 13.1306839 ],\n", " [ 5.81347609, 18.31807371],\n", " [ 3.65653358, 1.86819243],\n", " [ 8.97030945, 15.30596251],\n", " [ 2.93130382, 20.47763125],\n", " [ 9.37753719, 17.91516725],\n", " [ 0.41716654, 1.43289172],\n", " [ 1.1435741 , 4.91629814],\n", " [ 1.08112256, 11.13119176],\n", " [ 5.25354877, 9.45231719],\n", " [ 7.20589227, 18.57879028],\n", " [ 7.89243271, 11.31509607],\n", " [ 6.94687163, 14.82218341],\n", " [ 7.23403931, 6.79257162],\n", " [ 8.68249381, 12.53839805],\n", " [ 1.06877839, 10.32097668],\n", " [ 7.89831494, 0.4644321 ],\n", " [ 1.55458517, 24.16727467],\n", " [ 0.45829217, 3.24497194],\n", " [ 8.9361479 , 15.47144486],\n", " [ 6.41770086, 10.88253153],\n", " [ 5.88298706, 18.25514364],\n", " [ 1.345648 , 11.08596411],\n", " [ 1.03642353, 21.48281264],\n", " [ 8.17349873, 17.80265345],\n", " [ 8.24719952, 23.52786849],\n", " [ 7.19131724, 9.11486603],\n", " [ 0.78123421, 3.94805308],\n", " [ 6.24072184, 17.0863877 ],\n", " [ 0.50409961, 16.27277289],\n", " [ 8.38188047, 1.72138619],\n", " [ 2.60295083, 4.67442285],\n", " [ 2.58444436, 16.57143555],\n", " [ 9.35239534, 16.00199993],\n", " [ 6.50574801, 17.33916381],\n", " [ 3.27476499, 7.83797279],\n", " [ 7.75461602, 23.60987228],\n", " [ 0.55448762, 24.08902153],\n", " [ 3.82063523, 20.43360895],\n", " [ 1.96279418, 8.66791611],\n", " [ 8.31501072, 0.0249756 ],\n", " [ 2.4606 , 5.38843633],\n", " [ 9.1328654 , 19.8844552 ],\n", " [ 4.08471932, 1.10690158],\n", " [ 8.48469695, 11.10944636],\n", " [ 5.99946032, 10.58338866],\n", " [ 7.99427379, 10.09969 ],\n", " [ 8.71171219, 7.02035713],\n", " [ 7.30678607, 24.33877297],\n", " [ 7.76378269, 21.99343589],\n", " [ 7.45991402, 8.11174006],\n", " [ 7.63854343, 13.54025074],\n", " [ 0.81733253, 9.43775453],\n", " [ 7.20059135, 5.85811728],\n", " [ 2.20804772, 6.7721729 ],\n", " [ 3.65472461, 4.43961665],\n", " [ 8.21345636, 10.74735116],\n", " [ 9.92147334, 15.55468087],\n", " [ 9.52663079, 6.77762994],\n", " [ 7.01379838, 22.20232276],\n", " [ 0.23914684, 3.4963898 ],\n", " [ 3.46456904, 12.84968187],\n", " [ 0.26618359, 8.12557401],\n", " [ 1.1156883 , 0.45431966],\n", " [ 6.91416382, 21.4816626 ],\n", " [ 0.59623227, 7.69198605],\n", " [ 2.02031934, 4.93580074],\n", " [ 5.21402634, 4.84272796],\n", " [ 7.87824238, 14.33035062]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "num_measurements = 100\n", "A = np.random.uniform(0,10,size=num_measurements)\n", "B = np.random.uniform(0,25,size=num_measurements)\n", "compositions = np.array([A,B]).T\n", "compositions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's add this information to the :py:class:`xarray.Dataset`. \n", "\n", "Note how, for the `composition` variable, we need to not only specify the name of the variable in the dataset but also the names of the dimensions of the data ('sample' and 'components')." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=\"dark\"],\n", "html[data-theme=\"dark\"],\n", "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1f1f1f;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 0 20px 0 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: inline-block;\n", " opacity: 0;\n", " height: 0;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:focus + label {\n", " border: 2px solid var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: \"â–º\";\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: \"â–¼\";\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: \"(\";\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: \")\";\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: \",\";\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset> Size: 2kB\n", "Dimensions: (sample: 100, component: 2)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 4.0 ... 7.878 14.33</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-91df6d61-ea9c-487d-a771-50aadcd504d2' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-91df6d61-ea9c-487d-a771-50aadcd504d2' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>sample</span>: 100</li><li><span class='xr-has-index'>component</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-5e831e6f-554a-4a65-a996-c358495de4d0' class='xr-section-summary-in' type='checkbox' checked><label for='section-5e831e6f-554a-4a65-a996-c358495de4d0' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>component</span></div><div class='xr-var-dims'>(component)</div><div class='xr-var-dtype'><U1</div><div class='xr-var-preview xr-preview'>'A' 'B'</div><input id='attrs-5e53e53f-3110-405e-b5f4-887f31c170ed' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5e53e53f-3110-405e-b5f4-887f31c170ed' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bead84de-b18f-494f-b30e-6aab214545db' class='xr-var-data-in' type='checkbox'><label for='data-bead84de-b18f-494f-b30e-6aab214545db' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['A', 'B'], dtype='<U1')</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-cf590900-3dda-4c1e-8b54-4169a4959dfe' class='xr-section-summary-in' type='checkbox' checked><label for='section-cf590900-3dda-4c1e-8b54-4169a4959dfe' class='xr-section-summary' >Data variables: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>composition</span></div><div class='xr-var-dims'>(sample, component)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.935 4.339 4.0 ... 7.878 14.33</div><input id='attrs-cf3bc82f-c91b-4dea-a018-9e126687469d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-cf3bc82f-c91b-4dea-a018-9e126687469d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4c84ddfc-f288-4dd9-8610-7f8eb969dbaa' class='xr-var-data-in' type='checkbox'><label for='data-4c84ddfc-f288-4dd9-8610-7f8eb969dbaa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 1.93506959, 4.33877746],\n", " [ 3.99993228, 15.11981127],\n", " [ 5.14403166, 1.65850983],\n", " [ 4.57883235, 12.34183192],\n", " [ 8.05567528, 10.47358865],\n", " [ 1.04161007, 22.83361697],\n", " [ 5.85757901, 18.81270953],\n", " [ 4.29558185, 16.91442648],\n", " [ 3.14950211, 2.08947439],\n", " [ 7.65251749, 13.05015789],\n", " [ 5.58833051, 7.55301393],\n", " [ 8.75864958, 13.90004698],\n", " [ 9.03579843, 1.04110731],\n", " [ 6.94709288, 22.03909555],\n", " [ 6.30872735, 23.08178649],\n", " [ 8.38214203, 24.28281802],\n", " [ 6.09861924, 5.67560421],\n", " [ 0.12177663, 1.50263558],\n", " [ 5.4271795 , 24.05339109],\n", " [ 3.32773495, 12.91733508],\n", "...\n", " [ 7.76378269, 21.99343589],\n", " [ 7.45991402, 8.11174006],\n", " [ 7.63854343, 13.54025074],\n", " [ 0.81733253, 9.43775453],\n", " [ 7.20059135, 5.85811728],\n", " [ 2.20804772, 6.7721729 ],\n", " [ 3.65472461, 4.43961665],\n", " [ 8.21345636, 10.74735116],\n", " [ 9.92147334, 15.55468087],\n", " [ 9.52663079, 6.77762994],\n", " [ 7.01379838, 22.20232276],\n", " [ 0.23914684, 3.4963898 ],\n", " [ 3.46456904, 12.84968187],\n", " [ 0.26618359, 8.12557401],\n", " [ 1.1156883 , 0.45431966],\n", " [ 6.91416382, 21.4816626 ],\n", " [ 0.59623227, 7.69198605],\n", " [ 2.02031934, 4.93580074],\n", " [ 5.21402634, 4.84272796],\n", " [ 7.87824238, 14.33035062]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a26804df-0bd2-4ce6-b8b3-6700b28c39d7' class='xr-section-summary-in' type='checkbox' ><label for='section-a26804df-0bd2-4ce6-b8b3-6700b28c39d7' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>component</div></div><div class='xr-index-preview'>PandasIndex</div><input type='checkbox' disabled/><label></label><input id='index-0b827412-9248-47a6-af5e-63bd8cb03a36' class='xr-index-data-in' type='checkbox'/><label for='index-0b827412-9248-47a6-af5e-63bd8cb03a36' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index(['A', 'B'], dtype='object', name='component'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-f9745ef1-c13e-472a-bf68-54d404528699' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-f9745ef1-c13e-472a-bf68-54d404528699' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset> Size: 2kB\n", "Dimensions: (sample: 100, component: 2)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 4.0 ... 7.878 14.33" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds['composition'] = (['sample','component'],compositions)\n", "ds['component'] = ('component',['A','B'])\n", "ds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, in order to simulate a 'phase boundary' we'll create labels for the data. We'll draw an arbitrary line through the composition space and label the data that is above and below that line. \n", "\n", "Let's generate this data and add it to the dataset" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=\"dark\"],\n", "html[data-theme=\"dark\"],\n", "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1f1f1f;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 0 20px 0 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: inline-block;\n", " opacity: 0;\n", " height: 0;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:focus + label {\n", " border: 2px solid var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: \"â–º\";\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: \"â–¼\";\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: \"(\";\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: \")\";\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: \",\";\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset> Size: 2kB\n", "Dimensions: (sample: 100, component: 2)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 ... 14.33\n", " ground_truth_labels (sample) int64 800B 1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-9c2647cf-3106-4c3e-935b-791c286fce53' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-9c2647cf-3106-4c3e-935b-791c286fce53' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>sample</span>: 100</li><li><span class='xr-has-index'>component</span>: 2</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-a035570e-c7d2-4e28-ba09-bf4fd8eca218' class='xr-section-summary-in' type='checkbox' checked><label for='section-a035570e-c7d2-4e28-ba09-bf4fd8eca218' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>component</span></div><div class='xr-var-dims'>(component)</div><div class='xr-var-dtype'><U1</div><div class='xr-var-preview xr-preview'>'A' 'B'</div><input id='attrs-3dc63b7d-ac16-43f1-a8b9-fd29a6e1599d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3dc63b7d-ac16-43f1-a8b9-fd29a6e1599d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-73376783-4e7e-40c8-b648-a57e95b73290' class='xr-var-data-in' type='checkbox'><label for='data-73376783-4e7e-40c8-b648-a57e95b73290' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['A', 'B'], dtype='<U1')</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-378b8e5a-d28e-48bf-b03f-4b1267f98bad' class='xr-section-summary-in' type='checkbox' checked><label for='section-378b8e5a-d28e-48bf-b03f-4b1267f98bad' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>composition</span></div><div class='xr-var-dims'>(sample, component)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.935 4.339 4.0 ... 7.878 14.33</div><input id='attrs-817f4f80-e04a-4e40-bda3-bb4388e1e062' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-817f4f80-e04a-4e40-bda3-bb4388e1e062' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4dc9e319-ee1e-4fe3-bd53-7bad37e0ab4e' class='xr-var-data-in' type='checkbox'><label for='data-4dc9e319-ee1e-4fe3-bd53-7bad37e0ab4e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 1.93506959, 4.33877746],\n", " [ 3.99993228, 15.11981127],\n", " [ 5.14403166, 1.65850983],\n", " [ 4.57883235, 12.34183192],\n", " [ 8.05567528, 10.47358865],\n", " [ 1.04161007, 22.83361697],\n", " [ 5.85757901, 18.81270953],\n", " [ 4.29558185, 16.91442648],\n", " [ 3.14950211, 2.08947439],\n", " [ 7.65251749, 13.05015789],\n", " [ 5.58833051, 7.55301393],\n", " [ 8.75864958, 13.90004698],\n", " [ 9.03579843, 1.04110731],\n", " [ 6.94709288, 22.03909555],\n", " [ 6.30872735, 23.08178649],\n", " [ 8.38214203, 24.28281802],\n", " [ 6.09861924, 5.67560421],\n", " [ 0.12177663, 1.50263558],\n", " [ 5.4271795 , 24.05339109],\n", " [ 3.32773495, 12.91733508],\n", "...\n", " [ 7.76378269, 21.99343589],\n", " [ 7.45991402, 8.11174006],\n", " [ 7.63854343, 13.54025074],\n", " [ 0.81733253, 9.43775453],\n", " [ 7.20059135, 5.85811728],\n", " [ 2.20804772, 6.7721729 ],\n", " [ 3.65472461, 4.43961665],\n", " [ 8.21345636, 10.74735116],\n", " [ 9.92147334, 15.55468087],\n", " [ 9.52663079, 6.77762994],\n", " [ 7.01379838, 22.20232276],\n", " [ 0.23914684, 3.4963898 ],\n", " [ 3.46456904, 12.84968187],\n", " [ 0.26618359, 8.12557401],\n", " [ 1.1156883 , 0.45431966],\n", " [ 6.91416382, 21.4816626 ],\n", " [ 0.59623227, 7.69198605],\n", " [ 2.02031934, 4.93580074],\n", " [ 5.21402634, 4.84272796],\n", " [ 7.87824238, 14.33035062]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ground_truth_labels</span></div><div class='xr-var-dims'>(sample)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1</div><input id='attrs-867d6aa3-74e4-4f12-8f11-4dd68c3c65ac' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-867d6aa3-74e4-4f12-8f11-4dd68c3c65ac' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-386702a3-1227-4717-a70f-d17682ec162e' class='xr-var-data-in' type='checkbox'><label for='data-386702a3-1227-4717-a70f-d17682ec162e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-c959a87d-af98-4c54-a845-9508b18cc11f' class='xr-section-summary-in' type='checkbox' ><label for='section-c959a87d-af98-4c54-a845-9508b18cc11f' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>component</div></div><div class='xr-index-preview'>PandasIndex</div><input type='checkbox' disabled/><label></label><input id='index-da49f697-f2be-4bd8-830d-f164b101bdf9' class='xr-index-data-in' type='checkbox'/><label for='index-da49f697-f2be-4bd8-830d-f164b101bdf9' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index(['A', 'B'], dtype='object', name='component'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-fd6e5a63-8dfc-4f37-a64a-089c6bde5969' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-fd6e5a63-8dfc-4f37-a64a-089c6bde5969' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset> Size: 2kB\n", "Dimensions: (sample: 100, component: 2)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 ... 14.33\n", " ground_truth_labels (sample) int64 800B 1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "labels = (A>(0.25*B-1)).astype(int)\n", "ds['ground_truth_labels'] = ('sample',labels)\n", "ds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can plot the data. We do this using xarray by first extracting the compositions data variable into a new standalone xarray.Dataset and then calling plot.scatter on it. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXEpJREFUeJzt3Qd8lEX6B/DfvNvSK00UFFEPFRFFBcUGFkQs2BuK5U69s/fj7BXLWc4unr1gB7snosJfD+z17IqCIp3UTba98//MvEnIJruYstm37O/rZyWZCcmw2d332ZlnnhFSSgkiIiIiFzLsHgARERFRVzGQISIiItdiIENERESuxUCGiIiIXIuBDBEREbkWAxkiIiJyLQYyRERE5Fp+eJxpmli8eDGKi4shhLB7OERERNQBqsxdbW0t+vfvD8MwcjeQUUHMgAED7B4GERERdcGiRYuw3nrr5W4go2Zimu+IkpISu4dDREREHVBTU6MnIpqv4zkbyDQvJ6kghoEMERGRu/xRWgiTfYmIiMi1bA1kpk6dim233VZPG/Xp0wcTJ07Et99+m/Q1u+66q47GWt9OPvlk28ZMREREzmFrIDNnzhyccsopmD9/PmbNmoVYLIY999wT9fX1SV/3l7/8Bb///nvL7frrr7dtzEREROQctubIvPbaa0mfP/jgg3pm5qOPPsLOO+/c0l5QUIB+/frZMEIiIiJyMkflyFRXV+s/Kyoqktofe+wx9OrVC0OHDsWUKVMQDofTfo9IJKIznVvfiIiIyJv8Tipcd+aZZ2L06NE6YGl25JFHYv3119cFcT7//HNccMEFOo/mueeeS5t3c/nll2dx5ERERGQXIVXpPAf461//ildffRXvvPPOWgvfvPnmm9htt93www8/YPDgwSlnZNSt7T50NdvD7ddERETuoK7fpaWlf3j9dsSMzKmnnoqXXnoJc+fOXWsQo4wcOVL/mS6QCYVC+kZERETeZ2sgoyaDTjvtNMyYMQNvv/02Bg0a9Id/59NPP9V/rrPOOlkYIRERETmZrYGM2nr9+OOP4/nnn9e1ZJYsWaLb1VRSfn4+fvzxR92/9957o7KyUufInHXWWXpH07Bhw+wcOhER/QEpYyqDQX8shCMWAMiDbM2RSVd2+IEHHsCxxx6rz0eaNGkSvvzyS11bRuW6HHDAAbjooos6nO/S0TU2IiLKDCnjAOJAw4uQiV8gAlsCobG6Twgf3ETKRMuY1b+LAVn2uCJH5o9iKBW4qKJ5RETkoiAm8TvkqiMBc6nVpv7n3wKi4hFAFMA1/w4ZBcKPwIy+A4gyiILDgdBou4dGTq4jQ+6RSCT0n7Wr6/D7T0shTYlE3GojotylZixkzRUtQUyL+BeQ9dP0DIc7xCFXHQZZdyMQfQ+I/Ady9XGQ9Q9AStPuwVErDGRspmalVA2deCyBuirraIZEzNlP9ETCRCQcxZWH3YSD+5yAYzY6FUcPPgXzXvxQ/1uI3ERdlNTFtflP6h6pZjGi/5e6MzLLFUtLejYm/AwQ/7Z9X91tAFTuDzkFAxm7g5iEiX///TEc1Pt4HFBxLE7Y/Cy8/9onjg4IfD4D10++HXOfnqfHryz9ZTmuPPQm/PLVry1tRE6nl7cTP0HW3QxZOxWIfbKmnbpxWUkXrAThmlml2AepO2UdEPs620OitWAgY7N7znsYT//zBYRrrGMXFn79Ky478Ab88PECxy7VrFpShf8+3/5JrgKYF+54DcJIncRN5CQ6WAk/CrliAlA/DQg/pPM6zOpL025EoD+mk2Hz9k7dl79fUyKwCx4bRt80vQLwpesjOzCQsVG0MYZX752dMiB47l8vw+d35hTs6qVVad+xrly8mhcBcgdZC1l7XXMq6hoN0yGjX3CZqTu7fEouBtROpdbyJgAFx7hk14+EKDgSQKB9V2gXCB/rmDmJGx5RnlWzshaN4TXHKbS2ZMEyONXATddDSWWxHn9bw3bdXM8kOTUII1J0kBJROyKjqftVLkdg06yPywtUDoxEAYzKpyGjnwCJBUBgKwj/INckyQphQPoGQpTdCVl7FZD4xVouC+0BUXpN0pZssh9nZGxUuU45Kvsnn/TdbNNRGzs210TlyBx/9RHt2tffbD3sc+IeDGLIHURR+i5R2H6mhjqsZdZFzcrk7Qf4Nmhqd88lR481NBpG71kQvd+G6PMejPJb1foYgxiH4YyMjdTL5OTLD8VNf7k7qb2sdwkOPmc/x+aaGD4DE07cQ8/MvHjXf1C1rBpb7T4ME0/ZC/4gH1LkklmD0E6A0Rswl7fp9QP5B/DlMQOswCVzwYu1pG3l2AiRYtmnhwIy4evfqo1BjNM45vTrnuKGyr4fvPYJZt72KpYtWolhO2+Kw/9+ACr6lTl+ZqP1EhKXk8htdNJp7GvIqlMA0zoeBaIYouRKIG8vV80e5AJ9qTJXAI2vAep3oxKKRWlGf09q6Yu/d/ddvxnIOICqIeMPNJXANiXUf4bBJxNRT7N20Agg+r5KjAFC2+sET17MnLjD7DHI2qvV26am1oDOV0Hevt36fanvrTYoyMTvQOxzwD8Ywr8R82AcwBVHFJClOYhR1HKS+o+IkLWlAxkc1fQ5n3vOnIlZaiXdonXeYAyy+kKI0BhAdOdNqoRZfRHQ8GzL95fBHaxEX4QYzLgA33YQUc5TAQyDGKeKA42vtAlimkWBxtebTtnuagXfR4GGp5O/f/S/kLXX8BLpEvwtERGRi4nuVfBteC51Z8MLaYInchoGMkRE1CPaVvHtWlVfVSl4QprLVQjI27N7O5hkQ5oOVeOLgYwbMJAhIqKeKToY/wbmquNhLhkGc/meQPjxTn8fveRn9IEouaRNWqdK9p0K6Jo/XR2jCagcm1SCO2Zlizd1H5N9iYgczKqGmwDUrhpfb1XrX7c7OadHjzmxCHLVUWtmPBI/Wwm7sgYo/FundhrpXUX5R0CExgGR16wqu3njre3y3dphJiCK/gYZnQvEf1jTbFRAlFyoZ5DccaRCbuNviIjIyervg1SHWspqXVUW+YdDFF8AtZnHucGMgKy/L+Wyjax/EKLwxE6fhK3/rb5KyPxDmz7v/myJDpBQAFH5PND4ImTsSwjfQCD/oKYKvrxEugF/S0REDqTzSRpfhqy7oVVjAxB+ADCK9KyGnplwIB0gtJ7haE3NyJgrgS4evJjp5Z6WLfiqHk3eRJ0XwwDGXZgj43Gq4m7Lxw49u4mI0uyoUVuDU5Dhxxxd30TXfvFvkrpTlAJGLziNCpDUMhWDGPfhb8yjVLXgSLgRM257FV/+39fotW4F9jtlPDbeapBjz3AiojYSy1K3m6scnr8hIQpPgGx8XkVdST2i8HjHziSROzn1WUDd1FjfiL9tcwF+/2lpS9ush+fioifPwg77b8tzkYjcILgdoIKBtgJbOziIsQ6LlL51ISqmQ9bdAkQ/AHz9IAqOhig4wu7hkcdwacmjy0nP3vxSUhCjmKaJaec9wnOciFxAn/VTdDogytr0hCCKz+1iTZbs0Utf/o1hlN8Do+/HMHq9AuQfYvewyIOcG9JTl6nZls/e/l/KviU/L8Py31aizwDnrVETUXIgIH3rQPR6EbL+ASD+FeDbAKLwWMC3vqNzZJq1nTVy8iwSuRcfVR5V3q/tuzhLIOhHcVnXC0gRUZYTflUxuOLzreUalUSr8k94OjdRCz4bPLq0tP8pe6Xs2/Xw0cgvzs/6mIioOwdaGu0+JiILnxEeXVoatvNmOOfff0V537KWtt2O2gln3HUiTG7DJiIijxDSmqv0rJqaGpSWlqK6uholJSXIJSpgUb9elfRb1qcURWWFus3wMX4lIiJvXL+ZI+NhzQHLepv0b9dGRNTh3VOtEouZp0NOw0ciERGlpLd4mythVp0Fc8nmMJduCVlzkTowyTrdmsgBOCNDRETtWIGKhFx1hD7J2mqMAQ1PQ8a/g1H5tN1DJNI4I0NEREkBjJRRwFwNNL62JohpLfYZZPQjSJm9jQNqSUv9PDU2mVje9DFnhYiBDBERJRGQq47Tp0DL+IL0X6ZPt85OIGHl5ZiQtTdALhsJuXw05PJdgIbnsvLzydkYyBAR0ZqcmMhsIPYBkFgCEdg0/RcHtsji4Y8Ssu5fQPg+nZ+jmUshay6EbHzb8cc1UM9iIENERE0EZPQ9/ZFseBYIjQX8m7X/suDOEIHNsrhzSQLh6al7wg/z6IMcx0CGiIiaSAijr/WhWraJ/Q+i4iGg4HjAt5511lPRaRDld2Y3P0U2ArI6dV/i9+yNgxyJgQwREWl6ZqPgYECo89gikKuPBRrfgCg+G0bvN2H0fh0o/BuECGb10EphFOqTtFMKjmjKoaFcxUCGiIjWECUQlTOAovOA4EjImksgq86FTFS1K46XLSoHRhSd2z4nR5RBFJ5sLT1RzuLCooclEgkYwkBjfaM+KFIdJqnOXCIiWivfQIjCoyHEXyBlDEIErGDChiCm5RTw0C4QFU9Chh+0toQHhkEU/hkwerPKcI5jIONhM/71Cp658UWs/H01+g3qg6MuOhh7HTfG7mERkUPpJZr6eyHDD+mKvtK/CUTRWZChsbYn1KpgRQY2h1F2U9NYrRo2DGKIjwAPUjMvM29/Ffec+7AOYpQlC5bhxhPuxP89Ox/xGLcqElEyHRjU3wFZd5MOYrT4d5BVpwCxjx2xxbn1jJAKYBjEkMJHgQep5aNnb3opZd+zN78Ef4ATcV2lTg/XN9PUASORd0jI+kdStJuQ9ffbPiNDlA4fmR615OdlKdt//2lp1sfiJQu//hWzHpmDWDSOXQ7eHpuPHmL3kIgyQxWak9YMbjuJX7I9GqIOYyDjUX/adiN8+8EP7du328iW8Xghd+DZW17GPec8lJSDdMDpe+Nvt6hy7kTuJowSSN+A1GcrBbbQzwEhhB1DI1orLi15UDyWwLFXHAbDl/zrDeYFcfQlh3BJpAtqVtbivr8/1q59xq2v4KfPf9HLTURuZm1xPq19hyjkFmdyNAYyHuQP+DBijy1x05wrsMP+22LgkHUx5vDRuG3+NRi85Qbcgt1JKjn6vZc+Tpsk/e7M93XODJGbqRwYkT8RovzfQHA04FsfyNsfovI5XdWXibXkVFxa8ihhCAzZbiNcPuP8ljY1E9N2lob+mJpOzy/JT9ufX5THN6vkHcEdYIR2bvnUriJ4RB3Fq5qHtZ154UxM16j7bdQ+I1Daq6RdXyDox+5H7wJ/kO8JyBva7k5iEENOx0CGqAMMQ+DKFy5AZf+Klrbi8iJc+MRZKKkosnVsRES5jG8jiTo4K7PJNoPx+C934bM5/0MsEsNWY7fQ7VyuIyKyDwMZog5qXpobPmao/pNbUYmI7MdAhqiTGMAQETkH58SJukAVB1Oniv/63WJEG6OQpjO3Lakt44mEyfO1iMizOCND1EkqaPn3lEfxwh3/QWM4goKSAhx89j662KBTqK329TUNeO3+N7Hit5XYcpfNsf1+2+gAzOfjLhQi8g4GMkSdkEgk8PQ/X8RTN7zQ0hauCePhy55Ceb8yjD9+rO3b3FVl5+8/+hF/H3cVwrUNLccpDNt5M1z7n4sYyBCRp3BpiagTVBDwwp3/Sdn34p3/sT2Iaa7sfMvJ01qCmGafz/0KL02bhUSMR1QQkXcwkCHqpFW/pz4heOXiNCcHZ9mK31bp859S+e/MD+AL2B9sERFlCgMZok4aPmbz1O1jrW3ZdgvmBdLurMorDGV9PEREPYmBDFEn80+Ov+Yo5BXmJbUXlRVi8uWHOuJk8ZLKYozYc8uUfXtO3lX/G4iIvMLWQGbq1KnYdtttUVxcjD59+mDixIn49ttvk76msbERp5xyCiorK1FUVISDDjoIS5cutW3MlNtU/sng4Rtg2mf/xMTTxmPr3Yfh4HP2xbTPb0T/wf0ckSOjgqnzHjhFj7OZqj6sxrnTQaP0v4GIyCuEVPsxbbLXXnvh8MMP18FMPB7HP/7xD3z55Zf46quvUFhYqL/mr3/9K15++WU8+OCDKC0txamnngrDMPDuu+926GfU1NTov1ddXY2SkvaH/hF1RXPdGHXKuGmaeinHSYXy4vEE/H4fvp7/HZb+sgLDdtkMFf3K7B4WEXVR21PIpYy3O+DTazp6/bY1kGlr+fLlemZmzpw52HnnnfXge/fujccffxwHH3yw/ppvvvkGm266KebNm4dRo0b94fdkIEO5TD29VdDF86CI3Mm6REug/l7I8HTAXAEEt4coPgfwb+zp08k7ev121KubGqxSUWGdMPzRRx8hFoth9913b/maIUOGYODAgTqQSSUSieh/fOsbUa5Ss0QMYojcTdZeC1l3I2AuBhAFonMgVx0BmMuaAp3c5phXODU9f+aZZ2L06NEYOtTa/bFkyRIEg0GUlSVPifft21f3pcu7URFc823AgAFZGT8REVHGyXpAzcSkaJf1D1mzNTnOMYGMSuhV+TFPPPFEt77PlClT9MxO823RokUZGyMREVFWJdQsTCR1X/xHCOGYy7htHJEppBJ4X3rpJcydOxfrrbdeS3u/fv0QjUZRVVWVNCujdi2pvlRCoZC+ERERuZ5vACDyAZlcqVsL/AlSqs0GuR3M2PqvV2t7KoiZMWMG3nzzTQwaNCipf8SIEQgEApg9e3ZLm9qevXDhQmy//fY2jJiIiCiLRB5QcEyK9lII3S6Q6/x2LyepHUnPP/+8riXTnPeiclvy8/P1nyeccALOPvtsnQCsspZPO+00HcR0ZMcSERGRm+nSDsXnQBq9m3YtrQRC20MUnQkYFY4q+2AXW7dfp/sFPPDAAzj22GNbCuKdc845mD59ut6RNG7cONx5551pl5ba4vZrIiJyu7Z1Y9rWlfEiV9aR6QkMZIiIiNzHlXVkiIiIiDqDgQwRERG5FgMZIiIici0GMkRERORaDGSIiIjItRjIEBFlcIus/jP+K2RiZVIbEfUMBjJERBmg6nog+iHM5eMgV4yFXL4DzFUnAGY1gxmiHsRAhoiom3Q5LnMl5OoTgcSC5lYg+n+QVScnFTIjosxiIENE1G0m0PCUqkXeviv2GWTsa3h+Nirpc85AUfYwkCEi6jYDMrE0fffa+lxOBy2J32BWnQVz6XYwl+8FhB/RpzJ7vHA8OQQDGSKibktABNMdZBsEglvDu0tqNZArDwEaXwZkFZD4CbJ2KmTtdTzQkLKCgQwRUTfpHJi88RAVT0GU3QnkHwKIfKuv6GQIw6vnvJmQ4UcBubp9V/hxSLPOjkFRjmEGGhFRJmYmZANgLgeMvhAlVwElF6t92BBGEbxKnb4s49+m6Y0AiZ8BY2iWR0W5hjMyRETdFX4Mctn2kI2vAYHNAHMFEH4WaJgBmVju2VwRlQcD/+A0vQHANyDLI6JcxECGiKgbu3XUjiRZewXg6w9Rei3Q8Dzk8l0hay+HrL0ScvnOQMMTHg1mBETB0YBIsXSWfwiEUQo37bqyEpRNu4dDncRAhoioywzIhmf1R6LgSKv4Xc0las91q69JQNZcYc3SeIxO5jXKISqmA6GxVmKz0Q+i6EyIkosdH7ypHVc6j6f+PpirT4asvRpILGy3nZycjTkyRETduJBLlRujBLcFIrPbBDHNEkDjK5AFR0KIALyW6Cz9g2CU393SpgIBlT/j/LymWsiVBwOJRWvaw09ClN8LGdyWhQxdgjMyRETdeEcvQrt18Ku9uxW57QXf6UGMRULW35sUxFiievu4m4MY2aqGj/rT68tlDGSIiLpIX+xCY4C8vYHoe0BodyvJtR2ftT3bY7MxbiaEAeHfFKLkCiD/SLVPfk1n/BtIsxpuJNWyWGIRZM1lMFceCVlzOZD41dPLZQxkiIi6RcIouwUIDAOMMojSq9sEM36IkssBo5eNY6SURygEtgYCW0CUXATRey4Q2rPpK/Ja6gC57t8V/xZy5f5Aw3Qg9iHQ8Djkyv2A+HeePTrCvXNnREQOeWevqUBGLR/l7QcR2gVQW7HVGUx54wFRxiq3DqEv5rIG5uqzgeh/rUZV+6d4CkTZzZCrjgL8f0ozs+b8GUKz9maV6JPcIcOQdbfAKL8HXsRAhogoA5JyKkQ5ZP7BTe3uuyB6mb7Yrz4diL6/ptFcCll9DoT/eYjii4CACmRUjokLg8/YB6nbW/97PYZLS0REPUAFMAxinEfGf0lzUU9ANjyjl5rUbEzLTJvbGH3TtPeDV7n0N0VERNQF5sq19K3QS4BuDWKk2kVXMCllnyicxBwZIiIi1wtsDohiXUOmLREcbQUDLt16LdS4C48GZDVk/YM6F0hVXRaFx0EUHAWvcudvi4iIWjTXCWmeSXBDQTr7BCCKz2uqwNy6eSsgfz/XBjFJCv8GUXgikFgO+Hp7/lLv7X8dEZHH6eUCc5ku7iajn+qDGtU7cBnY0rVLJD1J3ycFhwP+TSEbngDMKojQzkD+QZ7JthD69x4E/OsiFzCQISJy80xMYgnkygMBWWU1xv8HGXkdoux2yNCu3phh6AmBoTCCU/WHbl5OIq+En0REHvTHhy4KyPq71wQxLUzI2ht5cV6L1ktvvJ/cjYEMEZGDNJeS19uEI29CJpakDWp0kb3oR6m/UeJH62RnIo9jGEpE5Kik3TjM1ac2naStGJD5B0CUXGWd2dSWb10dtLQjylxZZp+oszgjQ0Sd0vrwuVw4WTfbZO0/WwUxigk0PAuEH2xXB0TndhQem/obFRzpzsq0RJ3EQIaIOkQFLFLGIOvugLl8LMxloyBrLgLMVZ4ttGXLbpOG51L2yYbn2uVyqM9FaEeI0uusmRndWAwUngRRdDp3LVFO4NISEXWIuiiaq88EIuowxCYNT0NG50P0eoUvJ5nS9sC/ZmvLd1EHVebtr7cSwyhuWoLibAzlBobrRNQhVvJpqyCmWWIR0PCCnq2hDFAnZ6eSNzbtMp7agaMCTeGraDrjyeBp25QzGMgQ0R/SF9D4V+n749+kTkSlTtE5L8VTAKMyucM3EKLoNLuGReRonAumnKSSVCMNUSz5aSn6rN8bBcX5uo3vYlNT7/Clf0j6fv9GVlIq3xt1i8p5kb51IXq9DjQ8AxlfABHYDMifqF+umfNC1B4DGcpJD136JJ675WU01DUimBfEhBN3x8k3TWYgsxbCPwgyNAaIvJXcYayjL7QsKpYZ+n4UxZAFR0PoWS51bhLvW6J0GN5TTknEEnjpntfx2FXP6iBGiTZGMePWV/D4Nc8hkeBW4nT0QYRltwIFJ1hLH6pGSd4+EJVP6IP4KLP0jiQhGMQQ/QEGMpRTfAEfXrzr9ZR9L909Cz4fnxJrL+ke1CcHG33mwej7GYyymwCjDy+2RGQbvmrbJBG3iopFG2P61rqNetbqpdVp2tueV0NtWTMERtoza4iIso2BjA3isQSqllXj0gOux77Fk7Bv0SRcMvE6rFpSpfuoZw0fOzRl+1Zp2omIyLkYyNjAMATOGXMZ/vv8BzATJkzTxLwXPsS5Yy4Dc017ViKRwLFXHIaSSlU0bI38ojycMPUoBpJERC7Dhe0sU8tH81/+CL99/3u7vsU/LsG8Fz/EqH23gd/P6fqe4PP50Hf93rj3i5sw87ZX8OOnP2PAkHVxwOl7o9e6FfDxficij9R+EjmyXZ+BTJaZpsTvPy1L27/4x6WQpszqmHKNClbK+5bi2CsOh+Ez9IyYYhi58aQnIg8XVBR+yNhXQOJXyMDWEL5e8DoGMlmmdsVsNmqTtP2qT11cKQtJqz5rHY8BDBF54lR6WQdz1UlA7JOmVj9kwSQYJf+Al/EVPMtUkLLZ9ptgm3HD2/WN2GMYhu44hFuAiYioU4TwQVZf1CqIUeJA+EFIfRaad0+o54yMDVSC7xXPX4DnbnkJc56ap0vj73LoDjjorH10H2dkiIioM6RZD0Rmp+5reA5G/n7wKgYyNlCBirodfPa+OOz8iS1JwEw0JSKironq4yxSkmF4Gd/626h14MIghoiIukoY5YB/i9R9obGeXlpiIENEROSFHUsllwGiKLlDBTeF6kBcf8a3d0sZhUwshpQx/blduLRERERkE5UjCaiaL75226g7Q6ht14FNIXrPBsLPQJqLIQIjgLy9VG/mx113GxB+SO+UgiiDKDwBKDoJdmAgQ0Te2oIK9c7Q4BlQ5HjWLIaErLsDsuEJwKwCgjtAFJ8P6d+wS8EMRDlk4XEQesHF7IGZmAQQfhiov6NVYxVk3Y2AWt7KPzDrh8hyaYmIPBLAAIh9CoQfB6Lzm9q9mxdA7qcq78qay4D62wFzhbVdOjoXctURgLmqabamK9/Xr793TwQUept3+JGUfTL8aNaDGIUzMkTkataLfQzmqmOB6Htr2v2bQVQ8BIninCnVTu4i1QxMw3MpOmqtoKDozB5ZFuq2xNI07UtgBz67icjlTMi6O5OCGC3+FWTtdc68EBAp8YU6CE/d95M1Y2NjEm1awW3StG8LOzCQIcrh5Ri19CITS6zdB058wewAnQvT+HLqzsaX9XEURI7k3xBAKGWXCAyxitylC3RsIlUictE5APKSO0QhRNEZa5Z5s4iBDFGuCj8EuWw05PKdIZdtb+1CcK00uQRdzDEgygZhFAEFR7XvMCqB/MOBxplA7H9wEqFyYAKbQ/SaCeQfBgS20f8GUfkC4B9sS5K9rYHM3Llzse+++6J///76XdPMmTOT+o899ljrcL9Wt732UlvJiKir9CxMwwzI2msBubqpsVbvQpD199nyjqo79Hj1FtMU8sZnezhEnWKU/B2i+CLAv7EVwOTtD1HxhK7SK+vuAQznnV4tVLDi2wCi5AoYlY9DFF8M+Na1baegrYFMfX09ttxyS9xxR6ttXG2owOX3339vuU2fPj2rYyTyGl1voj7NroP6R1y4bdmAKDwVCGyZ3OzfCKLkAtcFZpRb9JJuweEwer0Mo888GGU3AImFkKuOBPwDIfwD4URC74oSrT62L5ywddfS+PHj9W1tQqEQ+vXrl7UxEeUE8/c07fbsOugO9WIqEYJR+TRk5B0g9pWe4kZoV73k5L7AzH7NBdnURdZKOJVN9yWzETLNun/9kJH3IRueBWIfAolFQHA0RNlNXSqOl2scf++8/fbb6NOnD8rLyzF27FhcddVVqKysTPv1kUhE35rV1NRkaaRELqLWtSP/SdE+Am7UEqwERwHBkXqnEgOYrtG1dxK/way9BojMgRT51nKHnt0K8n7tqWAmOAIiOAKI/wgYpRC+vgxiOsjR4bVaVnr44Ycxe/ZsXHfddZgzZ46ewUkk0k8VT506FaWlpS23AQMGZHXMRE6nllpE0el6l0GyIETx2a4uImcVAgvwxb87ZMQqyBZ5y6qSLOuBhschV5/KIKYHqftW3wKb6CDGauPjuCOE7GrpwB6YHp4xYwYmTpyY9mt++uknDB48GG+88QZ22223Ds/IqGCmuroaJSUlPTJ2IrfReSPqsLf6+4D413obqCg43vqTF6ucpYPY8OOQtVel7Be9XoVQy3ZEWaCu32pC4o+u364K9zbccEP06tULP/zwQ9pARuXUqBsR/UGZcbXLoORSK8eEORCkGZCJn9N3x3+A9A3i44QcxVWBzK+//oqVK1dinXXWsXsoRK7X+mJk7T5g4ThKQPg3T1OVRwCBoQxiyHFsfUTW1dXh008/1TdlwYIF+uOFCxfqvvPOOw/z58/Hzz//rPNk9t9/f2y00UYYN26cncMmIvIklV+E/H0An6o424ZK+PWty+3s5Di25sioHUljxoxp1z558mTcddddOl/mk08+QVVVlS6at+eee+LKK69E375WIlQm19iIiKgpT8asgay/E4i8CYgCiPwDgILJQOMbEPnOKkpqHa0R1cteMPpB+Hq1bBsnd+vo9dsxyb49hYEMEVHnyIZZQN6u1gxN8ynN4Uch626H6PuVo4IEWTcNsv4ua3eVWmTIGwdRqg4LVbvXmLjuZp5M9iUiop4nI68AtZdA+odYhxZGP1N7QoHA1o4JYvTMUeQtyLp/tmo1gcZXIUUxjNLUO6/Ie5zxiCQiIgfVGTpN15NB9F0g+r4VxKgZjuJzHFNnSFceDqsziVJoeB5SjZ9yAmdkiIiozdb89fVpxjJ8X9ORDxtAFJxgnV/lkBkZzVyVpiOi1scAwVIcuYCBDBERpQhm+utTjZsDFz1T46AgRif5hkYD8f+17/RvCmGU2TEssoFzHpVEROQYbU80dl7irIAo/DPgG5DiqI0pjlkCU+NQQZeMfgYZ/aDpc25hzyTOyBARkUtPPS+CqHweaHgCMvoJoGaRCiYBvvUcEXjpYCr+PWTVaUBiodVoVEKUTIUM7eSIMXoBt18TEZGrNZ8SbdWUSa5abSc9+7J8DGAubdMThOgzF8KosGlk3rp+O+O3TUkS8UTKj4mIqL3mU6LbLofZSS8fReamCGKUKNAwE1LGbBiZ93BpyUFU0BKPJfDytFn4aNbnKOtdgn1O2gObjtrE7qEREVGnSEDWpO81q3m6WYYwkHFYIHPmjhfhh08WtLTNengOzrznJOx13BgYPme80yAi6mlSba2Ofgr414fwD27aNeWenBK91BXaueky2z7xWITGclEkQ3gvOoSaiXnt/jeTghhFpTDdN+UxJBLW2i8RkdeZNddCLtsRsupkyBXjYa6aDMiw63b7qBwYUXRG+478AyGCW7oqMHMyBjIO4Q/48MmbX6bsq1lZiwVf/JL1MRERZT05tmEGEL4/eRYjOg+y5nJXXvhF0UkQFc8AajdV/qEQ5ffBKL1Wv0mlzODSkkOoB3V539K0/eV9WdyJiLxNLceYDc+l7lRnKMmrIdxYrTewOURgC2vLeFN9G/UxZQZnZBxCmhL7nLxnyjyYbcYNR+/1Km0ZFxFRVpl1aTpigIzCjdRMUnPg0rzDijKHgYxDqABm0OYD8Y/HzkCvda3aAuqBP3LC1rhw+pnchk1EnqdzYEK7pu4MDIcwirM9JPqDlYTm2j12VlJmQTyHUUm9Km5f9O1ilFQW6SUlFcT4/O5bGyYi6ixp1kOuOgKIf7OmURRBVDwM+IdwRsNJQae5HDL8OJBYDBHYCig4SGesZOp31NHrNwMZIiJyDOudvQQaXoCMfQrhWxfIPwQwVA6hcwreIdd/R7HPIVcfZ50y3sw3GKLyKSvwzEAOECv7ErlE85Rs62laopyWWAEEt4NReiVQcDjQ+BpkzSVWgEPOqJFTc0VyEKMkfoSs/7dKdMrqeDhHR2RnACMjQMN0mNGPAN86EAVHQfoG6XedzefHNH8tp9QpZ3YuVZ0AxH9oH7YEtoLMP4DPBZtJsxqIf5W6MzIXovisrI6HjwYiu8gGyJUHAYmf1zSFn4boPRvSqAQanoHZ+Jq15py/D2Te/vpruG2TvEzGf9VBTMq+yCwYBYdkfUzUhshTUaW1k6wtvQSYXQxkiGxKlJP19ycFMVrebhC+PjBXnwRE3lrz9dG5QPR9GKXXZH+wRNkk1AUynWAWB0LpqFo+Mm8C0DizfV/+IVmfQWaODJENdIXS6H/bt+cfBhl9LymIadHwDGT8Z+bRkKcJX18gMCJ1X/7+tm7zJYs+96rksjZb5UNA4SkQ+ROyvvTHGRkiu6jlo7b8GwANz6b/O9F5QP66fA9CnqXfzZfeALn6+FYzlgZQcAxE3h5wC+tcqETTTiu/596ISYRglE+DTPwGqOXAwOaAKLRlPN66d4nc9GJdcARk5I02HfWA0Tf9XzTWYRBD3t8R4+sH0es1IDofMJcCwe0hfP3gBi2ndMc+BmKfAb5BkHrmQnoqoBFN517p7fHqZiPv3KtELqJf0EI7AcUXQdbdBshqK0CJfQ/k7wvU3QiYq5L/km8AENqZdTTI81p26wVHNW3ldVNB0DjMVccCaom4dX2VikcgjXJXHnzpdHxFJLJTwSSIPu9CVD4P0ftdiPzx1i6l8oeBwLA1XxfcDqL8oazXZ8iU1nkNzHGgjlJBuwpq3LJTTy8n1U9LDmKa66vUqgMvGcT0BM7IENnIml0JAoFNW7X5If0bwqh8BjKxTL8bFb5Kd9eSicy1TjWWYYjQWMiCw5pyB/jCTt6hHs9mwyupOxtfX7PsRBnl0ldFIm9rDljUVuy2bW5j1t4M1N/V8rmMvgM0vmqdnUOUU9wxs+Q2XFoioh4jzdWALlneRuwDIPIml5nIU/SMS/6E1J15ezK/rYfwXiWiHqHr3UTfT139U8/MzOdLEHmKXjYq/IveZZXEvxGESuzXW7Ip09w5V01EjqfPi9LbxdP0G72bkpcZzJCX+GFUPASpzk+Lfa63X6vdhuqxzvwYBwUyK1euRGWlVcxr0aJFuPfee9HQ0ID99tsPO+20U6bHSEQuJYLDIP2btT9gThQA+Ye4Nu+HKJ2WYCUwvGnnoWhaUmLA3lM6dc9+8cUX2GCDDdCnTx8MGTIEn376KbbddlvcfPPNmDZtGsaMGYOZM9ufvUBEuUnvtCq/FwiOTq6pUf5vwCizc2hEPR7QCBFgsO60QOb888/HFltsgblz52LXXXfFPvvsgwkTJqC6uhqrV6/GSSedhGuvvbbnRktErqJfxI1yGBUPQPSeB9HrLRi9X9XvVjnNTkSZIKSUsqNf3KtXL7z55psYNmwY6urqUFJSgg8++AAjRlgHfH3zzTcYNWoUqqqq4BQ1NTUoLS3VwZYaLxERETlfR6/fnZqRWbVqFfr1s867KCoqQmFhIcrLy1v61ce1tbXdGTcRUZqKwNzxQUTtdXrxrm2paLeUjiYitwUwCSD8BMzIOzqfRh2yieDWdg+NiNweyBx77LEIhUL648bGRpx88sl6ZkaJRCKZHyER5SATcuURQPzLlhbZ+DxQcimQfwQLixFR1wKZyZMnJ30+adKkdl9zzDHHdOZbEhG1n41peDYpiGnpq70ZIv9gANabKSKiTgUyDzzwQM+NhIioaaeT2fb04GayBoh9DQSHZ3tY5HBSqgrSaqZOcstzjuFvm4gcRW+kNKyCmykZvbI5HHI4nQQu6/QsnjotXgRHQoZ2aQpouMU/FzCQISKHkRAFR0KGpwNoc6hkcAcI/3p2DYycuAwZ+xJy9XGArLfawvfrs4500UUwkMkFzJjLAYmYtW3VNK2SQYl4okPviuOxOExTnYVDlD06kdc3CKLsZqDlrCYBhHaFKLuFJ2ZTC7WEJGsubgliWkTnAQ1P9chjRb026gNRmw5G7UQpNuohnJHJAXOe/i8eu/o5LPz6Vwwcsi6O+MeB2H2SOsSsPfWkVFvqF/+4FF/831fot0EfDB8zVAc/Pj/f3VAWD5wM7Q7Rew8g8TMgSiF8lXoZgcsF1EwmFgPxb1P3Nb4Bo+CozP48FRiZKyDDD0PGvgcCm0AUHANpVDIvx0a85z0sHkvgvzPfx9RJt7a0LfzmN1x3zG3wB3zY8cBR+s8kEvjnCXfgPw++3dK0wdCBuO71i1Haq5jBDGVNS8Di37B9G5G2lt1rIi/zQUx8AeSqw9X2OasxOgcy/CRE5ROQvg0YzNiES0sepoKUJ69PfYjnk9c/3y6IUYHPq/fPTgpilJ+/XIibT7ybQQyRw3bpWEsbardOblKzdCpvKmVf/sSMLi3pZay6G9cEMc1kDWTtLQxibMRAxuMWfbs4Zfuv3/3erk0FNrMf+7+UX//+K5+gobYh4+Mjos5RF2cpo0Dji5C1V+vqx9Ksz8ncIX26eul1gH+TVq0+oOB4iLxxmQ8uovPTtP83sz+HOoUhpMdtvPWG+HzuV+3aN9pqg5RfH4+mfjFUSb+JBBN/07HOARJAYhFglEIYZcznoIzTSaayHnLl4UDiR6tN/a/+LoiK6ZC+dXNqZkDPkhiVMHq9BBn9EEj8DgRHQfh6dy4YarrPWn+ckioLkAinaGdJADtxRsbD1FLRpIsPhuFL/jWrz4++5BDd35pK6B19wMiU32uLnTZFUZl1FAWluLg0vg65fFfIFXtALhsFc/VpKtuQBx1Sxsm6O1qCmBYqAbX2mpwKYpq1/JsDI4C8vTsVxGiRt2FWnQFz9alA43+aluvav2nTQY467yvVGAqOyMkZMacQ0uN7xzp6DLhXSVPq3UfTr52JBV8sxKChA3D4lAMwbKfNIIz2B37GIjFMGX81Pnv7fy1tZX1KceNbl6H/Ruu0Tw7OcTpQiX8HufJA65DD1kJ7wCi/w66hkQNZFzv1kuvr8nlR5vLdrJm/dgyIvv/jLGAnmDVXAuFHkhvz9oFRdlPKr9dBTu31QPhxddqgSsQBCo6CUXx+dgacY2o6eP1mIJMD1MxL6wAkHk/AnyZxVy0fGULgw1mf4ct3vkbf9Xtj7JE7wR/0p/07uc6svhhoeDJFjwHR+10rIZFymhXACP3uXwchwW0gAkP1hbGzAY25Yt/UW45FAUSfj3mgZgfoGZfEr3oGtWlxLomoeAYIbN4uKGy5XMowkPgN8K2ngxlVsoLsu37n3jxkDmo7i7K2gMTXtAy11dgtsNXYofo5roIYWgtzWboOPeUPBjI5raX2yKqjgcQva9pDu0GU3dapFX69vJF/AGTtte078/azgiVK0jZXrWVWLPpOyiBGU32BTdtVBm4JWEQhYLROMCY7MXSntMGPP+BnENORC0swdV4RjIqkGiiUy9VnL0kKYrTIbCD8aKdyK3Q+SMFkIO+A5KAlOBqi+O/pL8w5HUQugVl1LkyVu7Z8LyD8sHXfGWvJpWHyrqvwKpUDWlflbbvMRBm4SKkEwIZngPgPrXsgis7hWS8EaYaByNzUfY2vwCg8tpPfUcAouw4ycQYQ+xzwDYYIbNw088D3pkn0Dq9DVWJRU8MqazbLtx5EaCxg9NOBThJRqvNkhAjYMWLqAgYyHpZIJJCImXjuXy/jnefe07Mrux21EyacuLvuNwy+6GVGwFpTDz8GqepJqHLlBUcCga24dk5N0s2UdL6kQXOwInz9IY1+az5nkm/7RHx18GhLENNK9SVAnzEQFQ9AVp0DxJtKVKigsPR6QASzPl7qOgYyHmYIA+fvdUVSHZn/vfsNvvrvt7jg4dNsHZuX6Ol+NTNTeByMor/oNuvdMYMYAoRRABncCYi2n5UReXv/ce2StX1vzsCkpQI7UwUxvgFWYm7roFGuAprOSjJ6zYSMq11gcQj/oG79PsgefBZ4lFpC+vD1z1IWw3vj0bn49bvFPNk6w1q/+PHdMSVXn73c2uHSWnBnoOBoXjR7iDq6wSi5GEbv2RC9ZgEFx7TKK/ID/n4t973wD9BBjP6Yvw/X4W/MsyS+fPfrtL1fvPMN+g3qw+UloqxUn+0L0et1oHGW3vart18Ht0pZeI26x7pPJdAwA2bjq1bNnvwJEMX/APx/gqy5EMifCKGS8ckTbL2KzZ07F/vuuy/69++vp+FnzpzZbs/+JZdcgnXWWQf5+fnYfffd8f3339s2Xrfpt0GftH39N2QQQ5TNYEa/08/bAyicDASGNbXzOZhp6j6VVWdA1lwERN/VS3qy+gLImikQBYcAJddBlFzJINJDbH0W1dfXY8stt8Qdd6Sufnr99dfj1ltvxd1334333nsPhYWFGDduHBobG7M+VrdRW6dVIbuKfmXt+gZtMRBb7jq03dEFRJSNgCbIpcceonLTZPRTIPJ6+86GGZDxHyHyVb0dg0Gkh9j6mxw/fjyuuuoqHHCAqomAdrMxt9xyCy666CLsv//+GDZsGB5++GEsXry43cwNpaa2XP/zrcsxfMxQ/bkKXHbYf1tc9/rFeks2EZG3JNKfUK1E5umkXybie4tjc2QWLFiAJUuW6OWkZqpU8ciRIzFv3jwcfvjhKf9eJBLRt9YljnOVqhezzoZ9ccPsSxGubYBhCOQV5iXVlSEi8g4B+Pqm7/b1Y/VjD3Ls3JoKYpS+fZMflOrz5r5Upk6dqgOe5tuAAQOQy5qL3xUU5+sgRmEQQ+SeHU/6oMLoJ5DRj5tOZuYpy+noInZ5e+taTu341gVCY7gryYMcG8h01ZQpU/QBU823RYtSnRJLROSCgm6xLyCXj4VcdRjkqsMhl+8KxD6x+igNH0T5wy0J1VpgG4jyh3iEg0c5NjTt109NAQJLly7Vu5aaqc+HDx+e9u+FQiF9IyJytxjk6hMBWb2myVyi29Sp6uq0a0qz3d0/CEblM5AJdaCrAeHrxUJ3HubYGZlBgwbpYGb27NlJ+S5q99L222+PXNecrBuPcZqZaG1aL8W4ZVlGj7PxP8lBTEtnPdD4si74Rqm1FLrz9dFBTOs28h5bf7N1dXX44YcfkhJ8P/30U1RUVGDgwIE488wz9a6mjTfeWAc2F198sa45M3HiRORyAFNfHcbL976B339aiiHbbYTdJ+0Cw2/Az9wXoqSdj3p3SsNMmA0z1AmNEHm76aMkAKdvgTYBcy0bFXSAw2USIkVI9Wy3ydtvv40xY8a0a588eTIefPBB/UJ06aWXYtq0aaiqqsKOO+6IO++8E5tsskmHf4aaxVFJvypfpqSkBG4/duCXrxbh3DGXoa6qvqV94Kbr4V/vXoXC0gJuKyRqxay+FGiYntwYGAZR8aSjAxldrC2xGHLFbikDFtHrP4BvfdZCIU/r6PXb1kAmG7wUyCjn7HppyvOTDrtgIo6/6ggWuSNqIhNLrOTYFCdMi9J/6Sq7Tl9uMGv/CdRPS24sOBZGyT/sGhKR467fvOq5SGM4kjKIUd576SMGMURN9K6e6McpgxjdH1N9zp+9NIrPhaiYDuQfAeQfBlH+CIMYojac/XaE2tWECeYFEW2MtutTy0pE1MwA/OlrSAlff/fkmASGwwiO0B86cdt1824gaa4GZBTC15c7hCir+Bbedecn7Ziyb9xxY3QODRGpHSoCIrAFENgyRWcpkH+way60rXN5nJbXo3dXmatgrjoOctkoyOU7wVyxPxD7yjU7xMj9GMi4SCJh4m+3HIdt91pTR0dV6T3g9L0x/oTdWqr4ElHTTEH5vUBorzWTz4EREBWPACLf7uF5gp6JWX2Cdcp08wxX/GvI1ccCMmz38ChHMNnXZRKJBHw+H377/nf8+v3v+NM2g1HWp9TW7a3SDAPmMkBP16vTfRkfkzOopRg1iyFlg0qMgTBKuOyRIfrSEfsIctWRKftF8RSgYJJ1bABRD16/+Wx2GRXEKOtuvI6+2cWKf02YNdcA4afUcZ2AKIEoPBEoOtG2cRG11rwUI9QMTNMsDIOYTFFbxH9P2ysTSyFckFBN7se3ztRFJmTdbUD4ESuIUWQNZN0/IRte4Po4US4EicGRaS8jQvcR9TwGMtT1F7Fwm0JjTWT4sU6967VO9F2zwqk+duLuDCJKpo4AQMEx7TtUEBPahbNflBV8lFGX6BkXuTp1p7m8k98nDFl7A2TjK1Ztj7y9IYrPg0Q+XwiJHE7VtZGBrSAb1TEQEYjQ7kDB4e7Z3k6ux6sEdX23QmBrQBcWayM4cs05N3/IgFx1tN7p0KLhCcjYlzB6PZfRMRNRD8nbA0b+eP0hk6kp27i0RF2iX6yKzwMQSu4Q5RCFp6StqNr2eyDyTnIQ0yz+JWTkXebaELlA68CFQQxlGx9x1I0ZmeEQvV6ArH8ISPwMBIZCFEwGjPIOFu4ygfi36bvj3wHB7TI5bCIi8hgGMtRluj6HOoG35FKrnow6sVdtuOzwCdw+ILBp+m6/6uOkIRERpcerBHWLKn7XHLi0/rjj2zd3AALD2neq2Z7QKMeVZCciImdhINMD4tE4YtF40pZiSkdClD8E6CWpPoDRFyg4DqL8QW7BJiKiP8SlpQwyTRN1q+vx1hPvIhaJYacDR6LvBn3sHpbzl6fUNuviKRAlF+o2a4nKmuEhIm9Rz2/13JaJ34D4Ar2ELHyVndjpSJSMgUyGmAkT7zz3Hq49+lY9G6NMO+8RHHfV4ThiyoF2D8/R2gYsDGCIvMl6kxKDufocIDKrqdaMHzL/UIiSS6w6UkSdxCtGhkQbo7jh+DtbghhFvcO4/8LpWPTtYkiTy0xERLL2n0Dk9VYF8+JAw+NA+FGWW6AuYSCTAYl4AvNf+hiN9Y0p+9964h19ajVRa1LGmm58bFBu0LOtDc+m7JMNz7IGDXUJHzWZIADDSD8lahiMF2kNHbjIBqDxBcBcBQR3BILDW3IHiDy9tCTr03TWZHs45BEMZDLA5/Nh5D4jUFBSgHBNOKlPJa+NPXJHGL6OXaDiMbXbSX1Po8N/h9xDT53HvoBcfQIg65pab4XMmwBRepPNoyPqWTrJN7gTEJ3bvjM0hsE8dQkfMRkSCPox5dHTkVeY19Lm8/tw8k2T0X9wvz+clVHLUw11jXj9obfxzI0v4KfPf9Ht3MLtwYrI1Re0CmKaNL4MNL7GHAHy/tEmJVP0USZJfAOajjYh6jwhPX6lrKmpQWlpKaqrq1FSUtLjO5cawxG88+x7iEai2PGAkSjtXfKHWwpVEPP9Rz9hyvirUVe1Ztp1j2N2wfkPntqjY6bskrEfIFfunbozbzyMsn9le0j0B1Qek/WeT80WBOwejutZJ97XAeGnIBM/QfiHAgUHqbeDzJGhLl2/+ajJILUUVFCcj7FH7aiXh9QsTUeomZtrj7ktKYhRZj08Bzvsty1G7bsN/AFWuPWEtb5Q83fsJNbsWAJoeB4y/j2Efwhk/j7698QLbtfp+06UQRYeD0PNUPK0bOomLi31AH/A3+EgRvn5f4vw2/e/p+yb8/R/GcR4iPBv0HSGVIq+vP25tOSkhGxzJeSKvSBrLgLCD0HWTIFcMQEwq1qKNlLXNQcvDGKouxjIOMDaknqZ8Ost+t1n2U2A0a9Vq7COZcjbhS/qTqo4XXsDoKrPtpZYCFl3Mwu3ETkIXzUdYOCQdbHB5gP0zExbY4/YCfFYgrMyXkr2VSeG934LiLyl3/UjtBOEr7/dQ6O2IrNTtze+AVF6dbZHQ0Rp8O2+A6hAZcrjZ6BynTWZ/CpB+IDT98bICVsziPFgMKNP9Q6NAfIPBIx17B4SpSLy0rTnZ3skRLQWnJFxABWoDNx0PTz6852Y98KHWL2sGtuOG451Nuxr99CoB+lghgm+jqRzYPImAuH72nfmT9Q5NNbvj4jsxkDGIfx+60Vxh/23hWlK+PycLCOyj4AoPlNvD9ZLgM1Ce0AUqXonfH4SOQUDGYdRW7H5Po/IXmppV0o/jPJ7IOM/ArFvgcCmEP5BTdVnmexLa9e8rVw/fhCC8K/HreY9hPcoEVEKzUtHwj8Y0rfBms9ZQp86sn0/9inM6ilAoqlKe2CYPoZE+vozmMkwPiOJiP4A82GoU2Qd5Oq/tAQxWuxzyNXH87LbA3iPkuu0Lhqn3/kQke2an4vqSAcpo00fx3PzSIuG51Kf8p1YCETn2VpQUSa9fkpPFHfk/Ba5T/R9mOHHrRoswVFA4XGAKOB0LZGt5yfVwqy+Amh8XR/tIEM7QxRfAunrl2PPTQFprkrfbS7X53bZNo8QeQdm+CEgsRgIjoAo/Cukbx1X/47cO3LKOfqdQ8N0yJrL1zTGPoJsfAmicgYgiuwcHlHOUhdBc+VxQPyrNY2RtyFj30D0npVzlxoRHA1Zf0+KHh8QHG1L0CDVjFnDDMiaf6xpbFgA2TgLotdMSEMFM+5cpHHnqClHJSBrb03R/AsQnp6T09hEdlMXSBl9PzmIaWYuARpfbjpBPIcKXoZGAaHd23cW/hnC19u+maK6FK+fshqy/t9ws9wKk8nd4gsAuTpll4x9AEP8JetDIiITiP+ctlfGF+bcyVR6i37ZbVYQp5baRBAifyJEaGf7BmWusgLLVKKfu3Y2RmEgQ+7h69U0iZgiOc3opxPXWN+DKNt8QGCrtL0isGXOHbLZHBTIvL1h5O9nfWz3jLFRai2/y7r2ff4BcDP3hmCUc4RRAeTtlaLHD1EwSb1U2DAqotymLtoisDEQSvHcDAwHQrl7qnvrf7f994EPKDgqZbsoON7VO0DtvmeJOkyfb1M6FRIhoPEllekLqJOki/8O+Ddy9dQokfuXUm4GwltBNrygn5sib5zOCeEbDKcQEEVnQarLvtr1qZbp/X+CKDobCAx19eunkGo+3sNqampQWlqK6upqlJSU2D0c6iarPLwBaYYBWQPhU0tKLPtN5AStn4s8WNOZpJ55EYCMQBj5jn797Oj125mjJ0qj+V2DMAoAFDhkypaI2i+lMIhxItH8exH5nnn9dO9cEhEREeU8BjJERETkWgxkiIiIyLUYyBARUbeT8PVhkYnF+sBILxxESO7BQIaIiLqn/l7IZaMhl+8KuWx7yLrb7B4R5RD3pysTEbmUVe21eXeP6bqdPnr8Dc9B1t3YqrEWqL8D0igBCo72xK4YcjbOyBARZVlL+a7oe5A1l0DWXg3Ev4HbqCBFhh9J2SfDjzKIoazgo4yIKMvUmWBm9RSg4dmWNhl+GCg+Hyg4wV1nhiWWpmlPc0AhUYZxRoaIKMuVVWX006QgpqWv9mZAVsFVgtukad822yOhHMVAhjyv+dRZNZ3v5oPRyCskZOTNNH0xIDLX/pOSO0iXty86ExCFbXry9Bk+bvl3kLtxaYk8y9oCKoHGWTDVhcMogsg/GAhsbvfQKKdJCFGc/ihFoc6UEe7JkfEPhqh8ATJ8PxD7FlCfFx4P+Aa6LnmZ3ImHRpK3a1tU/RWIvJXULoovAQqOdPVpr+RuMrECcvku1gxMa0ZfiN5vuy4AaK4bow901ZcUFazx+UXZuX7zkUaepKe0VQDTJojRfXX/BGSjLeMi0owKiLJbAVG+ps03AKL8HmsW0WVU0NJyoKsQDGIoq7i0RB7lg4zMTd0lw0D0fcjQLu7aHUKeoWcuQrtC9HkHiH4EiBAQ2LKplgxflok6g88Y8igTMErTdxvlDGLIVtbykQ8IjWrVypkMos7is4ace25Lt3YYCYj8Q1LH6v6NIILq3S8REbmdowOZyy67rGm9dc1tyJAhdg/Ltaztx+oWgUwsbQoYnLMdueWgucTPQMMMIPpBU3vnt3DqNXrfuhClN+p8hBb+TSHK7uG2UCIij3D80tLmm2+ON954o+Vzv9/xQ3YkayeBCVl7PdDwpJUnYvSDKDoDKDjI7uE1kTCrzgEaX1zT4v8TRPkDkHopyNf5PIS8PSHy9gBinwOiCCKwiVX7gnkInmYFxWrpMAqYdRC+Sv7eiTzK8c9qFbj069evw18fiUT0rfX2LVKkdbBb+IE1TeYSyJopgK8vEBxl64u8niEJP5kUxGjxb/VZNEb5nV36vi3BT3DrVm2Of9hTt4OYBGTtNUBYVc9thPRtAFF8PmRoLHfUEHmM45/R33//Pfr3748NN9wQRx11FBYuXLjWr586dared958GzBgQNbG6mwmEH4iZY8648Xui7surNX4QurOyFuQsiHjP7P1spq1zNa0tEWupmfiaq4Awo/pIEZL/AxZdRoQ/9pRy6lE5PFAZuTIkXjwwQfx2muv4a677sKCBQuw0047oba2Nu3fmTJlii6e03xbtGhRVsfsWGopSdal7kv8DkdIm7eSADIcZOigJfY/mFVnw1x5iHX6sKnyhpg743bSrLdyrNpJNAXt7io2R0Rr5+g59vHjx7d8PGzYMB3YrL/++njqqadwwgknpPw7oVBI3yiZMEogfYOBxI/tO4Pb6Au7nVPuOn8hb0/Iui/adwa3hzAKM/qzEHnHqvqrgiQl9hlkw4sQlc9B+vpz+cHNzFVWbkwqicXZHg0R9TBXvVqXlZVhk002wQ8//GD3UFxHBwrF51p1K9pWGC08CXbTS1uFxwKBNifmGn0gSi7P6EyJXsZS1X2bg5hmsgqy/m7XnHOjqPvFurUpdZ/LfP0Bo3fqvsDWXFoi8hhHz8i0VVdXhx9//BFHH3203UNxHX3xDo2BqHgSMvwgkPgVCAyHKPyzFcw4YgbCD1HxCBD9L2T0IwjfekD+Pjr4ymQOj156iH+XulP9XBcUyrMuxgKIvAsZex/C6AuZfwAg8m3Pd3ICdSKzrLkwuVHt0lPBsrvevxHRH3D0K965556LfffdVy8nLV68GJdeeil8Ph+OOOIIu4fm3iTIwOYwym5qd9Cb7Rdkc4k+9VcYRZDBkRDBkU1jC2T+h4o8QJQCsrp9n6/jO+TsZUKu/jMQnac/06fz1N0KUfGQtWU9h4MZnQNTcIiuIyTDjwKJpUBwOytoF8WuCFSJqOMc/Wr366+/6qBl5cqV6N27N3bccUfMnz9ff0xd0zrR0e5ZGB1INb4OWXc9kPhNzftD5u0DUXq5SozpwfEJoOAIQC8jtekpOMbx9UasrerTW4KYNR01kNUXwug1066hOUtwOxihHZLqyjCIIfIe575aA3jiidTbhcn99EyM2gpbfZa1NVyLAY0zVFk8GGU39OBPF7oQoM4raXgCkPWA0Rei6DSIvDFwOhVkmZE1RSKTxL+CTCyD8PVBrmsdjNodtBNRjgYy5O2ZITP8SKsgppXGlyHNi/VOq5752QJSGhDF5wHFZwJmNWBUwl3S7cwTQE8sxxERORTfppB9VO5CSvGmLbQ9xzq7y4AQIT17oQIrt9QX0Utf+fun7gzuAGGUZ3tIRES2YSDjMsnVaN27jVSNXQTbbLVuprbO+liReW1LJkLt5io4Ovkp7N8YovQ6FvUjopzCpSWX0Bcn2QiEH4YZfU8vhYiCoyADW7sygVHNfsiCY4CG54DEojb5K2fbODL3HAJqlFwMqXbiRN8HjHUgQts5PlGZiCjT+IrnFrIRcuVBQGJBq6aXIUqugcyf6JplkSSq5knlDCD8EGRkPqCWeAqOAgIjXBmcZVPL/WP0A/ImtMzMMIgholzDVz0X0EtI6gC8VkFM6xOt0+ZLOJy+6IoSyMK/wSg6TbdZMwoMYjrKuq/4NCai3MUcGbcsw6jlg1TMFUD8F3intg0vykRE1HEMZNwibV0QH+CryPJgiIiInIGBTAap6qGqyFqmD/DTO3xU7kiqX1fentxuS0REOYuBTIZ2kGjqIML6aUD4cUizKmPbo/XSi39ziNKb9O4Ui18neYqSqa7ehk1ERNQdTEjIUMKlWXO5lZDbrPafEGW3Q4Z2zMiOIl2NNm8cRN5e1rlERqmufKtna9y4Y4mIiCgDOCPTTWqXjd463DqI0SKQNX9vPpc4I6zqswaEf0BL+X4GMURElMsYyHSbD7LxtdRd5kog+mFSU3PVVR0A6Zwa2XQyLxEREXUWA5lMWNusSKsD/HQQk/gd5uqTIJcOhVw6HLLmIkCGmedCRETUBQxkus2EyJuYusvoDwS2atUQg1x1JBB5q+nU50ag4WnI1SdxiYiIiKgLGMhkIm8luAVE0VlWTZdmRgVE2a1NAYuajYkBDTMBM8WJz7EPIGNfrdn9RERERB3CXUsZIor+CuQfDETeBlQibmisdQBiS6VaA3JtFXjjPwL+PyUHQ0RERLRWDGQySPh66wMckwOYZiZEYGj6PUyBYZwgIyIi6iReOTNMiEDK84JUO1QNGD3r0kbePhD+9XlYIhERUSdxRibLRMXjkHV3ApE3AJFnnVxdcJzegq1qxBAREVHHMZDJIjVTI1EEUXwuRMkFLVuyuWOJiIioaxjIZJm1fLQmcEm1DEVEREQdw7UMIiIici0GMkRERORaDGSIiIjItRjIEBERkWsxkCEiIiLXYiBDRERErsVAhqgHSZnQxQ6lWd/0edzuIREReQoDGaKeFH4CcvmukMu2grl8DNDwjN0jIiLyFFZjI+oBeualYSZk7eVrGhO/QdZcAogCIG9vFkMkIsoAzsgQ9dRxFOEHUvbJ+vszEsS0XabSS1gy7fnqRESexECGqKfEF6VuT6Rp72TuDeI/wFx1HMwlQ2AuGwVZ9y/1zXVAQ0SUKxjIEPWU4LDU7YE07R2kZ13MlZCrjgSi7wIwAXMVUH8XZM1lPEWdKEPaz3ombBsLpcdXPKIeoE81Lzw9RRpaAKLo9G7uXpKQ4UcBWde+q2EGpFmFXNR8kVE7xKRZ3dTGXWJeo36n1m7AeI8uperHTuJnmKtPgrlkKMxlOwH1dzf9bC7hOgmzDYl6KkcmuA1ExROQ9dP0MhD8m0AUnQj4N+vWrIn6uzL+U5remLWkFSxDLtEXHbMaZs1FQOQtPUslAyMgSq6A9A9iYrUHqCVT/byJzoeMzIEwyoD8gyGN3hmfhbRmPVdDrjwckDVWo7nUWr5NLINR2iqJn2zHZ3dX3223emFs+zlRS8AR2AxG+e0tberdXHdfdPX3CGwKGXk9RW8I8A9CrlHPP3P18UD86zWNsY8gV02C6P0WwOenJ5irTwEis/THek6k7k6IstshQztDCF8mf1LTrGdTENNawzOQxWdDGKUZ/HnUHVxa6orGWTBXHAhz6VYwV6o8hff+MMGy7Y4S9THXW72vbYCbiRdb/T0KjgSM3u07C48GRCFyiX5uRT9IDmJaOlcDjTMhZcyOoVEmZ9wa/9MSxKwRg6y5OOM/Tz/H4j+uZdZzYcZ/JnUdA5lO0GuyDS9CVp8BxL9U+2iB2IeQq08Aou+nXY/X7bJOP+F08LN0OGTNP3S0zzV86hJRDFH5NJB/IGD0BfybQhRfCqP4fAghkFtMXaMnHZlYrO6wrI6IemCpNvJG6k5zGRD7X0Z/njXr+ac0vUHAv0FGfx51D+dbOzt9XX9Xih4Tsv4eGKFRaf6mAbnqGCD+1ZqmhmchY19AVL7QU8Mlr7+wG30hSqa2BC65GxT7gMA2TcFK+yRMofvI9VQhya70deVHCR9kwSQg/Ji1I7C1giMhjOKM/jzqHs7IdJZK2kzZ/n3KZn1xif43OYhp+TvfAZE5OXwBou6+2LaefcnVPC11Hwj/ekD+Ie07VRCj8ydy877xCj1DomYfU1GzkYGNembWs+IpIG8CIMoA34YQxVMgiv/OXUsOw2d3Z/k3Sh3M+DdO8xdk2iBHU32h0RkbHlF3WEG1epEWrrr4qwuL2qGEwHDIxucBGYHI2xMoODrlLA25i85ZCW4FFJ8PWXsLgKjV4dsAouzWHtlwoWc9fevCKLu5pc36OXz/7zTueaVyTG2QkyGrz23TY0AUnpTmyWQAgc3Tf1Pdl8lse6KuBjBCJ7Kr2hkIDIUMqgBbZng3SM+wZqYEZP5EGAUH6zbuJvSgghMg8g8FovMAowIiuG2P/p7bPvaz+XhqeU7qQDx59pWS8VneCfpBnL+fvttk/b1AYoFVE6ToFCC4XcpI3XonsR2kmuKOfZjcGRgGwdkYspnePadqZqw6ygpimgWGQ5Q/CIl817yItr7QMIjxHv04FCWQoT1aEri99ntuXy+ntKleTh/OBqUhpMcX+2pqalBaWorq6mqUlJTYUkfG2mYdhay7DWh4xYqw88brCq8QIVe84yVvM6vOAhpfbt9ReBJE0Zl8jBJls5xA1elAUp2oAETZv4DQmJx6LtZ08PrNQCZLrLtZtkTUVt0Z4Zp3uuTxF86lW1j1MdryrQ+jd9vaHUTUY8tJkdmQVae17zR6QfT+PwYyKXCeKps7K1pNC6qPGcSQc6R7KeBLBFG26ATjxtmpO80VQOzzbA/JFfgqRZTjdICdt3fqvvx9WIGaKJtE/lr6cqtqd0cxkCHKcbpGR8kUXY8jidq1pHJkcmgqm8j+ejkHpe5Uh84GNsn2kFzBW+neRNS1KqYogtHreciIKt74ExDYAiK4JWdjiLLI2uU6DFBF92pV/ZqI1eFbH6LsNpYUSIP3SI5Zc3ienzk61KLlxTE4Eghu21LbiLMx5BbNF3lPXOwLjoNQlap1vZxyIDBCH4Xj+n9XD+G9kiP0LilZa22xlREgbxzg62/3sMhhrMCFwQu5h1U4Lg40PAcz9jWEf31IVTRPFLj2wm/VyymGDO3eancrM0HScedvmTpFLw9E3oSsOnvNVGXttUDRWRBFJ9s9PCKibrxBq4FceSiQWGi1qf/V3QtROR3SN9C1wYzCAngdw3spJ8Qgqy9YE8RoErLuJsj4j001bYiI3EfW3d4SxKxpXA1Ze62rgxjqOAYyOTEb87Z6tqfub3hRr70SEblyxkK9vqUSmctk9RzBQCYnrC2plw8BInIxUZSmXZ0RxnyvXMCrmMfpJ3JoV504lrI/f18+DIjIlfQOpfwDUnfmH9jlZXP1fa1bimM7yHF4BcsJfojSG9tUjPRBFF8A4R/EhDIiciWdA1MwGVC7lFpfzkJjIYrP7/T3a1mKir4HWfcvIPwkpFnXtDOKnMoVh0becccduOGGG7BkyRJsueWWuO2227Dddtu56tBIu+knqGwAGl9r2n69J4Svt93DIiLqFnUJU9uTZWIZEPsS8A+2tmCrKrmdXFrSszCrTwSi76xpFCUQFQ8C/iFMHs4yzxwa+eSTT+Lss8/GpZdeio8//lgHMuPGjcOyZcvsHpqrqCe0MIqA/P2BgkP1SapERG7XXNhT+PpA5I3VQYzV3vkgBg1PJQcxuqMGsvpCBjEO5vhA5qabbsJf/vIXHHfccdhss81w9913o6CgAPfff3/Kr49EIjqKa32jNYQINN1Y1ZeIKPnk6VmpO+NfQyaWZHtI5IVAJhqN4qOPPsLuu6vqhhbDMPTn8+bNS/l3pk6dqqeimm8DBgzI4oiJiMi1RHAtnYEsDoQ8E8isWLECiUQCffv2TWpXn6t8mVSmTJmi19Oab4sWLcrSaImIyNU7oPImpu4MjoLwVWZ7SNRBnlv0C4VC+kZERNRROgcmfzxk7EMg/NiaQqG+wRCl13njMEqPcvRvpVevXvD5fFi6dGlSu/q8X79+to2LiIi8ySi5GLLwz0B0PmCsAwTVDlmePO1kjl5aCgaDGDFiBGbPnt3SZpqm/nz77be3dWxERORRRj8gb18dxKg6WwxinM3xvx219Xry5MnYZpttdO2YW265BfX19XoXExERUaZZuzodf3mkJo7/TR122GFYvnw5LrnkEp3gO3z4cLz22mvtEoCJiIgo97iism93sLIvERGR+3imsi8RERFROgxkiIiIyLUYyBAREZFrMZAhIiIi12IgQ0RERK7FQIaIiIhci4EMERERuRYDGSIiInItx1f27a7men+qsA4RERG5Q/N1+4/q9no+kKmtrdV/DhgwwO6hEBERUReu46rCb84eUaBOy168eDGKi4ubDgLrWlSoAqFFixbxmIMs4P2dXby/s4f3dXbx/nb3/a3CExXE9O/fH4Zh5O6MjPrHr7feehn5XuoXwydD9vD+zi7e39nD+zq7eH+79/5e20xMMyb7EhERkWsxkCEiIiLXYiDTAaFQCJdeeqn+k3oe7+/s4v2dPbyvs4v3d27c355P9iUiIiLv4owMERERuRYDGSIiInItBjJERETkWgxkiIiIyLUYyPyBO+64AxtssAHy8vIwcuRIvP/++3YPyZOmTp2KbbfdVldg7tOnDyZOnIhvv/3W7mHljGuvvVZXvj7zzDPtHopn/fbbb5g0aRIqKyuRn5+PLbbYAh9++KHdw/KkRCKBiy++GIMGDdL39eDBg3HllVf+4Zk91DFz587FvvvuqyvuqteNmTNnJvWr+/mSSy7BOuuso+//3XffHd9//z16CgOZtXjyySdx9tln6+1kH3/8MbbcckuMGzcOy5Yts3tonjNnzhyccsopmD9/PmbNmoVYLIY999wT9fX1dg/N8z744APcc889GDZsmN1D8azVq1dj9OjRCAQCePXVV/HVV1/hxhtvRHl5ud1D86TrrrsOd911F26//XZ8/fXX+vPrr78et912m91D84T6+np9PVRv9FNR9/Wtt96Ku+++G++99x4KCwv1tbOxsbFnBqS2X1Nq2223nTzllFNaPk8kErJ///5y6tSpto4rFyxbtky9dZJz5syxeyieVltbKzfeeGM5a9Ysucsuu8gzzjjD7iF50gUXXCB33HFHu4eRMyZMmCCPP/74pLYDDzxQHnXUUbaNyasAyBkzZrR8bpqm7Nevn7zhhhta2qqqqmQoFJLTp0/vkTFwRiaNaDSKjz76SE+JtT63SX0+b948W8eWC6qrq/WfFRUVdg/F09Qs2IQJE5Ie55R5L7zwArbZZhsccsgheul0q622wr333mv3sDxrhx12wOzZs/Hdd9/pzz/77DO88847GD9+vN1D87wFCxZgyZIlSa8p6rwklZrRU9dOzx8a2VUrVqzQ66x9+/ZNaleff/PNN7aNKxeoE8tVroaaih86dKjdw/GsJ554Qi+ZqqUl6lk//fSTXupQS9X/+Mc/9H1++umnIxgMYvLkyXYPz3P+/ve/65OYhwwZAp/Pp1/Lr776ahx11FF2D83zlixZov9Mde1s7ss0BjLkyFmCL7/8Ur+Dop6xaNEinHHGGTofSSWyU88H52pG5pprrtGfqxkZ9RhXOQQMZDLvqaeewmOPPYbHH38cm2++OT799FP95kglp/L+9h4uLaXRq1cvHckvXbo0qV193q9fP9vG5XWnnnoqXnrpJbz11ltYb7317B6OZ6llU5W0vvXWW8Pv9+ubSrhWCXrqY/UOljJH7d7YbLPNkto23XRTLFy40LYxedl5552nZ2UOP/xwvTvs6KOPxllnnaV3R1LPar4+ZvPayUAmDTXlO2LECL3O2vpdlfp8++23t3VsXqRyxlQQM2PGDLz55pt62yT1nN122w1ffPGFfqfafFMzBmrqXX2sgnjKHLVM2racgMrfWH/99W0bk5eFw2Gd09iaekyr13DqWeq1WwUsra+daplP7V7qqWsnl5bWQq1nq2lI9QK/3Xbb4ZZbbtHbzo477ji7h+bJ5SQ1Dfz888/rWjLNa6kqSUzVIaDMUvdx2/wjtUVS1ThhXlLmqdkAlYCqlpYOPfRQXY9q2rRp+kaZp2qcqJyYgQMH6qWlTz75BDfddBOOP/54u4fmCXV1dfjhhx+SEnzVGyC1OUPd52oZ76qrrsLGG2+sAxtV00ct66n6YD2iR/ZCechtt90mBw4cKIPBoN6OPX/+fLuH5EnqoZjq9sADD9g9tJzB7dc968UXX5RDhw7V21CHDBkip02bZveQPKumpkY/ltVrd15entxwww3lhRdeKCORiN1D84S33nor5ev15MmTW7ZgX3zxxbJv37768b7bbrvJb7/9tsfGI9T/eiZEIiIiIupZzJEhIiIi12IgQ0RERK7FQIaIiIhci4EMERERuRYDGSIiInItBjJERETkWgxkiIiIyLUYyBAREZFrMZAhIiIi12IgQ0SuNG/ePH0Q4IQJE+weChHZiEcUEJEr/fnPf0ZRURHuu+8+fbK0OpSOiHIPZ2SIyJWn7z755JP461//qmdkHnzwQbuHREQ2YSBDRK7z1FNPYciQIfjTn/6ESZMm4f777wcnl4lyEwMZInIdtZykAhhlr732QnV1NebMmWP3sIjIBsyRISJXUfkwQ4cOxW+//YY+ffrotlNPPVUHM4888ojdwyOiLPNn+wcSEXV3NiYejycl96r3Y6FQCLfffjtKS0ttHR8RZReXlojINVQA8/DDD+PGG2/Ep59+2nL77LPPdGAzffp0u4dIRFnGpSUico2ZM2fisMMOw7Jly9rNvFxwwQV488038cEHH9g2PiLKPgYyROQa++67L0zTxMsvv9yu7/3338fIkSP17MywYcNsGR8RZR8DGSIiInIt5sgQERGRazGQISIiItdiIENERESuxUCGiIiIXIuBDBEREbkWAxkiIiJyLQYyRERE5FoMZIiIiMi1GMgQERGRazGQISIiItdiIENERERwq/8HSqiJICZzCqwAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ds.composition.to_dataset('component').plot.scatter(x='A',y='B',c=ds.ground_truth_labels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Simulated Measurement Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's generate the 'measurement' data. We'll generate one measurement for each composition generated above. We'll generate two kinds of data that depend on the data label:\n", "\n", "1. A flat background signal with random Gaussian noise\n", "2. A power-law with a power of -4 that decays to a flat background\n", "\n", "Both kinds of data will have random Gaussian noise.\n", "\n", "Now we can define a method (Python's name for a function) that randomly generates one of two measurement signals. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "def measure(x,label):\n", " \"\"\"Generate one of two signals with noise\"\"\"\n", "\n", " if label==0:\n", " m = np.ones_like(x) #flat background\n", " else:\n", " m = 1e-6*np.power(x,-4) + 1.0 #power law\n", "\n", " # add noise\n", " m += np.random.normal(loc=m, scale=0.25*m, size=x.shape[0])\n", "\n", " return m\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define a domain for the measurement (x), generate the data, and the create an `xarray.Dataset` with it." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=\"dark\"],\n", "html[data-theme=\"dark\"],\n", "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1f1f1f;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 0 20px 0 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: inline-block;\n", " opacity: 0;\n", " height: 0;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:focus + label {\n", " border: 2px solid var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: \"â–º\";\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: \"â–¼\";\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: \"(\";\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: \")\";\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: \",\";\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset> Size: 124kB\n", "Dimensions: (sample: 100, component: 2, x: 150)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", " * x (x) float64 1kB 0.001 0.001047 0.001097 ... 0.9547 1.0\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 ... 14.33\n", " ground_truth_labels (sample) int64 800B 1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1\n", " measurement (sample, x) float64 120kB 2.047e+06 1.318e+06 ... 2.065</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-cde83c2d-b9c4-484d-954b-a5e96ce4369f' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-cde83c2d-b9c4-484d-954b-a5e96ce4369f' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>sample</span>: 100</li><li><span class='xr-has-index'>component</span>: 2</li><li><span class='xr-has-index'>x</span>: 150</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-2fdb7eb8-4883-489a-b410-ae9c0781478b' class='xr-section-summary-in' type='checkbox' checked><label for='section-2fdb7eb8-4883-489a-b410-ae9c0781478b' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>component</span></div><div class='xr-var-dims'>(component)</div><div class='xr-var-dtype'><U1</div><div class='xr-var-preview xr-preview'>'A' 'B'</div><input id='attrs-4289e43f-3895-4923-b7c1-094ec997988a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4289e43f-3895-4923-b7c1-094ec997988a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2df7b411-0a3f-435e-b3e8-91feae01a193' class='xr-var-data-in' type='checkbox'><label for='data-2df7b411-0a3f-435e-b3e8-91feae01a193' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['A', 'B'], dtype='<U1')</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>x</span></div><div class='xr-var-dims'>(x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.001 0.001047 ... 0.9547 1.0</div><input id='attrs-40dd3e3a-9715-4143-a8b9-87e8a6f1980b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-40dd3e3a-9715-4143-a8b9-87e8a6f1980b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f07d2a37-2bbb-4f64-9c8b-1e4966c0d409' class='xr-var-data-in' type='checkbox'><label for='data-f07d2a37-2bbb-4f64-9c8b-1e4966c0d409' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.001 , 0.001047, 0.001097, 0.001149, 0.001204, 0.001261, 0.001321,\n", " 0.001383, 0.001449, 0.001518, 0.00159 , 0.001665, 0.001744, 0.001827,\n", " 0.001914, 0.002005, 0.0021 , 0.002199, 0.002304, 0.002413, 0.002527,\n", " 0.002647, 0.002773, 0.002905, 0.003042, 0.003187, 0.003338, 0.003496,\n", " 0.003662, 0.003836, 0.004018, 0.004209, 0.004409, 0.004618, 0.004837,\n", " 0.005066, 0.005307, 0.005559, 0.005822, 0.006099, 0.006388, 0.006691,\n", " 0.007009, 0.007341, 0.00769 , 0.008055, 0.008437, 0.008837, 0.009256,\n", " 0.009696, 0.010156, 0.010638, 0.011142, 0.011671, 0.012225, 0.012805,\n", " 0.013413, 0.014049, 0.014716, 0.015414, 0.016146, 0.016912, 0.017714,\n", " 0.018555, 0.019435, 0.020358, 0.021324, 0.022335, 0.023395, 0.024505,\n", " 0.025668, 0.026886, 0.028162, 0.029498, 0.030898, 0.032364, 0.0339 ,\n", " 0.035509, 0.037194, 0.038959, 0.040807, 0.042744, 0.044772, 0.046897,\n", " 0.049122, 0.051453, 0.053894, 0.056452, 0.059131, 0.061936, 0.064875,\n", " 0.067954, 0.071179, 0.074556, 0.078094, 0.0818 , 0.085681, 0.089747,\n", " 0.094006, 0.098467, 0.103139, 0.108033, 0.11316 , 0.118529, 0.124154,\n", " 0.130045, 0.136216, 0.14268 , 0.14945 , 0.156542, 0.16397 , 0.171751,\n", " 0.179901, 0.188438, 0.197379, 0.206746, 0.216556, 0.226832, 0.237596,\n", " 0.24887 , 0.26068 , 0.27305 , 0.286006, 0.299578, 0.313794, 0.328684,\n", " 0.344281, 0.360618, 0.37773 , 0.395654, 0.414429, 0.434094, 0.454693,\n", " 0.476269, 0.498869, 0.522542, 0.547337, 0.57331 , 0.600514, 0.62901 ,\n", " 0.658858, 0.690122, 0.72287 , 0.757172, 0.793102, 0.830736, 0.870156,\n", " 0.911447, 0.954697, 1. ])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-b710206b-1653-4882-b7c2-207fc363c495' class='xr-section-summary-in' type='checkbox' checked><label for='section-b710206b-1653-4882-b7c2-207fc363c495' class='xr-section-summary' >Data variables: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>composition</span></div><div class='xr-var-dims'>(sample, component)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.935 4.339 4.0 ... 7.878 14.33</div><input id='attrs-be36e11c-f3c5-4561-8627-432227a90dd5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-be36e11c-f3c5-4561-8627-432227a90dd5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7dfafb18-cf5a-45a5-9e40-a19c4638f217' class='xr-var-data-in' type='checkbox'><label for='data-7dfafb18-cf5a-45a5-9e40-a19c4638f217' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 1.93506959, 4.33877746],\n", " [ 3.99993228, 15.11981127],\n", " [ 5.14403166, 1.65850983],\n", " [ 4.57883235, 12.34183192],\n", " [ 8.05567528, 10.47358865],\n", " [ 1.04161007, 22.83361697],\n", " [ 5.85757901, 18.81270953],\n", " [ 4.29558185, 16.91442648],\n", " [ 3.14950211, 2.08947439],\n", " [ 7.65251749, 13.05015789],\n", " [ 5.58833051, 7.55301393],\n", " [ 8.75864958, 13.90004698],\n", " [ 9.03579843, 1.04110731],\n", " [ 6.94709288, 22.03909555],\n", " [ 6.30872735, 23.08178649],\n", " [ 8.38214203, 24.28281802],\n", " [ 6.09861924, 5.67560421],\n", " [ 0.12177663, 1.50263558],\n", " [ 5.4271795 , 24.05339109],\n", " [ 3.32773495, 12.91733508],\n", "...\n", " [ 7.76378269, 21.99343589],\n", " [ 7.45991402, 8.11174006],\n", " [ 7.63854343, 13.54025074],\n", " [ 0.81733253, 9.43775453],\n", " [ 7.20059135, 5.85811728],\n", " [ 2.20804772, 6.7721729 ],\n", " [ 3.65472461, 4.43961665],\n", " [ 8.21345636, 10.74735116],\n", " [ 9.92147334, 15.55468087],\n", " [ 9.52663079, 6.77762994],\n", " [ 7.01379838, 22.20232276],\n", " [ 0.23914684, 3.4963898 ],\n", " [ 3.46456904, 12.84968187],\n", " [ 0.26618359, 8.12557401],\n", " [ 1.1156883 , 0.45431966],\n", " [ 6.91416382, 21.4816626 ],\n", " [ 0.59623227, 7.69198605],\n", " [ 2.02031934, 4.93580074],\n", " [ 5.21402634, 4.84272796],\n", " [ 7.87824238, 14.33035062]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ground_truth_labels</span></div><div class='xr-var-dims'>(sample)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1</div><input id='attrs-54188efc-3e7e-45c9-b173-af5e3a94c35a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-54188efc-3e7e-45c9-b173-af5e3a94c35a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9129c929-e9d0-45fc-925b-d8a68eeea8b5' class='xr-var-data-in' type='checkbox'><label for='data-9129c929-e9d0-45fc-925b-d8a68eeea8b5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>measurement</span></div><div class='xr-var-dims'>(sample, x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.047e+06 1.318e+06 ... 2.12 2.065</div><input id='attrs-b0ac58a3-4e44-44f2-9fbb-41596f9177cc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b0ac58a3-4e44-44f2-9fbb-41596f9177cc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-71721d80-0a3c-42eb-85f9-bac2efea60bb' class='xr-var-data-in' type='checkbox'><label for='data-71721d80-0a3c-42eb-85f9-bac2efea60bb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.04747510e+06, 1.31787805e+06, 1.66353926e+06, ...,\n", " 1.83722728e+00, 1.67819206e+00, 1.80172430e+00],\n", " [1.50599443e+06, 1.89610589e+06, 1.12165544e+06, ...,\n", " 2.34843582e+00, 1.99188297e+00, 1.86768381e+00],\n", " [2.40521543e+06, 1.65651582e+06, 1.28591956e+06, ...,\n", " 1.94777344e+00, 2.32372734e+00, 2.13555353e+00],\n", " ...,\n", " [1.98128536e+06, 1.66812833e+06, 1.50017820e+06, ...,\n", " 2.01786432e+00, 2.26314347e+00, 2.05432275e+00],\n", " [1.94306337e+06, 1.94648513e+06, 1.16565727e+06, ...,\n", " 2.14827245e+00, 1.94185540e+00, 1.69232987e+00],\n", " [2.02892678e+06, 1.57481288e+06, 1.35646331e+06, ...,\n", " 2.23068376e+00, 2.12047399e+00, 2.06485436e+00]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-61188599-db80-4ef3-9f4a-11a949cd8936' class='xr-section-summary-in' type='checkbox' ><label for='section-61188599-db80-4ef3-9f4a-11a949cd8936' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>component</div></div><div class='xr-index-preview'>PandasIndex</div><input type='checkbox' disabled/><label></label><input id='index-4f8cf9e4-28e3-4709-b502-91bc655a760c' class='xr-index-data-in' type='checkbox'/><label for='index-4f8cf9e4-28e3-4709-b502-91bc655a760c' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index(['A', 'B'], dtype='object', name='component'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>x</div></div><div class='xr-index-preview'>PandasIndex</div><input type='checkbox' disabled/><label></label><input id='index-922fdcdf-e3bd-4027-9177-7b14da83ec6a' class='xr-index-data-in' type='checkbox'/><label for='index-922fdcdf-e3bd-4027-9177-7b14da83ec6a' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 0.001, 0.0010474522360006332, 0.0010971561867027272,\n", " 0.0011492187010036998, 0.0012037516980200685, 0.0012608724076806808,\n", " 0.001320703622736631, 0.0013833739627296209, 0.001449018150486198,\n", " 0.0015177773017322714,\n", " ...\n", " 0.6588581861506815, 0.6901224802908528, 0.7228703350949566,\n", " 0.75717214883374, 0.7931016603333051, 0.8307361074919352,\n", " 0.8701563933188907, 0.9114472598521185, 0.9546974703287516,\n", " 1.0],\n", " dtype='float64', name='x', length=150))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-83d9fab0-64d2-459e-9cc2-87d74db8a0ce' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-83d9fab0-64d2-459e-9cc2-87d74db8a0ce' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset> Size: 124kB\n", "Dimensions: (sample: 100, component: 2, x: 150)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", " * x (x) float64 1kB 0.001 0.001047 0.001097 ... 0.9547 1.0\n", "Dimensions without coordinates: sample\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 ... 14.33\n", " ground_truth_labels (sample) int64 800B 1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1\n", " measurement (sample, x) float64 120kB 2.047e+06 1.318e+06 ... 2.065" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import xarray as xr\n", "\n", "#domain of the measurements (e.g., for scattering this would be q, for\n", "#spectroscopy this would be wavelength or wavenumber)\n", "x = np.geomspace(0.001,1.0,150)\n", "\n", "# conduct 50 measurements and gather into an array\n", "measurements = np.array([measure(x,label) for label in labels])\n", "\n", "# add the measurement data to the dataset\n", "ds['measurement'] = (['sample','x'],measurements)\n", "ds['ground_truth_labels'] = (['sample'],labels)\n", "ds['x'] = ('x',x)\n", "ds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's plot the two groups of data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHLCAYAAAADXnZlAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQd8W9X5PU/T8pLlveOdxImzB0lISEhIwgjQQNmFMksLLRvKDBtaRoHS/illlFF2Qyk7gSQEsvdOvBI73lveQ9L7/74rvecn6UmWHSdxwj39pUKy9PT0xr3nft/5zieIoiiCg4ODg4ODg4Oj39D0/yMcHBwcHBwcHBwETqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODg4ODg4OAYITqQ4ODhOeBw8eBA333wzcnJyEBwczP7l5ubipptuws6dO3Eio7y8HBdddBEiIiIQHh6O8847D8XFxcd7tzg4OFwQeK89Dg6OExlffPEFLr74Yuh0Olx++eUYO3YsNBoN9u/fj6VLl6KkpIQRrWHDhuFEQ2trKyZMmACr1Yo77rgDer0ef/nLX0DD9vbt2xEVFXW8d5GD42cP3fHeAQ4ODo6BoqioCJdccgkjSd9//z0SEhLc/v6nP/0Jf//73xmx8oe2tjaEhIRgqIH2vaCgABs3bsTkyZPZa2eeeSZGjx6N5557Dk8++eTx3kUOjp89eGqPg4PjhMWf//xnRoLefPNNLxJFoCjVH/7wB6SkpMiv/frXv0ZoaCgjYWeddRbCwsJYJItA26LID73faDRi+PDhePbZZ1kESMKhQ4cgCAL+9a9/eX0fvf7www/Lz+m/6TWKjlF6jlJzFEW65ZZb0NnZ2efv++STTxiBkkgUYcSIEZg7dy4++uijfh4tDg6OowFOpDg4OE7otF5WVhamTp3ar8/ZbDYsWLAAsbGxjChdcMEFjCyde+65LHW2cOFCPP/884xI3XXXXbj99tuPaD+JRBFxeuqppxh5e+mll3DDDTf4/YzD4WD6rkmTJnn9bcqUKYwItrS0HNF+cXBwHDl4ao+Dg+OERHNzMyoqKnD++ed7/a2pqYmRJQmUtjOZTPLzrq4u/PKXv2TERsJnn32GFStW4PHHH8f999/PXiOxOr3vxRdfZGL2zMzMAe1reno62760TYpMUdruzjvvxJgxY1Q/09DQwPZTLdImvUa/n8geBwfH8QOPSHFwcJywRIpAaTpPzJ49GzExMfK/v/3tb17v+e1vf+v2/KuvvoJWq2WpQCUo1UfRqq+//nrA+0rkSYnf//738nf6QkdHB3ukFKMngoKC3N7DwcFx/MAjUhwcHCckSNskVbZ54h//+AdLe1VXV+OKK65Q1U4lJye7vUbVfYmJifJ2JYwcOVL++0CRnZ3t9pwiWySAJ72VL0gRNIpKeULSVymjbBwcHMcHnEhxcHCckDCbzSzFtXv3bq+/SZopX0SFojx9VfL5AonH1WC32494G0pERkay/aysrPT6m/QaET8ODo7jC57a4+DgOGFx9tlno7CwkNkDHCnIQoE0R54Cbqq4k/5OsFgssg5LCX8RK7IwUIL2mcTkaWlpPj9DRC8vLw+bN2/2+tuGDRuQkZHhFT3j4OA49uBEioOD44TF3XffzVzMr7nmGpbG80R//Iapmo6iSi+//LLb61TFRxEk8m8ikFA8Ojoaq1evdnsficd9wVOj9de//pU9Stv0hQsvvBCbNm1yI1MHDhxgongSwXNwcBx/8NQeBwfHCQvSHr333nu49NJLWfWa5GxOBIrczOlvFNnx1EOpYdGiRZgzZw6r2KOUIG1n2bJlrNru1ltvdavYu+666/D000+zR7InIFKVn5/vc9u0L2StQLYK69atw7vvvovLLruMfYc//O53v8M///lPFnmjCj9yNidbhri4OCaC5+DgGAKgFjEcHBwcJzIKCwvF3/72t2JWVpYYFBQkmkwmccSIEeKNN94obt++3e29V111lRgSEqK6nZaWFvG2224TExMTRb1eL2ZnZ4vPPPOM6HA43N7X3t4uXnvttaLZbBbDwsLEiy66SKypqaHwl7hkyRL5ffTf9NrevXvFCy+8kL3XYrGIN998s9jR0RHQbzt8+DD7bHh4uBgaGiqec845YkFBwYCOEwcHx+CD99rj4ODgOEogZ/NHHnkEtbW1LB3IwcFx8oFrpDg4ODg4ODg4BghOpDg4ODg4ODg4BghOpDg4ODg4ODg4BgiukeLg4ODg4ODgGCB4RIqDg4ODg4ODY4DgRIqDg4ODg4ODY4DghpxHEdQCglpOUBuHQHprcXBwcHBwcBx/kOqJ2kVRP8u++nJyInUUQSQqJSXleO8GBwcHBwcHxwBw+PDhPjsjcCJ1FCE1FKUTQf25ODg4ODg4OIY+mpubWSAkkMbgnEgdRUjpPCJRnEhxcHBwcHCcWAhElsPF5hwcHBwcHBwcAwQnUhwcHBwcHBwcAwQnUhwcHBwcHBwcAwQnUhwcHBwcHBwcAwQnUhwcHBwcHBwcAwQnUhwcHBwcHBwcAwQnUv3AF198geHDhyM7Oxuvvfba8d4dDg4ODg4OjuMM7iMVIGw2G26//XasXLkSZrMZEydOxC9+8QtERUUd713j4ODg4ODgOE7gEakAsXHjRowaNQpJSUkIDQ3FmWeeiWXLlh3v3eLg4ODg4OD4OROp//u//8OYMWNk9+9p06bh66+/HtTvWL16NRYtWsSaD5JL6X//+1/V9/3tb39DWloagoKCMHXqVEaelH3ziERJoP8uLy8f1P3k4ODg4ODgOLFw3IkUNQN8+umnsWXLFmzevBmnn346zjvvPOzZs0f1/WvWrEFPT4/X63v37kV1dbXqZ9ra2jB27FhGlHzhww8/ZKm7JUuWYOvWrez9CxYsQE1NzRH8Og4ODg6Oo42qtipsrNzIHjk4fnZEiiJFZ511FhNw5+Tk4IknnmCps/Xr13u91+Fw4KabbsJll10Gu90uv37gwAFGwN566y3V76A03OOPP840Tb7w/PPP4/rrr8fVV1+N3NxcvPLKKwgODsYbb7zB/k7RLGUEiv6bXlMDETbaxuTJk/t1LDg4ODg4+oelBUux4D8LcO2ya9kjPefg+FkRKSWIHH3wwQcsgkQpPk9oNBp89dVX2LZtG6688kpGrIqKihiJOv/883H33XcP6Hu7u7tZRGzevHlu30XP161bx55PmTIFu3fvZgSqtbWVpR8pYqUGInsUIdu0adOA9oeDg4ODo29QBOqRdY/AITrYc3qk5zwyxfGzq9rbtWsXI06dnZ0sGvXpp5+yiI4aKAq0YsUKzJw5k0WmiOgQ4SGt1UBRV1fHSFxcXJzb6/R8//797L91Oh2ee+45zJkzhxE4Im28Yo+Dg4Pj+KG0uVQmURLo+eGWw4gPiT9u+8Xx88KQIFLkzbR9+3ZYrVZ88sknuOqqq/DDDz/4JFOpqal45513cNpppyEjIwOvv/46E5EfbZx77rnsHwcHBwfH8UdqeCo0gsaNTNHzlLCU47pfHD8vDInUnsFgQFZWFvNmeuqpp5jQ+8UXX/T5fhKV33DDDUxf1d7ejttuu+2Ivj86OhpardZLrE7P4+P5qoaDg4NjKIKiTkumLWHkiUCP9JxHozh+dhEpT1DqrKury2cabu7cuRg5ciQ+/vhj5OfnY/bs2TAajXj22WcHTOSIxH3//fdMayXtAz2/+eabj+i3cHBwcHAcPSzOXozpidNZOo8iUZxEcfzsiNS9997LquooXdfS0oL33nsPq1atwrfffuv1XiI39N5hw4YxuwLSLVH6b/ny5UxwTt5OatEpEocXFhbKzw8ePMhSiZGRkex7CWR9QCnFSZMmMWH5Cy+8wETvVMXHwcHBwTF0QeSJEyiOny2RIp8mqsCrrKxkrVfInJNI1BlnnOH1Xqqke/LJJ5nQnKJIEigV+N133yEmJkb1O8ifikTiEog0EYg4/etf/2L/ffHFF6O2thYPPfQQqqqqMG7cOHzzzTdeAnQODg4ODg4ODgmCKIqi/IxjUNHc3MzIIYnoybWdg4ODg4OD4+Sav4eE2JyDg4ODg4OD40QEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcHBwcHBwcHAMEJ1IcfaKnqgpt6zewRw4ODg4ODo5ecCLF4RdNn3yCwtPnovTXv2aP9JyDg4ODg4PDCU6kOHyCIlCVDy0BHA7nCw4He84jUxwcHBwcHE5wIsXhE92HSnpJlASHA90lpcdrlzg4ODg4OIYUOJHi8AlD2jBA43GJaDQwDEs9XrvEwcHBwcExpMCJFIdP6OPjkfDoI71kSqNhz+n1nyts1i50FjWxRw4ODg4ODt3x3gGOoY2ICy9EyKmnsnQeRaJ+ziSqbVMVGpcWACIAAbAszkbI5J/v8eDg4ODg4ESKIwAQefo5EygCRaBkEkUQwZ4bcyzQmY3Hee84lGipr0NjZQUsCYkIi4o+3rvDwcFxkoMTKQ6OAGCr6+glURJE5+ucSA0d7FqxDMtf/StEUYQgCDjjht8j7/T5x3u3OPpApbUDB+vakB4dggSz6XjvDgdHv8CJFAdHANBFm1g6z41MCa7XOY4qOjsr0d5xCMGmNAQFJfiNREkkikCPy//5MtLGTlCNTFV0dqO4owsZJiMSgwxH9Tdw+MaHm0px79JdcIiARgCeWpyHiyfzghaOEwdcbM7BEQAo6kSaKEam0KuR4tGoo4uKio+wZu0sbNt2BXuk575A6TyJREkQHQ40VVV4vfe9inpMWrcXF24vYo/0nOP4RKIkEkWgx/uW7mavc3CcKOARqZMMPER+9EDCctJEsXRetImTqGMQidq3/36aXl2vONjzyMiZqpEp0kRROk9JpgSNBhHxiV6RqDsPHFZsFbjrwGHMjgzjkaljDBqrJBIlIdzQgKKy1bAYx/iNQHJwDBVwInUSgYfIjz6IPHECdWxA6bxeEiXBgY6OEtUJltJ3pImidB5FoohEnXH9zV5pPUrneW7VTpN6RxcnUscYtOCjsUoiU6cmrcNVuR+gq1rEmmoNRo54AomJFx3v3eTg8AtOpE7yEPmsnBgWmeKVTBwnGkgT5VQfKGmPBibTMJ+fIWE5aaIonUeRKLVrnTRRnlvV0qRu4gT5WIPGJlrw0VhFkSgiURpBDCgCycExVMCJ1EkcIreLIg7VtaNuy4+8konjhANNnhSR6E3vOSMUfU2qRJ78LRYo6vTs8BSWzrO7SNQzw1N4NOo4gaLmtOCjdB5FogKNQHJwDBVwInWShsgJWkFArLYDn/WjkomDYyiB0joUkaDJlCJRgzWhXpYYxTRRlM6jSBQnUcc/MkWaKErn9ScCycExFMCr9k6yEDmRJwI9Prl4NPStDQFXMnFw+ENVWxU2Vm5kj8cSRJ4sllMGPSpB5GmGhQvMh1oEsnda0mB41N2wby9FT9WxveY4OPoDHpE6CUPklM5Liw52aaOCA6pk4uDwh6UFS/HIukfgEB3QCBosmbYEi7MXH+/d4jiJI5C2b/ag7ubn0eJwyH0+qWUVB8dQgyB6his4Bg3Nzc0wm82wWq0IDw8/vm7PHpVMXCPFESgoArXgPwsYiZJAZOrbC75FfMjPu3UQx9EBRaAKT58LEImSoNEga8X3P/t2VRxDb/7mEamfAQKpZOIYOqSltLkUqeGpQ4ak0P4oSRSBnh9uOTxk9pHjCGAtBxqKgMhMwJyEoYDuQyXuJIrgcLDm6ZxIcQw1cCL1M0FflUwcxx9DNX1GpI72xzMilRKWclz3i2MQsPVt4PNbSDhJOX9g0YvAhCuP917BkDaMRaA8I1KGYdwXj2PogYvNOTiGSCRKIlEEeqTnR1XYTZGIg6udj35AUScidUSeCBLJ49GoExx03iUSRaDHz2/t83o4FqCoE2miGJkiuDRSPBrFMRTBI1IcHD/H9Fk/IxEUGZueOJ3tD0WiOIk6CUDpPI9rDqIdaCgeEik+EpaHnHoqS+dRJIqTKI6hCk6kODiGAI5p+sxXJCJzrt8JlMgTJ1AnEUgTRSRaSaYELRCZgaECIk+cQPX2nqS2SeT4f7IZlFYNQW1of8BTexwnvQ/RiYBjmj7zF4ngGBKgxso/Nbawx6MGIs0UiSTyRKDHRS/0KxpFFU0HDx5kj8caP6fxpKLiI6xZOwvbtl3BHun5yaQNXfCfBbh22bXskZ6faOD2Bz8D+4OhgKEqpB5qoEnhqKfPKCL1wmjvSMStu455SudY94BsbexEU00HImJNCLUEYSjivYp63HngsKspDlg7G3JiP7pVe8XOSFQ/zv/WrVvx+eefy62nFi1ahAkTJuBY4Oc0nlAkisiTp+P7jOmrT/jIVNUQtlbh9gccJ4SQmjQ3x/tmGWo4JukzKRJB6TyKRA0gEjFo/mbHsAfk3jUVWPXuftDSkRoAzL5iBHJnDC1jWopASSSKQI/UE5Da2Rw1B3Y67/089zS5SCSKQI/0PDMzk00+RxM/t/GE0nnuJOrk6UFYepJYq/DU3s/U7K5t/YZj1nbB383CcZxAwnKKQF31hfPxGJe8UyRKIlHKHpD0+tGKREkkyvl9wKp/72evD6V7pbijy2vKpMbK1BNwKKGhQaX1lCiy1wdaHRoofm7jCWmivKfq49ODsNLagbVFdexxMLWhSpyI1iqcSP3M0PTJJ8wxuPTXv2aP9Pxo42S5WU46UBQifeZxqdCidN6x7AFJ6TxPEQPNxdaajiF1r2SYjF6DMimYqLHyUEJkZCSLIipBz+l1r+pQSiO/tcj5SM9/xuPJQLRvaj0I6fmxjkZ9uKkUM55egcv+uYE90vMjRfxJYq3CidTPCLSqrnxoSa/JncPBnh/t1fZg3Cw/J2HpzwGkifKaiI9iD0jSRHl8HStYM8eahtS9Quk70kS55N/s8ZnhKUOusTKl70gTJZ1DSSPlltY7Sj5VJ+rkS9q3Sev24sLtReyRnvenByFpoiaM/zd7pOfHEhSBunfpLjhcixF6vG/p7kGJTKW1pGFh6ULMqpzFHun5iQaukfoZ4Xi2XQjUh0hNDPxzEpYONRwtMThtizRRnj0gj5bgnK4l0kRROk+yzpp9+QifgvPjea+QsJw0UZTOo0jUsSRR/SlDJ2E5aaIonUeRKC9t1FH0qTrRfM0GQ/tGEajjpYk6WNcmkygJdlHEobp2JJjVFyP90dqZRBNMNud2jpXWbjDBidTPCMe77UJfQmo1MXDkOM3PSlg6lHC0xeDHugckCctTcyNZOs/cR9Xe8b5XaHI91lGogSxYaLLzOeEdZZ+qIeFrFmCfQn/at6EWbVRDenQINIIzEiVBKwhIiw4+alq7E4lI8dTezwhDue2CLzFwYdmhn5WwdKjgWInBiTyljBpzzPpAEnlKGm7p0/pgKN8rJ0yLokHwqRrS8NB/dW5+GQ2N65hdwYmqffMFijo9tTiPkScCPT65ePQRRaP6pbUb4uARqZ8ZhmrbBV9iYHNnDG+YexzgTwz+c2l+Hei9ciTeVEfD0ZnSSBQBock70GjHUStDp2pQcswfgE/VkIaH/qsiTo991ueBbYIsBlfqmCTtG6Xz7ENY++YPF09OxaycGJbOo0jUkZIopdbO04/sRIpGETiR+hnqW4Zi2wVJDKycuykrkJ6ahCXBS7xSDsc9pH8SmlWqicGVZOpoisGHKvq6VwbiTUW6EEpdbGjegKd2PDWo2r+BmnkezRZFVTotSoOMSNVpcaLetSSqJp0QpbgYgVDovzoNGuzLDnVeAAwO7Nt/PyIjZ7ppmo6n9m2wQL99MAhUv7R2JwC4s/lJ6mx+rM0Oj3hgkiYlDzGwNCkdE8fvIYShcP7YPniIwQe6D2rne6gi0H2lSNTb9631Iv9XPjHdZ2RK6QZO/9savRWHwg4dsaOzzdqFw1UtmFFR5qbFocjHpmm5AU3aR6Oo42QoFKEyf6lijXRClOK6OEcrdwdoMOuxbaz35E8VdhbLKcd0X6mqlAolSOM31BbLJxq4s/nPHL70LSTsHQppGdWBaXKqXzHwkBCWHqNBjp2/f/yVTbTy+Xv1r8f8/A2WGNzX+R6K6M+++vOmUiNSnm7gAgSMrxuPalM1OnQdA06ltW2qQuPSAuywaOGYHDxgQfNAKuH8pTUHw4F8IGnKY1H2P+uPc5Dg6g4Q3GF3htLdtD7H3jCTfM5kyw6Xpo/S0ydKa6QTGZxI/cz1Lcc6UuBzYMqJYd9PN/lg3OjHs1O62nf7G+Q8Ubt3t0yiJND5rNu7G2EzZ+NYgq6XIyFvfZ3vobTi7u+++kpH+/KmUqtQ0kCDkJ4QRqQCSaV5/n6KRBGJosslpc0BjSjCoZjQ+yto7s+Cpa+05pHqro55z8H+lv279F9BDcUY6diLfSXPuowN+m+YeaTjsC/fM9L4FRQ5hnxrpBMdnEidhAhU33I8IgVHy49ECeqMThoF5aB2tA3sJN2L3bEaJSWPu313jGaWz0FOjQyEdPZ4r3BFEcFdNpxoGMzz3R8yeiz2lQh/yIxYNP9UDQ0EOCAifHqcz4WAVKGkvC8dcKBN3xaQ9k/t9weNn8dIFCGuS8R9e7rw5CgjI1NHU9Dsq8qWIsrS7z8S3ZUv36VT9UbENtugizZBZzYe/7J/V5/CRMxEZNK5rP8dRaL6Q6IGYxz25XvWuPcQVn3c7vc8nYiL1aEGbn9wkoFWJpqCIpx+8ZWMPBHUzA6PplNtIAOTEoPhR6K8uXtJVK/ws6BgIyM7RwOke3nhhRfw/vt/x6FDj3l9d2vBVp/mjmqIzMtDXnldb6hDFNnzyNGjMVRAE2nZgcY+e9UN1vk+Fk7j/d1Xulce2VOCf4R34oOQLvb46J5Sn/eQmhv4nAVz8Lez/8a0Uf60Q75+v2hvphyhjPPLe/D56jZ8lJ3KtFFHK4ITSMudI3Eg9+W7tPXNnaj75y5UPb2RpTSHUtk/kQnSRPU3EjUY47Dse6aERoMOU0y/WyMFulhds3YWtm27gj3S858zeETqJIJyxWrUaHDxH++GY+J4VX3LsYgM+RuYaLCg7/M3MA0kjeOrU/oXX7yB5uYENpFRlchgQal7MZlaIAgi6hGJKiQiHhWIQgPsseiXuSP91im33YXoRx9Fu16L4B47Mh56aMiIR/tTqdaf8+0Px8JpvL/7Kt1DrRr6J7VB8X8PDbRCydfvdzRWwbI4W07vEakacXYWQpKPrg9PoGnNgTqQS75Lyl9MaUtKXzKIYL/ZmGM56pGpo1H2P9jjsOR75hmx1I1IgiCUBJx+PpLFaqRHleLPCZxInSRQW7E2P/1nZK34HnoVjcvRcqodrIFpoGmc3k7pvUOwKAro6AhjZMdX+4GBam+Uuhf6jpXiXLwu3AhR0EAQHbgO/8CMYeOhUxnk/H0P/da8Iej3FUhKx1P3Qef6pz/OOaKJ6Fg5jfdn0hzoPeTXDXwAv5+uDSIUtroOvykvKf08GCXm/Wm5M5BCETXfpXv3dLH0pQwRzt98DFJ8R6Psf7DHYV++Z+FntKNxWRDT41Eq2TKv84jSer4Wqx0dJZxIcZzY6O+KfbAiBQNFmENAik3DHvsjnOyLUEid0qUVE5GogoKp6O4OYX8n0lPx0xoET5yATr2OCfMNm7ei8c/P9Ju00cpMpy+C0diOrq5gNCAK/xYuZSSKfZegweu4Eb9FFBIHYIQ6FP2+Aq1UG2z9ndqKO/aO253Xvevvx3LSJEJpr+nE4wtG4sFv9x/1e8hXxEH63W3oRIOmEZEQYIbRr+2CZHp4pJHZ/rTcGQiUvkspNgGaZdvc3yCAEccTGYM9DnuOGVQ5+Uzr/TBNCGPmxtagWnS0tmBe26QBV0GrLVZxHKoUhxI4kTpJMJAVe6Cr78E2huwrNXSkaRwSllOYubZuL95951tGciQIDgfaH3gAK4P12J0cC2N3D+bsK+mVmQRI2pSC9ilTBRTkn4ItnafIJEreHAS5/HwoEqNBSekI5EC/E7BmMeHtYFfqyd+tIKOdu3eh5rnnj5rwvD/X77uLc4GMsEFN+6hFSH1FHPoiSZ62C/4is/3FYFXZBtJzsM0jhUkpzcGORh0PmwDPcZgWl6Q/HIx9kCon24xW9o9BxIAd651O/IeRmH43Kg7+WbVKseUYGwkPBWsHTqROEvS1Yh3o6nuwjSEDSQ0NRhqHbuqU5AQsWGDpnWQcDkzavBmCrRu7kuimFxHc3aPU6gZE2rw1AiKyczYgL+EP+LLKc50G1HXbWBVSJOqPS5ULlcj3lfYZcEpHEDE7/P8Q+ulyZ35n0Ys4aD7Lr+7jSCwMpPeXXn31gCKWRwq163fbp8VOE07z4Azi/tLanmQ8EJJ0sjSGDZkcWApzoBiIS/1gTejSOEz78OkgWhX4qpzU1YSj1eie4usr9etprvrw5HsxOz7XrUrxWBsJH+k5GyxwInUSYbD76B0NY89AUkODmcaRxL2UzqNIVHBHB+pDgmRrgXaDXlrgBkzafGkEcuMdeNbcq+ugbdK2f7O3BBqIuFZ8BbPx3TGzZFCaNSpX8TQhDUpK5+BhmP+7EKGaut4T+fmtyLx2hk/dx2BYGBwL4bkv9NeEsy94rt77m9YOhCSp2S6ciI1hCUSejoYmqj/av6M1oR/pPqhBqpyUCRA0mFV4EdauLcc6oVzez76immrmqg9vepFVm1qC4o+LEfTROF4DBSdSJxkGM310NBrXBlrt4y+NE3z/7ag+PS/gRq80oZAmqrCriz2nKJQ04nUadNiVHIO8slonmQogkudPI3CZxanr2Gxtw417SxR1LQJexw3Iw1ZWyXcsqlyUZo2DXenEUjpNlYBEoiSIdsT1VKjqPqI7rCgcoPbteAjP1dBfE05/UFu9ZwSb+0USAyFJJ0tj2EFpNEw98iIzvZonHwlBVpvQV767H3qjFgmZ5oAn9cEm6Z6Vk/kVRVj/cjVCuiLciIclRddnVDMQc9XGY9zo/Ggdr4GAEymOY9e41lqO0KYizF4ch1WfVvdZ7eMrjdPy+LO4q0GLJrM24N5dyiiXqcfOfJl2p8Sy31YeE4Hc396MjOS0gCJ5noJ2T40AaToiVXxwHIIW1WICI1LHosqFUiAeBumDW+lEExKdQOUAK2iByAxcnJ7kpb9rW79hUCJJA01jDwb6U63mD75W71c/9LQqSaztbIOjvs5rQgqUJJ0MjWGPCFvfBj6/xXmtulLQIGfyQSDIahM63WfLXtvTr+jUYJJ0TxDZsTmM2OVaTMq76QDKDlX1GdUMxFzVcowbnR/N49VfcCLF4RM0aNMq2bNx7YBWF4qBLFfQwHje31BomI6sjAhkDnOukAJN42hFIL5RREN4/3p3KaNcWcNSMU2vG3AfOUnQ7svJWN0Hx444VB6zKhdW0STlF49GpROt6l39xigSxUjUohfk1b6n/m4wI0mDncY+1tVqvlbvrQ6bG0kUNQJ2J0Xj8N+f86k5CZQkDcR24WhEf445aF8kEqVIQVN7F2nfjoQgq03oEvqTbhoskt6f/aTvSE6L7zOq6ZUiVDFXDRvM+SIAHO3j1R8IoufdzHFcukcPZdDquS/C4azmKFVPt9FA5uqUTvjQNhv32q4Dy9j3URpPmpHC0+e6Tb52Abjpd1o0hDuVTW8seAOT4ydjqIF6hUl6qZNJI6U+aRazSJSvSVO6PuJW7EL7E8en2m6o3VP/vOlqr9X79S+/IWulmnbtwsf/9zw69FrV95yo0Z9jjoOrgbcWeb8+/0lg1Plu1yyl6QZCkJlGyjWhq+H828YjabgloG31dx/6UyWn3E+JeASikVLex32Zq7YEMF8MZouZgZ6zwZy/OZE6iYlUf6u1Blp14lnN4ZVuUwxklWIkZnS9xEiUBNLQkGGjr+pBpUCZSNSrZ2qwcmxv2wkSPA7UE+Vog6r1yP6AGsdS1d5AenENpaq9gcDz+ngs+1bM1YwaUkajxwNMI+WxeldGm0p378THj93n9bmLHnoSKaPGYEjCY9HEQJHKW3cdl8gUI/CVW5H6wZWIt/V4v2EQiR6Nn1VFVix7fY9X1IdVdR6FSIm/KjnleN5qaJIXuqHdEarEYzANW49GP9Sj2bD8SOdvnto7SeEvEqG2ghlI1Qld2FX7t+Gvux+GI8w5ctBk6ZVuU2hpDjri3UhUIC0RlGmc7x178EPBC2xb/endNRACRP2+KEV3JE1fiTwF4RCC4Vx1HQ/n36NV6RQI1Kp9Hix4AVOOE/lVroIbuyKY8zq5S/u69nwtLvxGYPuA/NmpY3D92Dd8rt6PteZkUEDpPM+wDKV9KWLpQaSO9sToRuBTEvFQXQMuaGlxr9JVSfMNFHR9ZE0KQneX/Zikm/xVyR3e390rgBdE/JDxIfbFrutd6A5fHHDqV+pQ4O8+OdotZo52w/IjBSdSJyGkaq02sRNWTTvMjmAaVVi11r4tP3itYNLHz+p3Ganywn5ZAP6hiBIZe4zYtn8bpmdNd96YCi1NuqbK1ahA06+WCFI14rmYgiljzux3767+puSkzvO0l9SqYiDNXwey6jrZEEi1z9GGNBEE21aivpwiPA78WDYNb++7BA5R8Jle9rW46DMC6weqnx2l/tljrTkZFPgpQDiWE6MXgYeIh6Misal5IZ4WPnZ/s2jH7t3bEDU6clCIwtF2fO9LZ1dZcAir3m3ujYqJAmYWXYQuTTuqww7hr98+jMnlJsSPGO9GYNWI7WB3KBhIi5kj6XRxrMCJ1EkISuMc0FTgJ90+uodoQYJTbSMRVFSmuoI557bMfpWRel7YGhG44WsHdqQLCBfSMaFuAjYc3oCNwsbeXDuFzjPnIqGhGE8dNuO+r8sG3BJB2btrsFdLFImSSBSBHknnRJYG/YlMHbPGnkNJ1KuSHvBV7aOtaEWL3rsKbbChnAgEBOGq3CkYFb0fb+29GKIrLqHmvO7LoyYoze4VYQu04EEtOtfXZylNQxGGgRZFHHP0UYAQ0MR4hNc0jQnfFNI595isBRHfa9NgtwvQ0qDogk3U4LrPG1DzxYpBIQrHwvHdX8QSGgtEsdntveQfNb/gGohwYMSB99D68u0oVBBYNWLbccbZg9uhwOo8r8GhYf1qMXM8feMCBSdSJyHajT0yiSLQIz2Pb05QXcHA0divMlJflXTD6gxIFyZAcE1Qnn4krY4oNHUH4+w8E2aNzT7ibuoDWS31lZKhdJ7nWonE4lKblyHV2HOIiXp9CVbdDQEFTNtpwcovn8Oqo+x87NmqRoQGb++9BNePeYv9t7/0si+PmuLSwwOOsA00OkfkaagSKFWhs2vR5KsAwe/EWLHsiK5paUwQtVaEZAnMeV8C9d2s687AveJ1eFL3OnSCg5Go+2zXogpRTAYxGK2MjhV8RSwTs5MgCCWqVYQCNDiQcymiGvYhqKuJkSdjznBVYls3bKzfDgX9agWztXesChI0GDn/Kuzr+FLVPmYo+cYFCk6kTlD4IwTWnlaZRElgzyNCVVcwCdlpmH1Fd8B5fV8X9hUz7sLatQdU/UjKd7d5pUmmHYGV/0D6uQWSklGzLaCaKRKLq+2Dr2jYUW/sGUBJd7+3dwRRAH+tSiRDwANlu7H6qecQ3KE9Js7HdG48JwInlaNYlMONTBER19eVoCVCZPviq1Q8IzUFmgINYnq6kdpjQ6leh1q9wc1PxxcC8eIZSvClYZIm0OriAvz43r/U24HQNaRyHbGqr+BGhKpNjBYD8P7Ar2m3McFmRlflYhgTljIyRSSKnos2Mz7CHKxxjMWz88Jw2/JmJ4kKUK85mBo9bZMwYI1YXzo7pS2AFwQtOkwxjEjROWjfulWV2Ca21fnsUNCvVjBW77EqcdnbiPzd9+jQdbExkY4F+cypHYu+fOOOdW8/NXAidQKiL0Lgy+1YJ0Zj1hU3YvW//+GlucidgYDz+r4u7MSpZ2Ddunyv7w3ShuDrd3cPqpW/2iTpbxAMNK1CUSfSREm2BTTlPzM8xSsa1Vc0rC/TzmMp6j3akS1Kh64tr0GL3ojQ7k5VUz86xt09NdjsIlHHwvmYCK7nRED6vMyIQ7gq98NejRSAObWr8MPz+7BaMSmoedRkJCXijZg5GLfhTXZt0DWyferVAem9AvHi6Q8GO60diIZJOYEqEQgpVo5bcxcKuOEbAQK7gVwTo775iK5pzzGhxzoZtrYcLPlFLHq6IvH0gSoWlyQy8IfFpyEtJwY1361w81kLRK850EIUN82kKMD8nhYhazQBa8Skwod1bavwOBX4+NHZSTqtqmIrvv3nHvcNiXaYOmqd/02dIkh6oUJsU0ek46mQJK8OBaG2NrzvKRF57V8ICstBQla895juY6wKam1FUPpM57X24ENyt4mExx71Oha+fOOOdW8/X+D2ByeY/QERggX/WeC1qvW0AHBLs0BAqDULQR0JbJU99bw4xKbYj1hzwVasAXSijw1Jx2d/2RaQt0qg1VA0icx4eoXXasmXjcLGyo24dtm1Xq/78qBS2hZ4Dpb9+W5agfbH8iBgC4rBKjM/wu0ohfmCKGJW/naMrHL2RKTzf+utt8qVQJJ3ki64G0ZzN7qsBtg6jEfVF4kIr3IieGRRCs4e2cbOB1Xt7SuuxI/P3odQW6uqV5OXR80gHPdAvHgC+V2DJQL2vObUvNtoYo1b+jH+9fA9XiSqL2sGKn4pLy/BuZt+ycpMJES3CHg778+IHz6uVxvVj2NbdKgM+fkHkZOTjsy05D7vS/q7LCeg7gINRfjwcISXXtPfcRxoIQqNA2vWznKPUNuBuAf1LBpDxzdrxfc+I1PKwgc6hqszPsT+uPUBWcC4eUdBxPD895BYsdaNwPkT/7sdN7PJy5ZDaxgNXfA8CIJGveLbz3nt6dCicM7pHqFfAVkrV3gfC4+oeV9ebEcKbn9wEiNQnYXkdlxeWoXvXymGxu5MTdE1t+F/1f3zNfGR9lHr66fmskwDdSAaLLZiXfuIq6ZPgyXTfVdD0Q2t1s/N18q8v2kVIk++Vpv9iYb1x/KgXxYUAYh6j3Zky1OYLwoCVueMRUpDNcJ6urxaldDgduoNE9DseFcu7ArXXDHoJEpJxmlS9GxVIyEhCOjRt2KbgkR5Rsm8RMODEAlUFkscq7R2f665YdrDqqmeul27/JIoNWsGyYZlt+kAHMPct1kXJqJqeBRSpDGkH9f0G2+8j/pv32NGt7shIGrBZbjmmkv9jgmy074iAnuxoMGss/+KQwln9qnX7E8hiueCUFUzqQVsMaKTSPkRT3sWPrDGw8UX43DEPrQZrX3q7DyrCI1do7wWwP46BXh2KHATuQuhMonymW3wcV6rdFoUrvkYkWyxr4Aoon3bdpjPXOg3at5oGHdMe/v5AydSJxj6QwhoEmsxOKCxlw+8saPHBdx59mNoz5zo143W048kECt/GngeXvswRFecncjUw2v9VzTRJHmq2YGK3QVIHJ2NpJzUfqVVbh5zDXZXfI2uqImIEnICNiNVSxkFkhIY9E7mfYh6B7NcXQ1qwnxR0GDa+RdgXlKs2zVAk/+BisOo7fwSka6fQ1/bgvfQ2Xkju5YGQz/iK+3ta4Lst1fTERyvwUJ/09r9veYuvSVbNdUTnZcH4T/ux0qCmjWDsml2YncsBFGAqBB/q45bAVzTFImSSBTbDkT2vOj0mX6Js1KvU6GPQnFwMjLay5D4/R+QwKJe/iNLgRaiqF2DZ6VM89ZMOgCDPQtCUAPE7maf4mm1wgciU+bOGEakAtHZuS8I1Bvb60126GM7ARP9qsBE7oLGIpMov/OLx3ldWrMBj/xnAUYesmHJAPWgkRd+wiJsShpGzyNC3PfnWIATqRMM/dVZDLSxI9MB1JUj49vHkOi6gCvi9NhnfR7YJvTbF8lzVdRs0uCnxhZZZ7CtskAmURKoVHd7ZSEWZsWruu5SOLr5oSUIdTjQrNEgRKkzUImiSaJnWr2tLf43/rrjn+wmHFE9FbMPXsp0C4GYkfY3GnZUO5n7EPUGjCOIbPkS5k/LGAazYmJxtyBYgqtyP8DM5PVulYwNDT8GpB/x59I+EHuBfns1DVYk0IWBCGUHi8j7uubaEaqqgYwYket1rGZeehXiM7NVZQLKptkxNgtuqbwMLyW8D4fggEbU4I8Jt6qflz6uaUrnSSRKAj0vKDjEUnyeERQ3NBThvbiFuDPnTtZEnPpfPpv/LC4LIKIYSCGK72vwW3fNpCggbu9VCB8zG2KeA0FpLT4XDGpjOC00rUG1g2dK3E+dZF5EFRISi1DVFoQf5ERnH/OL67wqj1GlRYCDMptu/UAFBI8f12cUOLR5H85IKMDyymw2jhOJoudhYiOONTiROgGhJAR96SwG0tjRTQcw9QM20Cxu+Ab7skOd8f8B+iJJqyK2/e29OoPHU+KhP2RilTWe5cqO7ihV3VVeYqJvLxo/JdR0rLq6avB6wXfs5gvpMmNW8SWy13GgQvg+V779RF+Ed7Cc1gcrskXEtquhAY+mRmNJaZ1PYb4vCwLycooManKurTUmd88tQYT1EhuC9pB+pPe8dh+G376B/bUXkEgMCaRJV9GXV5NMeoadhbBbjzASeARCWTUi/9iCEbBXdaLVIfi8bj1d3Qs7OryaWkvXXKiPVE9/fK08m2YvsM7AhLZcVBpqkdAdg5gDFtimdvXbdZ80UZTOU5IpBwRkZ1OlrH9UhKbJJIp9TtDirpw7MTs0Bn3VEAdSiOLvGpzsanTeWleIltca0CBGYXOkBiltAuJKzWyRoHYsvMZwQUTE+Hfx6+RqxOiAU0JsOFYVwEwXu2cLWt75HD1xf0dEhAZju2zY2W5n0Wi2EO1jflEeI+qXSmbO5ENIFjqeFXl+o8AppyDP8gDSQhrR1G1ChKEDYQb7MY0OS+BE6gRFf3QW/XHa9dIBuAaacXu3AULPEfki0UBebD2EOw+YENlYj+SaKpTFxuN+h4hrvrSiK9a9XLm7ajGywqLw/sf/51VWn3jaaV46jvoQB2q3foScrY8i3s+gUFC/RQ4HU3icwuQDSX36Xfn2B9ZyhDYVYd6FEfjuP01ehPdIndYDImH9iGwRsf3wqw/RomtBmC0Mby68GCGZ2arCfF8WBDXt0YgMamardLujvU/9SOf+Eli/7e6d9EUnqSK3fmnykdLe/qwJpGPRvW0D9r/8HExd3egwGjDz5tv8kpjBrA6iyahh1y4sf129vUcgkSklkUdxC7Z9WIzPxENeEVU1V3dGZvdcjNXl0zDGpMWCDgM7np6LLDUNpKevlb9ri84LkV2Z/LoiU/RPAosu9pNIUdSJNFFSeo9IFD2n1/tqjFuss8AhNLi9xy5ocVBn6ZNIEei+I02Ur0KUvqQXbKzsMuGDqP14MlMHtNuBYAPuK7LhOj/HQhrDa8vKcKDkUuiDe3/DERv9Bqj7cxOkQ4Bx3FoY0k5FmlGHWC1g7fobUkL3IN50LwDf0SzPY0QdMXZlaN0LDwKJAidPZK+HfX4rwvTWI44OHwk4kToJEEh6IFCnXVUdgKBFNeIBsVQRkeqfL5JU+rsHuVi4djZu//c/oRVF2AUBz19+PbpDJ+L0yulY3poDwVgHoScaT5x7KvS2NtVS69awMDcdx4oxzpWNWPtPaJLjsaSuAYtb21QHhWxDKjSiCIcgsPC4JG7vT+rTE75STn1W4SlC6jk04P7iT6jXn4nwdDPCh4UfsdP6QEiYv32mSNRLK1/CluQtcrSh+odqvJj9ols6z68FgQDMnfwQ0uIyZG2Ul37EDuhqXdeaRgNNSAwgumv96LuVEzEtLPxZEyiPxVlrduKOvYfYt9Ku7X76CZ8kxl9Ps/6KWqXJqN5kgJiVdERCWSLxYQ4Bbz+7Q1Vb92VhjZerO6VUyUPr2sx/w1inwS5k4VV9NN65eAIy0iPczreva7qzdhvaazfic+0U3FtBW3Oevb8l6fALfYNbOp0ihkR2uw41o/GD/W7RL7p+WNRqACBhOWmiKJ1HkSg1EuXZoikx/W40a8dCA0NAPnG+oCxE8TxGgUgvasJ1eNpsg351vRywezrXjHPDdUj1GM8JyrG9G7XQ1zYMrtFvALo/Lzd6iOja8S50caOgMVkQrNNhfW0MfqzJwBlvP4k8P95fasfo9wuWICVbIS4PNGo+GDrRQQAnUic4BttHI9Qmyn4eMkQRsTMfgiW0APtKnu23L5KyXUpyYxlOd5EoAj3e/t5rWD5rGNIQgfSGOIy6eDomjY9jEwVN3PS70N0FTXcnHIYgwGBETFYWRJeOgyJRjETRDM2iaAIeiY7E9I5OxNvtXoPCMIeeES16D4k1f8z4AKcVX8yG1IE0GfXVILrPKjyVkHrQT/dA2xWDZiEa2sXZKM4KCdhpXekrJBq12GRt6zcJ62uf8yvzsSXKRaIIArA1ait7fbJ5csB6shHD/HhukUbqA61cFk6hfmNOEiCU+5+IreWYuPEttwly4sa3gel3ocIYIx+L6MZ6ds1J1Jl+yqjSGjTs2YWwWXMC7mkmkR5/ui0llJNRcHeP1302kIbEvnROBQebfKZURzVWYWRBK04TXoTdKOBe23VoM091u+Z9XdMV627Fvvb/oV6Iwh8xGWKXA5o2Gy5uW4Zzf3jeef7oJpr3MJA4nk3SOnMSdGNjgG671zaPpJk2kSc1AkXHubVgKw7U3A9Yeq/+suKn8WRlEEJNp6M18hoWyfLlExcIfB2jvqQX29o7od1rVd5C7Pn20zphXbHW3afLle+XxnZzXrarP2TvSbeLAlpscXA3kukH+tD9EbGr/PEHdGgFmJSDkeiAo7WGEakWsR0Nui7YdQYsr8xE2sHtCBvnm9T4PUa+zIF9Rc2PVCc6COBE6gTGYK6UJbQ3d0O3pwm2URHyTUzPm88ai1GZpyMy6dx++SKxbSpKf2NqrNCKere/ax0OxDbWoMkSgXBBwJyx8Qg1Owd1EpZPTE3E/m8+k1dvIxae5xScu3QctXuXQTz8jNs2iUwd1usQT1+rGBQowlOmjcMv2jowvaOCvSelZylCY1fBev7XMKen9ItESZVJ1QYBh0NI7+BgDaLtscF9V+G5QuotPQY0dptgoRy/vhs6TQXsjmi23dTbxztjNZ12NmE5QnTQBmm9VtBugm4B6MmNgC05xGt//bW7CaRysFXX2kuiXKBKLPb6EejJqGiB0hPStaUdJfTqc6iKqGEDIs8MR8PXLfLEZV6Y5hQ0u9JI/lIUxRHhMqGklLJE5CXQMQ7uUteasMiAioCNSI/nZBo2OwI6c7tqtaGyNYqpx468slrsSo5h2w64IbHHJONLW9eocaimVNusYRhZUCifQuo5R+1S6o2/BVwO38pqO+cxdGnTosoYiaIvrEIiNOUdbGxIQD2eNT7X279OdKDns4fR3aKDIdyBtnP/jL3x5yE9x4z4P04JiHQOFMr0U5yghfUyoH2GqyeoAMToRFhbV8HQuQtPnf4WJloSBkSifB0jKdXsT3pht9Z53kLseVvFIW+zU4+xffxdz+KtvZfgytwP2PEmEkUE+aa0cKTGYODwEdlxM2AdOYxdsykNLa6d1kATGov9mjL8pN8PpKQCYgqMlSVMs0Qd9fxB9RgNwBw4UO/BowlOpE5g9LVSHggommGoaIe2rhOOYB007TboukW5Iqg/vkhq7VJssSKbeKkUWt5naFjLArVoEJHF/G//57Z6y1/2OQ6floqYxDEIik9ATth8aMqe89YlnP8akDBRHhSUqZ3Ls+/EMwXPIr6zC6KghXD+QwidkN3v9ik0Kfw3UY8nRxkZeaOU4X17unD+5irQNNHpT3sVmYldTfFYXpklV53Miy9EjMkVlRCB2GYbLrEZ8Z8fimUiecHcDP+CbhHQEhmODgKC3J3E/aUxAqkcHJkw0rWnijJ2ik4mjHQeDx/RGV96staSQ2g6eAgR6WkIHaaw1Ih3anSUA2uwoIHxnOfQE78Y3eWtsH590D0akOM7RZFh7K24Il0epZSVZIqimRF5earHpSUkHN/OOg9nrP5MTgl/N+tc/NIRBM3SbfJk2n3wJ1R8+o7zLKm4VXu2VqIJKbq1E5a/vYTo3NH96lcmTTKhE65ULSaxpFtUXd3ThGqvSZx6zsX1VFCMx6varvcAAS3lFIl0fjqos5WRKHqWrqlyawLcVBSMyk1UWeu8YmMrHsTtSXrUCFFuxqFqlbhHAs/0E40x5ve16Mx1wGFxHotam3P/BVs94oUaJAYNrGWTr2MUiOZrpLnedScry/YdSLYXoMKPTxeN7RZbM9ZWTMOeuhGIDa5jWsPm7kg8cwTWK74iO54LdTr3RPyjW9phsouIvukWNEXo8FP+/t7IqiCgK2EYtHEZx6TtVSBtv44Fjr3hAsegQfLAUWIg6QG1VAyRJ21jN3vsb2k/3YDkfkuPytQNG8otgPUyKqnu1b9E3vsAzrz3dGYS6mk74Issbll7J3MKJh2ElHOnG4ltUtIljDjXLRKlTHP9O+FsTJz6IRaPfQGTpn6A18yn4+DBg2xw95q8yJX3rUXOR3quAOkdJBJFoEd6Xr2zBvNJ82AQVLVX9D17DlZjeZWzdJf9Lgj4riobLTYXSRKAWoOA/65wkijXS/hsxUFGnvwJuplBRbt7hKWvNIYU3XDbjodejI71w9Mfdj/W050aEIrOVD29EXX/3MUe6bk/7H3vE7z9VCE++8DBHnf/ayk6i5oYGfM1sGq/uxM6YyOavz7IooCbI7XskaIBNkQ7V7CuiixlikKquKK/1Fmi8JfLr4dIpIb9CA0SH33UZ/k56QZ3jpyEf1x+Jz5YdA173DFyEopqXNExOu8djeja7iJR7AVntSFN7p6tlaD43oyHHkL6zNmBRaLUJhlrObtn6N6hTgH0SBFEquBbsmAkS6WyQ0GVXklL8W6Pg0UllXDQuXSlvikqWW3tQofnhE7RtqSJcoSkp10vX5MHHfEsMuJ8XaMgUc4P1mwOR15nsWwcStcuFSy88MILeOutt9gjPVf92Var+n2pArVmyIJDYFo70aFB1eZfwdZuGVCPQ9rntUV18n0nVySib80XXc/K6zo9LgO/zv2AkSfnxxysZdGwKP/O9DS2Z2amsfGZyNOBxmz2eKTWK76gNvbSABG65CHmwh5z0w3QTR/poZt1kSnPAelIRe8q8GU1Qa8fa/CI1AkMNQ+ccdf/ATs0RmR0dg+4TJ5WjCNTHNhSXoiJSVkYE5/aZ3RGWl3W7N+NNW+96qXZckvdTB8G7fWK1I1yAvPYvpphIpXHG8O7ZQuGrqYxmJ9wFqZf4FuXoCairzTGsn+EB0tqsH/9MtmRmxza1SevWwBDKJAyle1fqc4ZofBKKwZrENclYqxJi5oeG7oUZcGSnYOm1YpgzwgQTWY9TQjWh0M4cxi+PlTXp/mimqCb/pMiiuxwAXgs2oSZ8dEYHhN1xFYZavqGvlIdapGoVasj5MbB9Lh6fQSMe3fCpBWcEaZo9YHVUbIf/020eEUBWdWTH/GpW8XVtFzEXHep+jXowz+oNdTM/hGIkGXGhsmCe0drtbuPAEHFrdqfg7Rf8f+OAkTYLAjV1rsdC6mIwtjVhIjGEhQXhePHzytl+dWbF+SiJaEHf1x/DXp0TVjXFY17e87Bk7o3WCTKJmrwQM91uAWRaPTQx9G1O8yg6Y34ZcRjZPW5LL0XG1wrN36mpr+ks6IUIaXzVHK/6G7RAkHOa3d/SQ1W+2hwrYxM0X3y5X+/haYnCA59J84+f4HzvvQxVqg1U6fFSWnBDWg9kAFbRyTMph3oCGrBY9m3ImxXCXrSXJFPH9v0147HrSLRh+ZLXUeVgBvmnYtR0Y+gpj0KscH1mDHubtgafCfDlKnfi6MQkPWKUrSuD+lxq14MBL7MahPmnA69i/j76utaaiuFqc3kNg73WRTVT7Pb/tqdHE1wInWCQ+nrstxgxhVljXBsLxpQmbwkVt7f+h1e3PGUM1y6RxEu9ZG/pgFv1f/eo6EYDaIZXeFRMFjrvDRbbmlBKXWjhMr2wyZc6UYWiUSlzKqEIVSKtjiw6v2V6KgbzkjA5BmTVSvP1Mz0lCAPFKsplDXdlQd11RWSA/jkann/MnIv8douTewp7ZIuQ8CCi7MRMTaG7QcRTskTi4Tz7gF+V0TxEhM2dxlw+9e96TollOaLDWW1aC6pwgNz0vHEykNsoqJJ0JYbwdJ6VB5O/e/KfijBBy4PLrfJaIBWGZ76hv6mOiidJ5EoxdvRZhdh0jgjTMabUqBTGVhrEzPxZFebVxRQqnryJz51a/3jo7w/UP+g1JhQtLkmU01onJzKkqHRqLpVK20F+tJ3uIn/8Spmh/8ducHfu00yki6oUx+Otac85rw2XSne3UuLMeaWYEBHnl2AozsaH9lPx2r7WKRpqnHIEceI0JkHm7DHQx+3o8OOEVeOhDndLJ/DxGkvILL2KnTUbsJjQRYsWd7MrrmP7bPRLlgwPWwfxmGL2zVNZOZgcIZ87YZpOlQrcaUG1wS6T5Z9uBEW6xQ5lUzPZbKlMlboJ1yJyKtvR8Mbz8uv14y8FE1tk5yHSwAeWvBHJG/ejfZrn0WpZ185lW1WZv7SdzseV0WiL82Xv8UFLSwXKTSBNC62ULWy56IRAnJnn4fhp5yCjPGjA7ZecdM2CUDKrCpEjWj0MlJWkpu2IJvbtRiIWS2di0WLFsljGn0XFaN8svYTt1SbalHUxFEyaaVosq0uBLq5L0P3/e8DMrvtb9uvowlOpE4CtOpCsF0TiwcKy+FwaWL6WyYvrbpErRUhWU/LxpiyM29YBuI9ojPi57egsMWCspVv4VZ85/R0EQR8njAX+W16aGw9gWu2/OTH94aNwJvJlyO82wqrPgwXhn6BmXA6Y1PIvrs1xk0YXbq3QbXyTDkZekIQHTB3tLoP6morJAmu/UvMnOu2XSk6QtEo54aB+PGx8iBL25VX4noD0xOQOFOaeJJnVuBgx10IEQVMT7wEP5VTa4leKF3U1/1nJZbt/IEW/MQv8eKYmYiaMo6RLHtTHYp27caK9esg6DSqK39fk3hAVhkeK3dP80VCu70ZlXWFiI5I8zr/pIkSUOhGpujjIVqhl4R1WaBTqSY6GJEAh1Dktr247lo0V1YDhrzAK3h8ad9UXvf0D4ppakDb+g0sCiIJqNsmPYSapx7rdQO/9zboO/IBq111n/rSd3iJ/6HBqubfItW4HaFEjBa9wJq+Srog0hlKJEp5mTKvNEGDoHYBprYWHIKDkacqR5R8TVkcNIG77x897zTpEWU2ulWEJsSMR1DMeFyRC8yd2IH1u4uwdtlnCBF6kK/LQs9kDSZv3sSuSSJR+4dfBtEQ6RS2Lx6N7JRe/VTvuRdYdENC+aEahFqz2evS3+k5vW5Oa1UdK2yxM9HTkIOQ+U85q8lCY5ERFIGi5t6IcLZZg8InrvE28h2TBb3HNju/vQ0lZ+hgNjjQ2NVbE+fQNuGbwjU4c8RohNh0aOyogMWWiDCmikTAiwtPvakncZGO0d5V/8XeVZ8hc+aliD1zvvMc+CFRTm3TS73nUwQOr45DWHILW4BKvlMFa3cpyJaAtaPrkZ/S4nYtehqwUmSroXGdW2RrwoQJCE8Mx5aDW/D83ufRrmt3mzvGBY3wLop69a9Iy9qIMF0n2uwL0Nhzs/P3CqmwnLkGISl1fdoZSJKOl1e/iISuaFQa63DzrFuOi+CcE6kTHMqwM9XCUbWd3VWt5a9CSwmlWFlroFWR6B0urdzca3KpIB+7P3wW58XucOt7tUj4Hq+YZqOjpR+aLR/58crSQty7tBXBQig0unBA45DLuC2GZlRtuYKF7NnbHUBVkdVn5ZlyMtzR3I4niivZMaLfMSt/B4tGsd8luAZ1WvkqJ3JPuFIrl6XPlLcbl9+MoApXTl8l3O8ZCu+JiIEt2IxIawwy5/8DxjCn6SmVN1NlDolKaRCP7mjCPaODMf208aynIEWiJBLFdoVWgvt/xO9njoFm+Zdscoh1OECmDpsmT8bBzAw3kvh9zfcDF2mqrNwppUa/df+XhSytqavYhvyqbyA+r27LQcLy2bM2Y9VqM0SynYAzlUTRKOnYMXKW6Z2qo7S1chq+tPJL5r6vReCVPj6rg/xUDUnRLIoAFXq2T7nwQgRlXoLwM2Y703bNG6FfexdQpL5PgbSzURX/QwvrvDcROi6LHYvu9RuchqXGCHTrQ3v32wX6z/TUJNy+91LUrPwRGgjYHfoDVsXMZiSHSNTTp0Qjav8e13XprY/zldoi0IR++ugU7PzOJn+WrrWq+HgklqWgy5iIbpMFj/9qJHLSI9j7iSCGWbPQEl4g86nQlixoHb33idZukkmUvD/0vL4LHWUrYPKR8oUYysrx6Z8EZUSYyK9aQ+bufZugV2yzIt6I4lQTgkvvwYtTdXi16HK2qNGbNzHT4Od3i/ji6zBM3x3lZk+gvMbVFhd9eWdJxKV46w5899oLbme+6Mf38WSxFnXGULdz4InGwp1e1w0NEF3NBlck34G6CgWJYn8XccouC8qi29Fusrtdi5IBK/Pl2tHryzU86m5YOsbge3EvHix4wXktezAKU2cYdq7boRqBbOoywqQNQWPPTb1xeYrafV0H4x+n+BXtS4vAU6pHYUrh472p0zE+CoaOMjiROoHhWa1FlyJV0thd1VqBGs0pxcph3QY4RKqsE9xTVWHDvKIzbGC196j2vYpEEyo04YGVdPvJjx8U4zCqswPzO/RsEiBVxjJTD0yWZ1D8cQN62ntXsezjLvIkOlrgsDdCo6UBNUyuPJMmwxmWMJwfZ2Hkp62oAOuqS533oiv9JWs1JlyJ6tgZqD2wHjE/3o84NKrm7+WU0dQw2EZEy+F+svvcUVQnryK9QuEiENIxCqGRVplESaAVPFXmTD6Qj1u2fwLNtyKa/+LsKVibMFwmURLoec22PRCVlUsAJm3ejKqEeHQEB7PfZzPZ8Miy/vWkkwevyq1I/ep2Vef496t246GZMQhub8Fvtn7Drht/thy5l12I1BmHYD1UAn1HFLp/aFTXm3ik6oQuO/R7GtGdG4GE7tpeEuWxPz5Xs76in7Gj2OutNguabAmI0FUi1GNbXsaEytZErpQds2t44UGf1UcUMdiUv7JPfYfPtkFjSJ/njBhSRKwicTr2Z1/ae/+4yJSkcRMdraj/bA27fwijW/cjrascM+94AslffQf7PXeiGSKGx0/HgRGXOStIXZ9t0Yi+U1uuqIjnNU2ER2cfi2Zzgryd3HG9kRciiEEdCdB3RcKu64DWZmIkSlkdmpQeDQj5HhEdEV23/wZlQi2yzvXQOAtaNESlw44aFy13wg4R+sxwebtqOiqWgh05GdjuPH6dBg2awnSYsdFZlUi7EJX9Jn7VlIRuV+eF4A4tIx7SDqpd417O7gF6ZzFvMhvtr3c4K6mrBTWGUK9zoITF2OHVzLdXV8p+MDqtei9yQ9dHeLuOESljjxHb9m/D9Kzp7NzUVh5CcVVvG6fgNUDze8+hRRSQKQCnnalhDuVKjKg+BbOKL0aZo00lAimyli42x3Dvmrc+qh+lSG5kdzjeKny810y5D13m0QQnUicw/FVrCUFatwotf6XGNMlLl3mTLQWGygsQlLCUTcw0GZJ5Zbw2yC06Q99LzSKr2kLklaoEMoybcsU9iMmbHLgNgw9TuDitViZRBHqk5yPDU5BxwQisfHsT7LZGaHUWzL58MhIyzbB370JP23dyibE+ZB7MsdO9vlImP5MmYGp2purxca7G98MhRkCDl/GU/nVcrF3hlb/31GTRjexrJU+hcEqvlZdW4ftXiqGxG9ENo1evQaqEstUZnCRKWQ324EMIv38JgtvaURcOtOpbEdoTihBbMCKELjR6rLjpHIa2tKIzJIRNeI1iY8AiTWnlt6d+D17Y6lx1qjnHl+7bjoeCE+DQaGCx1sskSgKlKkoLvkNmyGlu6QyKTNE/QsPoWtSWVCFmWDxCyF/Jz3WvKWuHsbYT2cb9vSTKT3uLgKqDDq/H3rY5WNX8O5ZGI9rONEmubdE9VLt+vXpEQykq97X9Pf/FPmskvn7rPbQaeyDMcZJfX/qOQMT/XcYI7M+5rHdFTwQKIuZfNwrxmWb2Xqqg9Zw0Q3takFl9EO3vUNTD+bfEqrWIbNwP8/OvI3ZCGiNRX+ys6LPYgSBd09I9JBEjNZ2dRBDpPdpuo2p1KH1mDv12RYp++IH3ENTZABu0rDIwYZLVGXxz3YvF+mj8G6W4G0GMTBGJ+jM6cUW3TW7/IlVOejZk1ueMk8efDqOAkQVtbpWyuQWteHB2Ix4qcR4MIhzSmCSfYhUZQ4h2GYzGR2Gzx0OnrYJO+5Df9ikSkobTPeEdzio3hvk8BxLC0sfhjIRCN1uV5JmSrtSpkQoz5nnpsWiR2hxsQ1pLGibUTcCGwxuwARtZ9DAy1IrUOS7dZyNYU3HJwkYjgvXK25EusN557HezHqYXI0zTgAhDJapsp6CtjeQYolNrFXeAeebZRLLdcG967C9qp4zkJnbHerX3CtSCYrDBidQJDKlay9TTiogeK5r0ZnToQvFkfg/yunowIrQHNIJ4Nv1dPO8U5CWaVH2RCN3WKXC0ZeHlkEcwztbgNLWkyEv6TLaqbj+0De8+8xIzkiQQoaKu287KMaeOY3jCKQiL6qfXrkrFlfD959DA3ViSBjBN9QHYYUCX9TX2u2yCAHuXCaJjAnraliveLTJSJTouJyMGn19N5MmTYHpG/MgJmaqT0mf/GsOHj4A5ebhPN3DLaIvflTz7vjwzcFkYmygpPVm95VeIn/SuPLAkpy3B09PioPncW7zS/PjDOEcAXlmowY/jnKG4K4MuRdSksWhUWXGfefXViBqewyav4tJyhHVb0GJo9CvSVGp4lFBzjs9vMzASRWg0R8nVdDIEEaU1S1C11oH01IdhsJ/l1oLG8xqddvYiBGdme/VwI8IaarUhXASauxwo7Ypi7txKHyN/lT7+op+t5ilY1TzcrZKQaZI0Kch37V9QWxsWedalaTTYERGJNKlS1pe2btl9GC4CpeHZ2G2Nx7RdkViX1+BcsKi0EglE/E/k3bNKjiZPU5hBfq+v6itjXRvaPaIeQV0NsDRX4MvCYLfr11exg697iCa88vBSaA2pCKXKkgFUhyp/u75sP+pvWiv/zVocgtaKIERffTHCzryAEaF0awe+FnqwUbQhGRqUwYEGAXjAta/yYmfuOchSq5x0jT8hO9+G8P3TbvtCR3hGZBI0pc5ejukamyvm48eZ3hX51MEBnbbW+Vpf0VIX4jOSMHrcNOzevk5eEDosWcgMKoHGEY9aIVo+B579BGnbeVfej7Sld6Opy4AIYzf0Ux9AR+YkNyNlpR6LMhBrR9Uz3eaEqgmK3yWiLaQEQS056G6zwBDSCF2N4OYDSKCGw/GNIiNS9L97ch6Ced8KthAhmYLDImBZ43WIPWsxsifnIKzkK3YsdKiHRf83NNpudq4q+ojaKSv1Kgw1Xu29jqTt0JGAE6kTGDQhP5Dd7Na8Myh6HubBWZXVvHQd7KIWq75aDRGh7LVx4i6MWv4X583p0m4cNJ/lFUS22SJhbo9GvK7BvXLCnITgsUmYdo1Bvgl3WxNQ5jgXkcERsNri0Y5oTOmjV53PUliPNI7W1EyZdo8Vix1djmosf+2/Xq7uC391ncq3iVizch3GnjGvX34rqg13ReD1VYVI/Gk7i+7kpOeqarJybxjh9dmgnhbs2LAFoRNHyL/ZfaKcDp3pBrdKnp6QKhR6EiPpMNBK8BsHdmQ4V4Lvdn+IX4Vdo7rijpgy2UX4trB9vFxYgh8yPsS+2HWqk7inhscTns7xOTG50ORXMzJFFgHLZp2H+S4DS9rRhKnV6LISIepG8aGHUfSlEfbOSDahJo0O6U11EjGNS8UrzQJEj+pTJWH9jWBiKd4dhijcb7seTxpeg4bNylr0TH8U3fvKYEjTqlfl+Yh+NmlpBb/NS5NUXq+T94/So6Q5o3Qp/TbyonrusuvwZUUrNBV7XfvqsX0FaLFBi45DbRbklIUhqc6EiTf+GhPHzPaZVvUn/veZ/nPdf5SK1BwqwekXX4kVH73jVn1lTh6BRs+oh6BB87AU3PuxbxLVl2+Rp4j+3rH3Ymr4VLdob6DVodJv7zGno97jPrB3alH9f5+g+h9L2TWecOGFcjuiWtHutq/qrY+meH8h2SiMuRLiij9BUBq2ChrEDpuHN8q3yb0cdyTY8V1VjmsoVXGmD7AZsCqs5VjQ/QzGpsegojMeiUFViDOuZvtOkeotYx5Ggvksr36CckXehCsRljkXYYpFaZAPPVZR0SH86uMitHbZkVBWCQEtvWNWezxCm0l3JKD4yz8hbuI7iIr90ctU2S4AVRZqXaPB/bl3YlSzA3Gm1+RWNvQ43/I6OnJ/hxA6RlG9i+aQyAwYWdVe3473ykq9On0TXkx4D3+ovBRMyDIIbYcGCk6kTmAQGWla5iRRBHrsqfsO7aYsRBvXw6L7K4SvRNwKAZ9jHoowDItc1XVK7UbmtTO8fIioeCrtoj8BqU5RqyeU1Rw1h7XY8L9qVHT7Xl1KgzqZ5hVUlmLFh2/L0YeZl/0acRnZ3qTKWo7g8iIkj/0GZTuvBES6WeyIm/Au2qsneKUrmk2hKC6vUe0V+NqXe7F1i8avSFM14uciqIqNoRM6tDqck+sl50aruoFHOjRuxzS3ZR/m1P2APa+L2PuGuzDVfaJ0r+TxSkV4QLkSlNJzk1W8ijwrwGj1d1rxJVgw5SJMHk5eYc70mmRe+nUFpTN9mUU43cyrFr6JiqQ8JMakMtuBR7fvxkOmaDi0WuzJGY9fRlowKa4d+7e9hMoNca4Vp2RfUYv2jkhGOmffmCSfy1ZDEFbnjJM1elL16VSNwWP/gQUdetx+5RjkpJ8ODW5lg3LTTwdQectfAMffVN3F/UU/Ixo7vUkJ6c4qDrhda0xMnRCPuadMwzUIR40lyrtSVtr+nv+ySJTbsRPA9CGtNiNCuw2YlTMPYSED60QgR3cUJGH8hQnY27kTER/thv3h59h1Y9RoMOeOP6I0bThyM5OQnea8pyOvvcPNLsByxS3Y36ZXJVEPnj0SZ41J8Emi6BqjaOezG1+Aw+C8dlKbU7Hv033Yj/2y/lBpvyEGuMiS7oPap+6HLqgHnfVEygU3nVpD6jAsHJ6DU6/ORcXuAiSOzkZsuAE136/Dqk86/LdrUoIi4YteYlXJVIhCJEogYsx6N/b2chwbUY2M0GY0nfseIjLHeMsY+umL5AYXCYsPqmb/lKDo65Tdj6Jz1mkKEsUOhFyRJ0Wm+iJstM/tTUCLthqwkbTDBIdxB7tGNXYDI1G90SmBRc3H33w1wh8qRN1jz8uLtbD7b8ezc8ega9shbHz2bRxmWrnJbNGQF+Hcf43gQIidGo+7fr9i/4iIqBEgac6QWi55Njz+zrIes087E2eEzT5qbYcCASdSJygo7bR9yz7vagiIaO8pgSXkr7LehlXS4Tv8M/giaNo9Z307aw+h1lg2Ic8/4aDWGSWJRmRkGnHl1Ey/q0vJ64YaX64cScJ1l5u3KGL1v99k/+1W+eKqnooRHVgkAtsnbUNZSAr0wbWo2hwE47QL3dIVO0dMZFGQT6yNeLasDnuSSazqnBVHldXh/cnJqkJZf4jusOIP2z/BS2MucKWtnN/1Q08W0x1M0x1iYlm1iEBGegQ7po8v3YooRwNOa1orE1h/PRHdysxd+yiZOLZv246KO+5wX5W7VoKe6TmlV5GvCjDanX/9rwdPGPbgqcUaRjClNjqwORDp0le4fcA1rDZHXo3rG5OgaWzAs8NDWMToukULkPndtyjcsAlZkyZjziUXYM/69ajcGNsrBhIFHF6dgOBYZ1qC5hhWoeU6l9bgULdCB/YbARSUNauW52eZgthxaqk3or7Uho6n/uJTCO4Fj4nGM+VEpK+7bTnWv38AyBrjRs5Jb1Y/ZRpqCtxdlN0qZWnbo84Hlj+AnjY4e8+F2aA1OVgvsoD76ylQVbUdpZWbkZowCfHx49hruabvkBrzCKw9cVhrbsaNhzVwHBYhOET8ZrSI03cC36ZMwov5ERALaqH5rhZPLbaz8x1317UIP+8MdO4pBDQWtK1vRfiXJV7eaDQm+CNRyojPpXgIqzM+REnUDqa1kSZiOr/ffvsBYmIb0FCYhDUfVnpZlPhrwh6R0Q7zuTVor9KhdKXHMXM48PWbb6IuLhaTNm1CRlExmgUBFM9uNGdBHHer29u92jV5YsKVaI2cgMbC7bBkjUNY2mjg4GqvCFOYrgOiKR/6EGeLpD4jn/OWOEmS9Hdf8Ge9QgSjTUTD+v8AIZ5/d7CIdn/aeCkNfdthwDpbGhvb9Dbvykm6/4P0YxBz6WmImHO222Itsr4Or771aG9/QAhYVpmDtJBGpocKmESq9E1ULor6agp9PMCJ1AkIScRM2qhfk17Iw48lwtjuZWFA79k8bCSu26dxF+e6Lu6L05MCcsuVoOxbJ6dfhqubfyorndpNQd4tBVyQCUZGIsIUVVV0k48rPYy9zWY0WKNgazcg9ZZpOMNoZO+nSBSRKEqzUPuPj866BL/76E106rUI6rHh1dxfoM4UwbZlaW9E2fc/IXp6Xp9mjLQSWnBoA9Jb92JdeiI+HPZLiLYIeZCgAUcXYUHOVDsOrO+dUHOmxLMBOltbhwuDnKW/HVl5zC+KjEp9CVP9lZnTvprPXAixrVU+ltQf7rWFGhaN8qWxUaaAPPt70X41ah0ywRyeFsHOaXCrFRZrE9qNlwFd7zPRNRGqReZumA2heFH3Z9j10V5RmK/+dCemfbAc8eT0/da/8dolZ2DmAookepcXErHQ6p1zRVJaLBaNicLnO2pgbm9lKRUlmaI0SnZyOIp9pLCkydfS0o5T+hKC9wEp5VRZWIXPn7+XVX/S9U3njjy/WINhQcCseQvQ0iZ1kOyFV6WsOQlNodeg8v0vZfFw9JVzcdZ9v2F6mv6QqKXf3YlHyr5x6s92iFiSvBCLJ9/GFhyhGgdagxvxeHwiEw2zw6wR8OqZGiRXBOPFcReyyAo7JB4LClNOKvRxcaytD+vvCA0TbJNQ2xFAOs8z2knRShIaf22qcpuI4+ILkJ29Hnu2r0DRF6RB6jUOJfIamSD6bsKu62K/kyJEREY9r2U6Jq1hoezVzRMnIr6iEsEdznYupo5aVVsIpbjdE+6E7sNeA0kPckPft7PsaXTVPudmdKka+azYBny3JLCGvJ4kTAGpl6F99SfA455FbxomCxhIWzBpIV3siMVVc6diglmHla8c9sz8yset3WRCQ2wMIk0mUMK2ouCQ+w3qQmVnHMIMFX7NNT3RV3Wsv6bQxwOcSJ1gUAqg23ShWBl9GksZEVGiFe7pV/wG8SkZED99gg06EmzQYLN5FO7MuRPP5D/LBJCelWd9ueVK8Oxb15f5p7IHVnB3j3fqTQFGMAq3I8xjJUbEQt8kwNZhxBk3OFfxUnrxu9JyiE29N/BXM+ZgY+4Y/EXnwG0ralAb5CQ/8w9tkG0ECv2lfVygcPKKcRr8Y0E7RE0RQsQ/oatyMXqsk2UyVVlvR/4G96hE/sYq5M6JcdP9SM08dW1WZlTqKUz1Erb7iJ59O2wKnp1/H+Jb6lAVFo0bLhyJyzPsXiszz8gWtRAZkf8e9mdf4jzvoh3D8z9A0JjT0WqKYAPoxpoWjNq3WdY20eS0/NRrcN7MCMRXP4YInYg9SIFdcJ/8aZhfvWMLI1FUwcPOlwic8sFyWOeeJ0cGeyFAo41gQlHLvE6EauoxYeeDyEQwGrojMCL/AJbk3Ay74LTwoOrTzPgwVYEylfbThNccHIa6iHhMLarwEoIr3cU9UwVqIBJsNDUzEiVfC9Y6du5Ou+5m5GsTce0X1DuuHrrkYPSMsrC5hvb1wWFGlDVuh8ZlcsomhNe/ces9V/fuKmRd86DcZqNPWMtRVbRMJlGy4L/sG0yPHCVbUZTqdd7tijQC9ieEyyRKPmeiiF2HNsEyPJtFLzzNI8+BAVOgQ8vZacgZE4sENDgjMioFKmrRzlaTFm1BI9BiMCKsuwsGQxsjUbR73a3UlsnbOLTiwCHfTdiDm2QCow92IGGyFZWbzYyU02/ePGkS06+xz5BOLyyUESmdyY7IsGqMPfQadqRdy659f/IDtWa9vYTuDYQpyA39dV92KLqMWu+0mnJ7NiOaa7uQ+N2S3jE5EJsODxLW879H0V7rrFik60jb5Kyes15qd158Lo1Uf5vKE2jBprqQviJEtSjAszhk0aJFCNVYVCsNhdOfBk4dH7hRro++if1dFB1LcCJ1gsFTAL03bCQ6TKF4ZLKA8VNnOEPQBFvvDU8k6q6cO1lfufcTzsaqyMl4O6gYeeMX9evi9te3zt5pxxf7q7EoPdqLjCm9W0w9duSV1bIu4mpkihGMrHHAGo+Vn6DBzN89jLCMcW6rePrvqSHh0Kzb67ZPjZYopAd14bZzEvDA9yWIbG/ythHwl/YBUB8GvHqmlqVL2b6RF0vCUtjaciDazL4doWlSOFSr2vCT2sJoHXavlI6asN2txNlajsrSAty7tA2OoAiZHD71v0q8dNl4JJvMfiNb59grkVixFpH1e5kDNq3Sg7qakJAxhkXrYjutyC3c3isQd9kmnPHTd5h9zpOoqncOkPGokHUjEmgM796/nZGnDr0W7QY9I8x0rg8fzMd8RXUQRUu2jGxHY+S/YA2qRUdrC+ZVPsrIgBmt7N91VWU4q+FHHDz/baRnTJLJuZpAmUr7dwyfIEckq5JG4o73SHgu9pa2u86vr1SBGtQq3ei8RaUPx0P/2CGfK7JhCKrrwkvXTUZt8/d48acn3ExOF9QnHdmE4Epxlxr1cCTEuW9GELDXWoMY0Vm1mNpjkwmwBI0DiO3Sep0zDRywlt+GNfXNbPKNjT7Paw6MFTQYMyYeuqIPfZqUqgnet6Ub8OXkEIjC5cjPEnFa/nZMbd8g3+6G0BqvknfabOLwNNXqQrbg0EW5RYMiMtsRktiDppmv4M0fN7HoiPwZh4PZfZgz2hjhou9NFb9GyvYdwB+/QNSIJL/O/b4apTNC5yI3zaWfOyNRjET5TqtJka1kUyMuGuZbeO5VeeeRfm7aUo3Kz+O8rqWQtVoE7dUg8vk/InLCggGRKAlqC2m1e07Z5krZMeH6X/+OWc14Ws8kTJ8n+54p4WkZo4RPvy+VlktDAZxInWCQ8tmxYj3SNVUYLRzEH43vQ7tPBPYrBjnXDV93cD0WVIagPKh30K4xRCFq1IiASZRnK5EYW7db+kVb1saMQJ9EFZ72SEmpCaZTmtow6sab4Jg4HlVFBfjx/bfcezkRGfTQFgiLXkDihHkB9UKjyeS2f/8TPWtWIjoqHFcNS4epncpkxX5NaKzU1uMzRKY0hjrAHsHSHaSF+klFoNwQXoUOXQdMNsUALwg473e3ICkjyyulI51Xu0EDR4gOmjYbdN2is8TZNZketFEl4APuPwHAze9tkwkTrSrv/c9OWSDvjGztxKlXj2YDEZEn+kewCwIqQ6OxsGQj04I1/GiAJsv9mqBjGd4mwjLiCbbijkIDrsM/8DpuZN8hRYxGR/WgNDIMuyWCzLRptcgeOwl5YyazyOG6PSvw4N4nmeEfUNvbvkKnR7xHyiSxpwGJScOAIIP79Wdxpk0ldEbFyiSK8NWpp2PTyDx8EmJHxvhx8rntK1WgJnamIgjPa7PaHuRFeMVOO7TNNXhxs5NEKU1OTzn13QFNCLQPzUXbkfi1M52lSpLoHqyKwJPtl+He4PeZFcUDdY14NDqSkSJKsY1vGI+SCWmYbi9lqWhGruFgrvmRQc7rgEVSps/0Mo80zU9Axf41sHx+F8J0viMpSm2Z1Si4SJRLFwUBq3PG4/fxo9BZST0CHdAHNyJ+0juo2vIrCh85NVKXj0B8RqL/3m6LXkTPh7eju1mAIVyE/uLnETPhQsxLzFCYgQKTtmxBOFplEkVgZGp8FYTcINVJXQlfdhFyBJkq+7LPY+k8jy6bbmk1KbKlC+5GfUQwq7Zrt+nR2G2CxdABk86Gen0i7L4q71zXbfvWbT6LTQjaZi1iMhZCrxjjBxOeVaPKNlcSRFFEl6MV8679JVa+nQa7rQlaXQTmXDlZlbSqV1H2Ruh9+n0NwWgUgROpEwy0YvhgUgEm7nyYrULdsmSeg5w5CdHjLsAdnZ/jrna7M1Ui2vFMcAUSYyYG9H1q/cDG68azRrirc8ZC7BIZiZJ2wVdKyrPrPUV7ysnoUWzGx7PLENqmQWuIA2kprcijD0y4Es2xU9B2eCdCUsYgPHmE3/0ksXOuVo/1+YcR/+BdGF51kEVHdiVFI9TeiiCBfF+8/X92IhRp1g6EOQSv1ZGvpph/vfAMjE9KY2L07gM7MHNRAn78olIWKK/K+BD/t3MdhBSBiW3J4E4Kf49wVSx5rkDpWJ27KAcfdLbKROQXQaHOlIorGkDE2ent7mFCpzjuL56b6lFl6CyX/rqkEfPufQAdTz0uD0yh9z6Al3PGwXz1k2z7amlXaQIJixrD0ha04p5hGobfIkruO0dEtsUoYnkKpWykDwrYkxKLFIeWrWDNUdEYM3EWOg894d7XlwTyCRNU7Qjo+vXXj44I1o+t+1kEQtT0OtzXRsWgblwmhluc5oX9SRV4ip2JTMVnZst6JkqZele4ChAMdaomp+XBncju54SgFsUgkkQmqOTfJXl03Vk1Dkkf/AuLO624b9KvUZqaiEN1ceiw6vDMRVFY/9kKmchna2uRpLXi1IWT0NVwr0yiXHvKzqtl8ilyE97CAxvx0T9uc5GTSW7VV2ol/FLk4rvDjRDr3avM2C+IH4mRZicZp1e2ZwThowQLIlodaArVIiLdiFyPamBPDVlTcTCKv05Eu16L4B47MiYHI2KCtxkopfRsW/8HYeNdbvtB904g1gNqzXpnXnoVI9fS3+meJcKjJEAJw5Zga7ke6dEd7H5mlYc5jaxK9UBTNh754UJE1FTKJplNsQmY22KHrVK98q7zizV+CRSDx/XkL8ozWPBsc6Vsq0UNrlNzF8gRrGaTBj81trj5wXn1kPRRRek5Z9RGRGK3x7aGCjiROtFgLceU3Y84TYRcKy03qAxyl52yCLNrS3GwtgzpMckBkyhf/cA+mf8JcqtLkdJQjYPaaGyBezjZl+uuVEnGJkdFixIyOGl13T9Sq5KKAxWKHPw+r7JpTyjTWcLU37I03qS6nfIB6jToWDpxdFktoyEUwXhp7AX45tOD1JseC9r1yOvWua2OpFLbZ1Y8LhO9u05/AGdlj3Trt6bTaHD+fY+iPm8cfrPxatnoklKC22K24aazb0JOQo7soaPm/YLI8/FRV1vvCRUEfNzVhrtrqpAoOmAToyAKKYiK+Rp1tWd6t1UAECPWIao8H4mIQAWUzuAiHv++AoXaLXj0nCr0tGhgCHdAP6oHMd3NKHUN1J5pV5pAplxxA3Y1Aek6mhx6rRlo7agczKRJxhNL//0uHKFm+fwpS5fdBPITrkRP6Bh0790EQ+5kZrDorx/d2oq18t+ourA18hp0hs5m71NrjRRIqkBNG0MRqetffkOe0D2FuZIQOyu0y1P/zHx22ivaIZxxBsLHTEL5ngIkjcpGRE6v1YQnlPtAkQtl1wBykp/W3oU9whWI7RqPSFsm2kOfhdjZhCu3fItfR92PxmALHp2ThKTqKtbGRKQGnC4EoxsjoyJQ2k61bFCNpFBLo73N9fjp328gVFF9Raa7fVVf0SQ4xRQFzbpqVQF+ouUi6PXjsLdqP16vS4UjGLAGO1NjSo2l1NtNCYrMbPzLM9g1IkVeaNT95RnMcUUU3Qx1zWboZ5wNbLpnYNYDHoSORc3f+5dXJSFFjaTFxXf5elz/WhUc4gY5OjwvWctIFAVbI8V6tNfo5bYt9BhWU42w7iI0egklHGgt2YZafyRKo0Hic88hWBF17SvKM1jwagkkuLfVkiJYrCBpe29B0gOpcRgHPTPUVZNDqFVRSnMG25ZLvqH0lhsq4ETqRIOayZsSPgYL8vqhf/2B0kVWAj1vQhO7caiUOVxbha2Id+vr5Mv5OCCjR9GBfZX7sPrz1V45eFp10s1qs3b1mrehDvWH9+LFpZVwiM4bi7QgL429EK+sLHSLsJRFhaPeHIK5V96MK1Y2yToj+pZvTT1I69EiTBTcVkfZh0Nx4cokeTvZ2aHoCfNOE1mffAidHzzn5hYu/R5EOAcfKRKl5v0ijJrqrTsj7ZQpGWbWHZ0ae2qwtNOBp2KXYqWuFp0Vl8qE6iLtSjylew3a3SLWGIF7bdfiA/tcWasQj3o8QX/XizBIp+bzW2G4fIUbwUhpaEF0aycsf3sJa3ssuO1/u5Gw9N+oDIvGnZfP9OnBpZYOof8iTZjy/PkqXVbTL5XOSFW9/nbU7nC7hmh1H9rwJrqDxkDQRbq1RupPqsCvNkYxsasJcw/u3sSij9uit8lmhZObRmHrD+9jzTdfYlVbLvLtMdBs3IPHzrBiZqzg7ZvmsQ/kM6XsGiCKGtjaroOlMw9BegtEjR2O1hqXn5iIV1Oa0JokYPOr/4cqUWT9AKjAgRpjs+MkCIiNHY6QEPdIiiRQdluMJF/OilhGte537kuQHT/oQzFJ14L4s573GdXxTLNLqV96XRIol5Hz/Vj366ivBusNu3ax6LJyoUHPx+7ejbh+mK5K+61mM+IJ6dx8/Nj97sLzV19GrF1AZF4eguIT0NgVgXv+u8KrUGTiTSFyoaCps1O1J6nZYUKjV+2nBlomI/NNoujapSpeCYFGeQKFp5zDE55RQLNHVwi1gqRHS6pg/KEK5k4HM9T1VQ14pMVNxwOcSJ1oUPEX6WnXOD1qXLqBgQjI1eArtUUToCN+NaZM/ZRd1o6yOry97xLWY6+vUmk1chbZLCKhUUSlRUCTWYtQW6hqDp5uWl1+h6zjCNYug0X/MqLgwI8GZ/uWj+xz2PvJ96nRaEFeeS12p8Q6V04Uor/pD6gfNgG16za4b18AswIIs2nZoa0sKIfdVsGiA8rRadmrf4XjzF/ArhVgUv4MhwPxB/bKjZU9j5cESue5D5rsw0hAJTQI8lrJpxhj0NhzsxzqIN3LH2t+gf1ZD6IiYSmrIoxHo5NEKaKU9+EdDO8qxLPay1l1J6UF3dqosN9jR6F1E4Lvvx3tT/Sa62XeezNslh7sePxt/Gv717Ip6V+rL8SsV+71Orcth3ajsXAbZk7Pwo9r8hmpFl2TOLWcUJ4/GnA9S5d96ZeSv/hA9fqjbXleQ3TUH0/TYmFKrs/B1TNVoCRRtA/Gymr/2hgfwlyadIpqNiG+PQ4LDy9Em74NaRE1GJ+3URZhR+SX4+WSC5HWXITKf/wfPnadqPkKnyQCkSulcptayRxqj8Kv7vo99q2rwqqVnwHYw37xuPYwJHYqUnRv/R82KTzaBJdtgy3EDBiMctTAbL4IRs0pqC07jJjkFETFp3pVjdJihCqCh3UcRkVCFWtl87EQCg3CcIvWgBGKRtyeoEgBTXLK1K9SoKxmcUFUQldXA6vG4TUpE9qC9N7hd0FAu9HPFKZiutqXzYgnVMm16EDBH+9GVEc3IzQHx89WLRSpbiMCq4Gm0YGwOmpI7h6ypGsrNnU0THHexDZUM8E7gioISHz+eRaFEkwWdBY1ySaUapWTvqI8bgtRFQNLf+n0vtpq+StIYsU2wTo0d3WzrgRkqMvWp31UUaoWN/VBvI81OJE60eCx0moqDkHlpgjnwEsrFZduYDDg6SIr3VQRWhFrFFGVmcnrMCp6P2LT30NOYorb4Op50zJyxuSuzs/O2eHAb752sIovB5lL3nwuS4N9JXzllYM360PRuHQ/G4+0qHM6t7tIC5GEJ3WvY7V9DKoQxQbIhDt+h1F5OZhmiXDTXKjpXIhjWOzO5SM1PV7+9DPQ2WwQPVJEdJy/+2opMHIYS4NRBMe5AQ2iN76MJfFdeCSaqJ2o6u1Emihv9yEN0s3D8Oxwg9tKnkrpS0s3IkTXihhbb99CMgVI6I5Bg3kT7slMxFTLNGiX9/6YXU1xLJJB9OfXeJdNiAfD4plWSkmm6Ht+v/151OoNeOz1OzFXMwrG9g3Qrb4HPduAq7fHKQiciJu3f4KDWy9Ewpwxvd/15sNY/s0mWfcxNboa0EdiZdApsAVpvDQUavClXzLXdqhef+Nix6kSrLMShyO+j4HV06jUMxo2OircjXifccXlCGveC+jU+1IqJx0hlTRx45HTHYvx2VvdhM45ORuQWT4Jp9Wt6p1KGTF/CXURaRiRmcI0d4178rExfDImN++DVhsBu70Jn0fmIsEmoGAVkahea/ftJissei1LyRKoWtKTbNCzxMxgTJmxEGOHT1CkgApdQdZCzL5Ch6Z4gzMSpbOyYgpHdzSrTK0KDZL7AbLTAhHPb3sSbYUOCHazGwlR3uuJZncdi1KgHNrd2auxFGg0ENnzr38owTcq7ufs16ZkeWkcWcQzJcvv+fY0XQ3UZsRfpJUOHNMTOhzMaT37hceQKHSiwhURJ9CCMiM+HV0/Lkb9S1+gQ2/A8OA65CfGOH8HpQhdQvow9KYIlb3w1CKoFIVq21SFxqVOzy+pLUpEVoTfVkESnJ8tcPtsyGTfraGU6fT++DZlmIxeoxztnKadPMCAHQYb60pAhrr+WgT1bsu9wwQ990zfH09wInUiwrXS6jmwBZW/vrc3OhVAST/BZ6mtCtRSMQ2N1EjTI6oU1Igx8Q2wmHP83rTRORbWG+ml+PcR0WKXSRSBHhP/9hmCL/iDag4+uEsPyZhdp6nwMh3VCQ6cpd2Ab+yTMTayGCt2aLBy5yavgVnSuTzx0XqEdTeh2WDGjG4LS+tBbEHc4aXIO1zDDD2VLuxuoNRCcgyiW9phsokwjr0CQtCXWNyyC9M7unD4kreZiNpz8KHjHYbL0Ox4Vw4shnb+Avbtpfhl2jDMnpbLVloHKr/Ga9+/jLCOKDSn1OG6hrOxwDqDbYN28zdxFyFldA4yaHK0lkNc7oyFUSNpJ4nqJUCUovmX6Qrcq72OkU06TjT1knC5WqdjO/FgwQs4Zf5bCPnHQ+x5d4uiBYcLlD6KY1qoMewaqstfKZMotl8QsL4uAUYzpZ9C0BKej87gGi8NhSf86ZcWx09RTQX61Fr1E57RsJT6ZkS3dLDUZrR9P8J+uBHY5Cz7r1r4OEpTJ7PFQLTNgvLyEjyy6RF5UUApPUrtnVt/vkrwRESC9rCXTzTdG39673OklZOL/n9Yhd718dOxf/h17LgRcQlK/gB//eEzLBQ9fp8gwPDrq4B/vsGeqhUL0Odf6/4Ef133Ia47cBGumXmXagpowT0TYIjYBEP8Uravoiigu2oxZiyYj59Kt3r9FiJb9nazTELC861+J2hPgfLIqhKkNtZgxgW/xJpPPkJId6drfygN/D85jS+BqiVXRM+WPfNoUqUFwgy7CZn9ON992owoQMRQ36SD5cypqPt6HTTkWQURBtQx8irbK3x/PdYYNXig82as7pmOZp2I+y4YzYjxyjdXYdeINDnKOLyiDhHtXTB198CxbTfgikbSuOA5FqtFUGmf5OPsun7oefwfp/TZCNrXZ6nAQIpMqWUMgtoF7Nq6GiG5pwdsIJvokeKl386KkrocMtHMSY8IyLcwEvW4VnwFr+MGOAQtNKId1+JVROJh1lJrKIATqRMV5iR0O8r8ViKp5bl9Nrn0A89UjK+oirL0V+2mLf9oCzAzDDPr8jChNReNjVugET9S3f8JU6d45eBpm5LXjc2RyAZ7JZmi/3pI/y4e1L+LbVEpWN5yObpc+pwQIZo5aEsDS27Lflx1+B154jntihuRkD0ZLUWb4Li9hn1NX55X9Jp9wuUIiRgFjSkcOs0/ncfL1oN4bRigMrGTmPinV7dCF5wFY3g3upoN6GndA8O+r2Cyi2zVmXnmqXjxy+9wadFDcvTu24yPMEGXyybwHW02lCyPxZ7vmjD7igrkjI5Gc8/NsOheZgJlpV7NeWZELDktFvesmYNNXVnI1mxDxbA1KAlVTLiiAw3lmxDrGkTV3KMpepA4Kbf3GjpAHlueEQERDnsTtJowhDdn49zFE5E0coRPEhWIfknNxdhfmwhKI/nSbgQSDaNJLranDSE/9i5SloaY8Mi+/4Nj/ytY2DQDf6i6DLtN+XB4eAM5BBG6bovcV7D3+Aow26iYQHR3ehdERJua8Ptt/2ERvU5jBA4Mv5SRDgLR49OKL8bS3P2uek331FDi2Wej+rU32XXseb3S+yma5LSbAF5r+Bin7FmkmgJqb6pHUMJSN8+0oIRPMXb0uxBKac8U9xkRiu5omYQUlTQhbSnpEX1P0JJA+cv/fgtNTxAc+k5cuuAMWLrrsd1Fonq3DzQczofZ7DS+JVAacX/4SJSYUhDRY0WT3oxOfZhPLaYaSEdEQudwEWhWnAI1Tae0CKzVNuIvWR/BNFuD8HYdmoNt6DTaMKXSjhEKe4V97XOQ1HwaLqFxUQArXFHTdR1IiMKcfSXsXDleew0NixYhMoeaAgcWQfU0TpWON73eVyNof5+VzpOnnIM0otN2RWLnyrexS3jHrWVPX7hMkeLdnV+PP1dUOqPtATS+VoIW/bPxHfKwFdViAuJQicSuWvTkj0fQsIF5IQ42OJE6geFvJa+W5z4rZZr/JpcBgJGZOhNyhj2C9QeeR017NGKD6zBj3N3yNkgcuL+sAWaDgLgu551b3LIDm+q+Bf7tnJwnRy9Alm4i2phaRFStpPLMwdPNLnnd2MVoNNp+D4vhZafZoGLK39c+F+s3/g6k6AiBiNbwAnz15mYYeyIw/pcJsCWUY6OH9mn1v/+B61+eCkMJ4Gzigl7xdUs77Df9Fj+u+sY93QgB5pgx0OhCGInRCfV9VgdJmoueNj3759oQS8uY2joZmahOeQ4ziy5iJIodEmgws/giPBlThPnWEHS7JmIpmpBww2i02+ejyz4BDoH6eP3gdkxpwj1zeh5aa5ej/tsvGbHKLhnGJtmClFb2nugWqiIKRk+HDnqTzcs9mkhU1DW3Q0jVY99a1zUU41RDuRM3p2s52z9oYbb0Viv6gz/9ki9NhxrBUnNc9lft6fMeCrXJJKpKq5VtB6J7IvD7ykvZuU/sjmWicopEyR8VNBh73tnQGOOQX7LEeZxEAZb3tLhqzw/Ye0UwDv+UIBOtpJlV2LLPmbogkFmqspWJdP4NiMa6vCo2qRGZkjyWIhPM0ExuQuWmcLbNlMZmjMqsxk+n34Dnuz5mLZJGlTj1hxoxAvs2/ER5MkDotYagryNzVCVZcp4/B8qtVkQdvhD1yZ+w30kkinR5lPaDa1JMFim06n+CJgR1xCOydqrMz9lzw24vSw96HgmlPYN7tWS5LrTfk7Gyoo2EzqTRofSS2naUi8AKQw373URGJULK3OkTHDI/arVHYVXz73p/g+u+nL1IUNd10b3eY2cWFg379volUp6ge0DFPNz5uornk5s3Wl2ZswLUx2c95RwUiZKut756hPqLTNG/GVPDcO6IuIBbkCkhLdzJw47+JVR2YmRBKwTcAwj3+m+1c4zAidQJDF8refJoUtoLSHnu3JCnVIXODVu+QUzmmX2anSlTdV8iDn8GpTVcgs2YPFyc6NGD77QQ3LenC/NL6p0kSrFk3Vz3LeJTboRx/K/QtePdgD12KF0ged3ooqdAwI3o2fE29CueVh3UaMKjDuYOoZsNops/KseytMcxWwxVrc6KHzMGtVT6ryBMQXYHss+/AEE52W7eMtSOJ3XEDOgqv4Tu+xWuCcK9Oqhfmgt2OhwIPUz9E70nU1t7lEyievcbaGP+VRQdiIZOE43J0UHs+DKK45pwCU3L3pMnbBocp+2ORHl0B6bl23DD13Y0i4+jWYhDwuQmRGS0ISKrC0EX/RYdtjwEjcpiPdnc0rqRIkaNLcWeHakuMiVAFzwPgiYsoH5mgeiXPNPDXQuHoTo5WFXo7Mtx2TNN1Nc9ZL73jygLTkQkwmFGs1vrFSJP0rkh3dotlZfhpYT34RAcLNh0reVCDMul9HYObNGzsLdsP4LveBghh5wkO2NrK8IuKURXqwH6sG58VDsJ+dp0lqqqj7CgND7Cqy8cRSSJ6FSYW1EZ04VXJj2PjLTRzsns4Gp2rkLiO+SmyESCx8Vl4pTlNtzwDU3YwM70cSgLb0UdnO1qdCHzoDPkyWaYkckaVd1ZR0MYFpfNQHvNaOc+2C34QRfCzoVEQpLTIlDpqV/ymKClqjJl1IrIxpX35GARHsXnON0Vb3NgEVbAnPKbwNuY9AHPijb6bhI6k0aH0kuEtQrxvDJyo0qWocHoGx6FuOYmtohrsiV4ebvRYdRHpXtxHuW9Tkc6tMfG0svK695XRFUyijWeEYWe5fVuaVQ10biaN1pG2BikRs9HOUQkQ4Phi4d7fVaK9lI6jyJR+pAeGM3d6LIa2OLPs4rVn3+VMiuSYI4P6Jx5ZlKUnl3Grh4XiULgrXaOATiROsFBK/nWyVNRVliE5KxMBMXpsPnw16pl498ezkdij4BIveLWJtupO/4Ea/Ozbi0zPG8M5SqtBg65oalz266mt6nOprfy6zTQjjJiRAmtLj1XuyK0CyxInXI7xOoz0b1vEwwjnf5BfYFu/N6bPwn6sVdCXPknRn7UBjUiU3HacnQ4wtHmiIbA+rz1eKVJSIxO/c8SH3vUbWJNdJG7vPh4dbPAzMuBvNle1UGBmP3RwErpGEkwzKrm8nKx4ft8txQQrdkrBJNKegeISA+HoHClzggfi+EXnI7uOJu8n9RKxbP6iDQfTyT9HkkvPe8WnavcbEHIza9AP3wigsxJZPMlD+QNpZ3objXAENrtPBentGNszgGIdTpYOyei6kAu2we/lTjWcqeNh0rfNiU808NfiN3489e7esm7R7WVL8dlqVowkGjYgWYrPlq7FmJREQRci0X4Dqk9e2VXcYpQELGRyBTp1tKtmVjV8SN0LbWwdWxCy4w6fN4l4JFtNYhoMaPpphdw/aev4+y1q1wtPUS8dmkPNkOHJt0utIWdjTsuuRM7Zo5j/mbjizpwzpZ2OWr1Y8ZHaDNaGbEhH7Ox2U6/LGUVL5EnfbDznBCZT43Pwm++cZK7ppBIRqKULMbW9h20ujTARXp9FZZktsShAvVwaC3oCYrG8BY7RjQ7kHJeKk6flswmRhJw/xkduBNB0EIAdaF7VuzCfawa1QmfVWWdZhw69RR8XrgGuo4k2EzlyMs6BRN8XBeB9gNVQvW7RTCh8+r8Wq8Kvgty4uSojydZlo5LOlWxRdrYJB6hq/SOqpEmLk7LrCuWV2bJxRijy2qcaT2X4LzxgQfQqGhX5Cui6mkUe/qvbsQIWsT5qLzz5Y32udiNlWIrq5hkvxfduFjlc3Q9kCaqfMRLSJ7p9MKi81X2U6JXFeteH/5VgVb/Ke0o9rd+hxd3POX1Gcmzqyf/M2ckqg/vxGMNTqROcLAIUHE9HJoIaIrrcG3RKxhn+x4Cgry0Mq/tfx0QTbgoshvTKXVhB8zva6Ftovf1CtULihxeN0ZGfLA8DpfJ8tpesKa3VVbveJcg4HlzKE4/7BxI3Ep/J+TIfbz0dJdu76Mjui+Yk7Bp9MOYuOsR9UENdpxteRLBmgasbL4R75jrsC7P7pUmkYiRvzSTmlmgtA/SjdxXY1yl2Z9myzY0P/1n5x+kAXV4CjJmlqFodbtr+BWxI6QB1bpglpKY36F37beCrLhF6kywGRuYtkBv6vHb9iIvKBUNajo7MR56xcCkHMghZDGjwagR5JklkBoUQmQPIrAR4xb+AkHCXN+VOK52N776tikhRQZqdY3Ya6jGM90hcLhSSmrVVr4cl7tDw73clT1B54n6tX3+wgu9ES2aeIQzcOsvlmCJvRSP7HgJdfom/DXhfaaRokjF+p46VLVFIg7nQzSI6NStw4HycryzqRM3b2qTlYRfTb8Sp1S1IbqiALA2YZtGC6vdqfG79bx4PN0SKfPmbZkmFCcY8VFqMjKTw3GBYZSqFsyfX5Kj2y5HVZtCqVpS9Kllk/yG1HRntKB6Md2Ar1xtX2ibZ21uw81TUxDqarVCE+Dn6MF62FiUg8YHShRephBwe/bjc15/QFdoK+7f0wBz5a+QrqnBQcfpuL9rNaZPqxpQ8YAafH13Z5CAe/+lUsH3xxi3djkLmmdg2qSFqAztQHpqMjKSXHYmE65EdewMNB74CactewU/WH/D0tk03pwW/g9Ulk5BXkQV0kIa0NRtQoShA0HDbChP+j06Xvmkd4dcRUKVocH4fMMmr4hqfGSEl1Hsinf+gYRrDYgMyQPMvo+Tmy+ZNoQJ9CXbib4qFikSlXJaldsxS5lVxV6XSFpFwSGsfLtcThXTV33+3j7s01nx8O6/ADo/1X+uBdX/Dgfh1q9rIWqtCMl6Wta9en6GCfJJE0XpvAEarR4tcCJ1AsPbqExglQ0v6LbiYosVHzYaXGRKoSASgI8ajDi4aT5uX77cRaKkDTjQuPcQVn3c7l7V8+5+WK83IcW1KRosPaXmFOafEm+GpqHeq+R1j80ARJ8mV9zIxEXX1Tupsvc6YPvfY7DppkM3LMXvSktC8eG92LpvKx7dFIpgvIg0TTV0piZM7bA4yQbsmB3+fwjVOlMrs82vIFSbgIIUnVuapLqrG1+uX4/hqanISkxUTTMFgkAb48qEbNQYxM5f4EbaKLS/sWAZhBg9tDYT7LoOJGq6Edw1FnuDjLj0vHSclmDxIitSpI6Jwbd4FxR4tr2YvPgSlDRbEebpBdGH4zed07IfEzF94ZOITmQNfbxKt1VBA+f//tA7qbOw/B98huWJEH4bsQYvxr/HUismlz6nxzrZq9rKuaLtwax5C7D6u2/llbthwSLM2X04IEdknxGtkCwsTj8D46Ln42BpGZtME0JjUbQxH1X/6QYcrbDbG6HRWhCkOQUNhfk4a1OvtoS+96wtHaie8RsMa7bhG/u7aAhf7/wbCfgj0iC2uruNW4M1qDVrMZY0L/DWgrlFjdMvQuit7n5JhqoqWfsV0drAap88xTEWfQS6BaBT4TfkqTsrQj2+nBwsa31oEv5yUjD+gHqMRZJbn8haUUSts0bLS8Ct7MenrCo70FaCRTUWPGW8lVlzkEXHvTXXYnvFISzMHhwi5eu7q202nxV80xQLk8LiZqxe6rSLOCAUYPYVWhZxcfpR7cdUoRrvm5ZjmGErrLZ4mHVVbLy5fedWPEP3ur7b6QhPMGgRM3oqSkXmJNYLhwNrXv07xDGTYDC0wWRqQUdHGLq7Q1BWWNCnl1UgzbdJoK9sXK38vWpEyul55/69lFqjqFDBYQuWv/Oua78EltLXGfOw02Bjiz3x02IAd7Mm74aIzc6fKDoYSWfX19a3IX7u7CN5tijgJ811+I8h1asS2+0zioWD+PmtEEQ7RFcf1uMtOOdE6gSGmlEZlYdSZcMpoQ0YEdSJbe1afGb1WIULIrY7EiA0sWYpva9rNEzsKoolbm+ne+Xhn/6MMfFxbCUeK2roFsGfxQ44yAfG4cD9YcUY0Todf0pNwB9LndUZNPTq91pZyeuB8FxcfsEZmBUn9KbFDq5mk2mlGImDjnjEObJhtF8LvFcJCJUwLEhDd0Koz75Rb73/NGr++yObsH4FEatT0rBedxZyu/ehq+k/iA/W4vyktTKJIlCdWUqPjXknSWmS15YuReNHb7L0zV5BgOWiq3HdYvUQtD/01RiXiC+dM4qMhLU1O3txkbu1B2mTJvQWkwbWYD3M7V2gTNozizIwYXSO39SGL+d0CosrI2Eb163D/3YVo1k0YeKEKTh1y0ZnBKMfjt9ih3OVSOirWIHSdI7Nq0HU3n1DImo3rIZp8i/cz7G1HHWVm/FSwntulWQ0MNvacpjYWZqsPQ0W7zxjLpIs9YiJysGFRV0BOSKTLuOQ/ZBXo2l6Tq9XrejEto8r3SZT6vlm79oNW3tvt3uaUGLXbkQBrnXbPumULK12CIIG83WX472e/WgwNLPUxbCeMAiiFaEdIiJb7GgI06I1SEBkq8OnXYlnOuWU85MRnWSGJdyIMA/tV0RbA1JahuFwWIu8n+nm+ZgSEcnO645Ou08t26b6CkBQ9JlhJ0KDLQ2VGGtJ8ts2x/M6Vasqq9xUjKd0r8v+Zk4/uDfwQ9MvMJhQ/W6Xn5ypp1W1EpAWJZ0OEauf3eplF2FMDpavuYOi06ONxhlprKHxb2eQkRUpUI9E1gjHFS00JE70KnCg/+rQAnFxBUhLPoCetljoQ2pQUj4CyVlX+vWycrO88UibK6UE9BtZYY6CTPnrQuFZnS2JvFt7HsTywimKjIfI7oEOwzAsM+kVigQNW/joQvKh0Tf3mhOTXcv//uDlAbiq+3G0e1RiKw2NJe2YqXU6xE6ycamATUxEuH0ac/E/nuBE6gSGmukZeWxQeSghQidifLAd/7O6V1bRxfn45b9AyIh0dDz5mGwBQAOvbkQSBKHELQwuiV2/MRZiU/BejNl/KX73/dtICLVjf0I48pCOvIwrUPfPXZgjAD+cn4HqnHBmmCZMsKuKQ9nkoLfiK+F0PNR5jaw6uRs2nAMDSjod2P5BAXuvWt8oikRJJIr9JgiYdfgQEF+KWXU/sJu0rasLwZpeEkWgQeSWeS8i3uXxVFhRIZMo5/ET2fPCU05hkan+wF9j3I8dejl6OGbfZixY/Rk77sreXRIoRbU/YRh+yB4np1NOK9iOi/UdCKUSevQeRyU5I3LgyzmdIkbMwyoqGi2trfjPoW6ss41j18Wy5OE4KyoNV4+KR8asWYgYQe1je+ErLajm+K0GSTCuFYMQb3QfKB2iBl/+V4v2T9f2nmNX+q/UqIcjgUxBvT2MYI9gkzVBabCoDd+Ev5cuhXCYfpkGhsir5R58vhyR3Uw1FY2mD4UdwtborfhhxRpcvvVhWRclTaazLo9TkCj2F/Y8PMa7ubTD0QJTWzPaDZEI1oXjhbHPIC43TU6fXfleM5Lr7PL9XBatRc4dYap2JeGmc728oNYuLUWX9TUIaJOvJ2WKOosahbfbUbazCPrVLYgyhLuOp4CxwToESQ39PDA5KhEorXavJBTtmBiZMCAhuGgthP3wNojG8YBlNIZpW70c98nnbJiWrvPBhWdFG+3jA9nNqP/WWYRBEf2oBZe57bsvbVdhcZN8zZEBMHVVkDzaaDsknm9GGT4N02GtKQgvj7sdI7LOYuSGaKmywIHO7O7kGIhhPYjR61D8JRXOOK+E+EnvolRzAFOuuhIb335HXVcpWd5ULFNNm7MFVEYimgq3I60nGo+ubvRLeCX4EnmrWayAqqPFRoiConE5g4ZZZegMrbLXW8O+/yLSY0FFxy3D0Y4tlYvZYond54IGD+TeirBdJdjUsQ9frXa2DaPL5VRTIlKMeujbNbB7WG0cD3AidQLD0/SMBgMyKqMSUYKmQURsrYBfh3TjLdHoEum6rBCo8e7ePeiQxAOu0L0cBncN1HSbr874kIldCfWGRmg61+P7HCv+caYGoqYDgliDWyoznYaRItDyxRZoroqCJiET8SqVGtLk0NAZjgc7HpYnHNo/ErGPdWixvaOXDHj2jaLIT/EyKuP39EsSMLephYld1XqVwRUGHkcDmgsHSktlEiVvRxSxf88eJJQe9qlz6k8pfWN8gkyiQlutOMNFopy/jdyt3UuK24wm/JDjJDnsPYKAH7LG4sNXnkV4e4s8UbpVSLrSVosj+/b42r6nEOts6fL2R7bsR1rdFvxQJWL1ii+9iB3tV8T8y9wmnITJZ8O+tgCdIzoQlN3bAsefYNwOl2WF7mUINOGIGqxq/i0rACCwc5zcjVDXZJDaY5NF3vIvETT464VnYHxSGruuqNpKmtDIlVsahNlxg4P14LPpUyGInbDr4gGdRXZEpn3zMtV0NZq+dN6l+HT7p+y5uTPGq4qS5qruZu8iCnquF6sxO/zv7LeRZsbWtYsRrLVWZzRoYvR8DE8+3y2FllonldY7z15qvR1dXTWq0cX0mAlekztFush2wmFrdStRV6ao6f8jxBDUrd/l/lmlVYFHRIOiTpdH7sW/G0gIp2Uk6vLIBoy1TOy3ENzdBf8DnLFwMjrmXgo7BBYplq8ZaNAY7buxc3+gXGiQsaMyskcpa/dKVhFNy99Hy3ln9OolfeirEmL1btYf1JrqR3serjSuRYcQimaEIaSnkUU0KfodMWKRm69cREY7QhZVoanRiI9r89Bh0CMkXIPqzb9SNCTXoGrL5fhYtwT7NG24/447MbkjBY03/YF5nbml4i0G4H13mYRczVb0PcL+9weEQcRVEDD/7JdxKOHMgCof1UTeFkOHl+2JoNFg1OwR0OxoYB0q5F0DcEvWzTh/Rp58vZfo9CClo7NdtRM2UYNDjjjYm6Nwy2nnYlyGHebVu2C/8lnsNxrx5bmkjXJuODahAGL2OzjMpCYC4vb+GtF1eZxIcQwcnn2tyO21o+Nq2L7Zg7rHnmPalzM1Ai64/1bUzB0ji0j9paH2x67HuxNeYK7aFIlq0YhwtGWwSICga8Hu0GFYMWkLRNcqlvQrVNUyoS0XW0P24kVKx6wheqTBkunulRrK1FNNO7VLcJ+gaG8O272bdUp9o2zff8H2M1IrsDYt7j4tArT6JNg7e4uOqVdZSUcUrrjz9whOG4+qegEV32xGYk4i4jMSmSaK0nlKMkUTd9Cjj6G0ttavzilQO4pNQjAccEbGLNZ6L+LG0psFh+TBmwZ+zxUfVXM1mqNYSpAmSuPIMbjzQJV32mparryK9GxKK8EeQZWNFLkCQmytsnbNl1cMpUAeLwiHKeUKlh64rKUNp1WPQGuNDS0/FSMobQdifnuO1/Gga6xt00E3riH5Xek0r+LLpqtlEsV+g60F+WtWI7tbxzQl8XY7S4tIHk7KRYCUjrOKBdDqrbD3mJ3Xp0d0gyJDEdUPywN/Us88hExYgrZdDYzg7TYd8DbVFB2o1lXL5IruAWWlHtuuBkgcnuadcoGIdpse5trNmLbrQTSFxmBrEkUIetMgZE2hs+YiISFFjnp4gapjy0tVo4vGsBpvY0/aQ3uTz0bLAfkQ+SgEeG7cGbiysZyl8ygSpUai+gL1Y/R0wafn58y8AHfn3IU/5T8LHRyMRN2TcyfuiE3HkcJ9oSEyd2wydqRnw+LvQ1NxRJ9Nqn3pq0zBXZimO4R1tjS5Ii9d14JqwXmf0fVCPRdVXfeJrFKBjcmBGJMNM4MPsgVfd0sctHr38RCiFs1dk9ETsg1P7H0W317wLSwPPeRtXqtvZueNOhtQxIjIDtNlHd7orkuEiITvbkbCbXsAc1SfzYkJNHZ0R85mCyg6jrRdZzWis4OC4NK8RkVn4O6d7XJFN/2S23V2zKVCFG3vcU5InIjHoqPwYF09I1P03q3p0fhV6L8RG1yP0Qm/QWtNCmxLnkWXwYzKhHT5/iH9WHb2+t7bSRBRnfsW0sOJgDqtLI4HOJE6CSCZnjmRwATkhY9d2ysgdoisKe24ud9D77pZfKWhftrwCR5uehWxmh4kGSrR0TYBbdVXyFEOrakEB0McCPZIBVBp8D5TsZNESVUXcOCRte6VGsrUU2xwrVcKhP4rRasBTV1K0AAWjFZ5AKGGwe6u4059ikaXwB6llAvd5NOuvgPBY+dj2WvLkb+JUkvU+LYJOZP3YP51Z6B1/kSEfrtJbjhcE6NF0vZa+ZgoNQi+/FIkqFX8Re6tlZu0EhlipMBtAKfByOI3ZSs4HIyESYP9niqa6IGwdoesq2kJ1jBCPcO1ivQlAB+XkgwBB9kgSMTIsyu952QitdWg5sfJPSLOjRnOjiHbL0GDzoOh6Cw47BaZkkT3giEcIQuoEqf3HNuFaIQsuhftbzv7bhGkqM3Kz0SswhQ2UOdFVGNxaxumd3Z7tdxRpuNCsgR0Vi5GRGsMOj35BQu2ujRWEFGp+w77in6J5KVkuKnuE0TTokFrkF3lKRpLUdlZxRez16TJlIi4m5WFC19UjHSmX0JqEdxZBgjuQljavbC23vW4r6hHbFIqKqze0cVQSwjiJ76Kyk3nwmFrhkYXjvhJn6FiXSPz+fGXdlWa2rr5EJENrUfhh9KfhyJTkiZqIKCm1l6LAwgwHdqJibNvxCmRk5HaUY5SUxJuHzPxiJvR+irEIXds7Ldj+6tUNefcH53NjvDObmaU2RVk8Dp2avoq0usM19cjSWtFsyMI4ZpOhAjOKBGR6znz52BR+iL1SkuK+Cmqzug6TwtpROXUl7D8a/cLmKI7BclXocV0FUIb3mDC68lqVcXWcuxqiseySuo04GTK8xOKkNdOY4aKW+rhjVhaIwZsT1DfY8RKzGN2IDRejIqoQX5IHlLm/AYjxzsXXRThPRsGTDC0osTQiEjzQSD33yhtFlG6VoP01IdhsJ+FiNgIzBQuQeH/PoEhvgflN4noMjkwAoXsu8qKn8YHm4y4LO4U7B9+Gexaan20gf0sEuF7NZkQHOjWVSIEvVH3Yw1OpE5C+NPqSGF+tTSUXQAeLn0FYhhwY6MVF7a2wS5+i3u1KSx0TYO4vSOdpVA8O4iSJxG9pJyQ2NfCgfyKIsS7KnCUAsbIoCZclfsB3t57CVvvs9div8FfgyphtKZgQski58TlMg00NB5221/JdbzmpmtQuC0TgqsEl6pHdIY0nHF1EhKy09hNXlVcIZMoAj3mb3LAmLoO/9V+iqA5glsLiPPWA1Et7sdOzRZCqduS0GWMQFOEERFGE9NDDE8IwzlftOGLiSFoDTVj2czzmEZKipIYQuYhIds5SdEA3dXQgEdTo7GktM4p2nc4MH/1ZywaJYfR4+MwfmsJzlKU2H89OQTp04w+e3dJUaKw7QdxD0xs5UgCW2ml2QsBelNvZZtUlWU3aBBjEFAjaGXHeuf+aNF5oFwmUspop9jZhK7t7zh7EWq0bn3YZjsq2EqfIlFKrRGLVlRms8mFRaZG/RLxinSsZ2NVOoqmxE9xX+w9uHvbYhgSPnX1i/M2lqbrs7mjARDD1U01XRf1ExueYP8t2U/kx2/ERfPOwvSQ2W7VkpKAf+uazdj877959WKcVlDm1f+O/psqRSXQtkJmxKL5p2qZzIdPj0NUfCpGHjwb+9r/J/dqGxl8NuyOdti7d6KrqVaeNB09lTCGm2HrMLpZeSgjDnQ9S7YcUVcPQ+fuAgSNzoYpJ14u/AjEn0cyhmSFEgE6XFuyxrN0nls6CCIissa6ouqz5aj6kZIof4U4VS3x6FntdJuXYNNqMLa0GkHk73T5Jaq/yU1fZS2HuaEIi+adis+/+wkhAk3uAubNOwOJiYl+WxOx82FvRapOz1pJSQgz2BF22izYooReWYUAfDkphC2QCK2RV8NgdI6jnlXFLTYjllUpHdIFLKvKQtSaw4hpd/qMue1HtxWPbP1LQM2JWUVsi4DtQh6KxGHMdb4BEWgxhGPe5KkIc/1WIum2RfvR0vknRLKIqXKOcKD40MMo+tIIe2ckhh+ohqNdC6tOQJepd0FFoLFGExnCSBStKLQOIzNVpg4VVMno2RrMU7pwPMCJ1MkAD12Dv9YxvtJQRKJePVODhnDnlf9YdCRO7ehk6RUSUa62j2GiSsKTp6XDsLMBj0ZZ5OjKQ7X1iNy5EUKSx+peFBDeoFEVMNLNNTN5I86fej62NSfg2R33oEvfDFJwZDdUoqupClqtBaLDCnvX1TDkjvH6XdSfbu75lyE1z+ERfp+MnFN6SU5FPjU59jDqFDRY8eVGOCY40G6CWwuIKouAqBbX79Bo0B2RgFUveDd7lXRbfZnT3TYjA2mf7kJduB3V4dn4x+V3IKK5AU3hkfhNRArbhqcZ35tnL0JIZja6tm3A9nxa0TtJFE2UiUEROGfz3t7TC+DszW0IX+yA7KDpMfFptzo9qyhKdPaCpzFFCEWZLhia6PnIr1vmqo5zRvbsPb2VPKSjOHdRDj7obMV3QgJWiCJzrD+/3DkRiA47goaneRH52rg0VKQOR2LpAcQuuxfxj/8FoTPHy1oGaaWfv34LVv7L07BVYN47LD2x80Pg9AfkCV2tsSo9b9JEoNs6BT1tw1maT3QYEJz2d/cqIGgwKjMPolAiL9RJ2zehPReVl2hw7+b73fRSRKSenfUsxsaO9Zn6oIm3PYjqhryES3CQV5cicsrO3xWXI6x5L6Bz3q80UT2ypwTB4YDFrkGj1oGOPaWYfzgEicveQqSeWsdoYeqwI6jnbdRFnY/Dq4kky/kN9nzhzTcgdeQMmQgoo3Zzd4i44Wsy6FSQOqlK897bEDGeNFAu10U//jyexpCB9l4LSxvNNFG9GimRPafXvaPqR6kQp6MbbWV6GESXFYFK2xbt+x+h5/rfeOkiZW+4lk3Qr32QHacJggaZ855DQ+KcgPo6uhlUpiTinpouzGqIRoS+GqHnP8SuhdwZYPfET8X1+H1VtUyinPupRSucCwBPFB3crRp4Kn73f7C2UbcCKyIy2+XfWxoeq3oPuVkNAG4VsTnaYZghFKCtywzRGIRFi90bkXd2VqK468+9PSY9u+NoHDCE1qK9IxL7sy9BZP1eOJrsEMUG956pDg30jVPY9Sg6WuCwNyLIYYGhaypGLw5HatpolJQ8LksXopKexNZyPdKjO/pt1jpY4ETqBIXcf4y1J7nZTdegn3AlI0kHH/8LOoKiYOqsR/oDt3kNDlIaaue2b3F74TMyiSIQQTqs1zEiRRUV5M9U5YhilR7zE1oRtaYVM9o72HvIToDeV1C3G7OKLsLqzI8YmSISdVrxL5E1vkdVwKhMPcW3VeGFfa3shg3u0DKzTKpAcrAqNTh1Oy+/wX7XzudfRFl0LJLrajDm9lvY78qNh1v4naqQOouaZOdf0kRROk9JpsiLJdgWrdICQoC+Mxw7oqOR2N6AMffdjlaEqjszu/x31FpRKMnWj1V70R2yDlpdEFaOWcDSfC1hzpz+X+wtWFRb79XeZN2Xn+O3v7gGkRNnYvLYcbKjOuHA+i0Q7S1yOxbnh3r3R4pEdG8vwca33nZul9JNESFIaXBGiWLGXoFYjQ6O0LHoxjCUdZIXUgQ0ujC3cnhKk3zURQ13BTfH+ml1NsR22BCU3uqW1jNEGvHtouvw5zNPl4n23V+vwE05QV6CUNrX7CnDseotj6pAilYYOrwiI/S7Gjob5LSbfM4EDcZFZEKDQmbaaXcZd3ZXLmbRKqZxoorNsfeipC0YcQuHwfiNi0wJQM65U9ATWeplNUtkKtIU2ac5ZE5OOnZ7RvZcJeoR7V1oG3MaJv3+V4ioXYuwH24ENvXerwfNZ7HrvlVD/6TUmohDpQeRIDoQ1A0EdffuV3spRbm8Qm0It6S7RaKkSTuyWcT1X5NBZ+9+yaDU9ZPPImRRNfTBLpLFyJZ3qyNPPzFPPV3D/r2o27UL0Xl5iFRUfkqu1emL78H1c4rQVLiDRaIkEnUsCnF0Za3Q7WnCu7aL8Wu8q3qe1CL3Xt5wpDGaHOQkJaID5u/uhPnWXdQY1O/+eEZRKer4dIwRhw/fgbCeCMzuGIFcxT0xZlQM2ppd8gIXKBksFUp4oiXE5tX1oPd3CaxnZkhCJ/QhQNO8Z1Hbna56D0lWA9J5U1bE6prqEFy30+kFKAjQN53mtg/tqhXDit1xaNDdGuN8ImidfSW7garNZyN+4ruMaNF7qrZcgVEHZ8rpftlaJGQepkz8DUItM5CcNJ/NH1/uC8H1/6KF1QbVbgdDmki9/fbbuPjii2E0up/U7u5ufPDBB7jyyuPbQPBkh1v/MSTDopuLEN1yN11DRcJ0rJ0WKU8UxoQRqlI8GjCSZi1AUy21CVHcVKLTb0lZUUEk6p6zU1FqLEGkoGHkif4R2EcbOvGLH4uR0vQgrKYGRHRG4hzThwhNu8brez1TT1KLioc2vgSNJgltISI09gaWaqOUW0injhGJH6fPwZ1RWbKYkVJgcw8edK4ILWY2CNHxqfLQgMRPTmSaKErnOTVSDjhsFQgVkpn2hTQwRKZoMDkz/mbcNiOxt23EsDyc7UPHoiQcvkqld+8tQ8XOH9ngYw0OlZ2FJdAR/Hz/YVUzyEMfbEO3aGGeWkJCCg6sW4vV777iZYSn3B9p5UtNRy9cmdQ7uLrSTZQORcka2Kr3sChRZVAi6r7eiLDINvS0h+DUhXEIbdoIaJwRE/U0iYC6qQaMyh7mVbVX2d4ikyjpvfR8cXsrUgNom8OiFQkFsokhHZ96Uxh+UtoUKNJukr5jdGwa7kaZu9jVOhOLrr4GFajG9mItHv+gUh50Hz9zJBYnRcpkO7UNqv3mlJOLL2SmJbPSeamykS6E9KoWVJjiENHVghGrv0L8nZdD/4PCldl1v2ZeO4Ptj9Ickvn7pKarRoksWeMgCB/6taNQRu0SGkXmY+UTosD69LEWM9SA+MI3gZQpXik9X35i+et+RNv2Hdi0c5OTiH0s4tTJMzD1rvu8PL7YRDfvcr/HciCpQ3+FOJurm3Hrsg0shU06P3L3lgssVFo0yZF7azl6Dmx2L8pRkhJKlwXYnkQtikrjDRUyhHZHeEW3PYkgkahnhqf4jNplp47GC3mNOGWX04jY63eJAtqHP4ofsqfi1i9q4RCLYYj4BYISqDK1VyOlXDBI2shAilJ6yAC22NXpwCs0Bpkg2Toi5YWSYGtAh15AU+EYtFU9xaJVRLRI52fv2a9iLfI9RAddO0Fs7mjsisBDn6/wdqb34dQ+5IjU1VdfjYULFyI21t0zoqWlhf2NE6mjB6mcvFbbyPp+kVgWtpth1G6FTqBGlna0HirCyndJoCeF8IGV7+7zSkNJ8OqzBQFL6hudJInCyWc8g7/En419LT/gxZ2Xw1HkwAVRFjxU3wgNGbxBg8otpM/QIrFrPX7VvBFiaDjMETVyyDqQ6FqbZgYaEjNI9op/xa9EWMMb7L6klfT03dEoaTHhzhqlgBR4sKQG+9cvQ1hPF86YMwfJxnBo/tvi1hy10eUzQsLyMadXYM2adSj/UQutPpm9ZWTNNCQ1DUfcFW2YlHoaznthj/xxujlpIpj1x9NhOicZrV+UsUmJ9AuhZye7HU9fouGq6hJGogjm9lZZeC5DFPHad4dxkUsfIH9WBMwOE0q6nJ5aFOYmryBP3yKtPo1FptLHxaDgcAke2eYs5w9vp/SG7+7zYnczQialwexYjUyNVOUnICK/BVjTKUdMMnIv8XayZ/qgcQhSGdgL7TFwCJ1urxGZKrJHqxIpAqWHkhKTsWHlf9FVsA6jwmtc59jpyaOpL8UjW9x1UWKPGTeMuB+zM0dhTIJzy7+6YBSm/OcAa1PCmrJeMByiMQL1Bw146bMtcmk2ndf7v96LEb+chJxIcg933QeJZ+CRsm/kSNqSpDMCblVyzTWXouj0mSj+Zjmi/vZc7yTmgi1/o7MVkhLk+9ZT4WVo+ciiFBhDq7A+7w5M2vEciwrTgmZr3kOYQmkyD5d6pS6KQJooiRRWWgT2u32SKUFkzY5dRwYIiVa9Z1UbbpNtxTvUekqRMhQE/LRpDcybd+DepYfhcI1Dzntpp9+JbqCpQ18g4hFtcyepe8NGosSUgru3voO8ulI3EiWb0boqGLurdICispRBFFBWa0Z0YhvaTCJK7S1IbfPf0kZ5PiRQJJysNdSi22oV2UoS5VltR/+yFtyIj6NfQHKtBvd/3IngbsX1JwgoTByD+74uh0N0bqe7aTIcbTl4+apUjEvI8tp/SRtJx85fUYp95SpGNtuNRuTfMBXZORtcGkUBhw6Ox4KFN2LTvzfCWjzJxbPsCA7+HuuyLM5rqeUNOOzzYOvI84hCeUBUL4IJ1Kl9yBEp6SL3RFlZWZ95Yo4jAxGOb8PXyNVxdDOSWPby9kToyFVX0KKYBD+izevm3/LlPoydmYmIYep5dmWPMdO8h4Hw4UwjEWFOQnpbFW5c0zuR/ScsBGuCTfhw2pOITJwEsboHLXsKkDQqG4lxerldBYkgG3fv9Lm6lKJr1QYB95wW4pzAbA0IbXxTzrHTOLx2dD303+6FY9YwL4NNqykUod2dWPb99xh2uB5nxHq04RSB9p21CB4TAzHKgqCJufip8i+YWXyRHN7elrIML416FHsLiBi6g27WNQV1uD+4HSHnRCCy1Y6GUC3ag9uxoLNbHuB8lUoL1t3Y7ppoaD9n5W/HtuQ8WFpFNIRq0HGwGZ1dWqzTprGSahq8mOmcbSQ0DiO2dzjPJWkF/PVMK95aix8LC+AY5TxHFM3zGe53TRr2CBH71iq9ikTsyw5BaRuQ1t6D+M9vRWLm3H6tjrNSk6HZVeDm/2Rus8McHM7Sn2pkntIn1Q8tQRoJ1AF8Mnk+2jPDmKiVPHlGNne4TULdTZOYa/LzhQ68IOzCU4udppAkYh+TY0Guq+dg/u56rLpvLZvnb0AQa1+xy+iKoooCPnxjF4bZtZi9OA65CQeweM3rmK4RelPWJW8Ak28LuAUFRaZSzz8ThS89CyEoAprQODhaqxlp1eVMATap65AuTk/CrHg7S+eZQotRX38Ltm1zwGEWcEv0VaivTGJR4drN0fhpXgd2jZiIVy67A2ZrPazmKMSPGI08eSDegvjSdXg650r8Mf9tNIQ7sOa0HMz8odD13XSBuVJ8gojYMc0sIkUOTtoQEvpmBNZwWwnP+UAQsGfbRjhE92IMIlX5FYeRYM7x2r5a6vCnN/6FZMtwhGXED9gnSEkIJHRogpHeUAdTt43ta+Jf/oLg8eN63cE/vwVVdB1Eaymp7yb4oWdfNY1AZ7sWa/MakL/mnj6r3jwXqzRuUyScolFq0W0Jatoxz2bAj495BKNNp+Kd1jFA8p9QZanA388rwW3/+RBaup8EAZsnTULxhpVYbACzbCiwOwmcrccMszAS8SHebZOUjvVqRSlE4EO0Ojli1xIWhurqbDQ2Jrq1uKneWojh/3ob6Yb/sXSe0FOPtZkRblo9W8f3mPaLKVj9rg8S5aqGVEZd1c6rP6f2IUOkxo8fz34M/Zs7dy50ut6P2+12HDx4kEWqOI4e6kOa3SwGnB5O72FhaRuSRC2qFj6GrciHA3FeJoK7f2rE7p82Y/qpCRh/hdOLR5m/l1px0OPDW/6J2Gl/RxZCmXmaWmi6SqtBkSURy/PtuHfpHmf4fuMeV556ptfqcvLVv4UwZabswq00azwcopEnXq2NnKE9Vj+CCK2tGoKY6hbNoZYH5o7W3sHcEMzSdp7C8uYvD8L65UHWpZ4arBoiEnF4wqMI74xCi6ked86+lQ12FY4qL4seet5qc6oJSPypFIBKLtmSGDU7cxhSn5juVirdU6XBpJdfxJZJE5kf1PiiDsza1sRGT6INzskdbHArt5vx3LxUZHzfgBAxCLUKTy3q5aZmAkS6Jgm0wpU0XySeX5fX4NacedYF5yM+UUB4ykSEpoxBQ+M6b12DIOBPSVEo7tQwH6fFDcW4LH0mJgk92FNZjVEJcchJUO9XR0iNCcUTQWbc32ll53R8USfO2dyOdbBivUq1o6enGf3CUZt344uEc9ARTH3egIlGVr/JjpejJ5yRKMm40DOkL/Uc9NSs0eep4fNBvZ3pkei8kribNVpdWo7moOdwitmBeDvklDWDK3Uj6xJdqUBfoMn4/9n7DvA2quz7M+rNluUq924nTu+9k4QAoQSWAKHuUnaXpSy9994WtsOysEsJgaUTSgIkIb0nTrVjx7132bIlq83/u280oxlJTsL+trDfn8tnHMm2NJp589559557TuINT8NdEyOVkXsKBrAjIR8jT38ecV/dpjAYZiBt7xtI/ewm2LTAlik2aZFRcTzOKVmNOzseQvegjS06u1t6cVtTMwIWK3otwsZVsr758iagdCV7bgmA6SOXoXLML5By1I3Aoh4EnG1QWZKFD39aDDb87XeYVHpUGldbxo/BmYjHUIY/YpcilfNYJmqo4HlkD4sFdzxc3iSAFBNxf4pC3KlEM7tu4aXDXMtoTEpcjP5369DP1Undnt83wi1syNLqxtL3keR2SMeqiY8P8aK6juNDs1HSL1uwxI9rvxLADx0dlcfdOmHtm3owHoPqANptg4qut2jlSbkptLtch4M7O4MNJMDcJQngykvhPYkAcDjX6rTuqRizyoa98cfApfLQHPaAQyK+QSJ2Xz8OL8T6sefQNmbIzc4/B7ZZo3lmADoF8Ih2zLQ5mWkNoOlQBVyDF2P3p6ukLOjkyy/DoaZdUJkDrCM0po8qATwDT/RFQXese91zMPMaGAZ72Fen2QBwIbkXCrPKhdi+9bBo3ExIOTzozM+Ia0bnF9/BP3ki4oqzT9ma6AcHpM4991z2ff/+/Vi8eDEsFkqIC6HT6ZCTk4Pzzz//X3+UP4YUjXxLpMQAx6Np6T3YoQJzqKebbFjeVEn3Jjy2bW5G7qx0KTMVDpLIHoNsMj6r+4wBoKVLlyKrODI1TY/1SFIQEsVFbWKSKmJ3uf31P+FljxkDFqugwk3mUsG/y+wPSCrWpEAtdvaIQZNYqiMRZ+7qx8YSI2z9AXRbOIxrOMiyPMKbAPnxk9Dvd8PMU5lNuUumR7fBwFzq23smob2/CA+GpbWLcuOw2KXFGjLeDGaGFru1mJEbD9WR7jBFH8DRdxS1XxxkOl2iQJ71nkfAT5ov/JKjEVrXccy67BykPvcKuq12lBfeLFluhC/ubujgT06F5vQk4KtaWEh4VDx+VYxCI0vkSMkJ57TDlXO+jqf3YW5FH2adeTkMxQY0dT4JB7nUVqgwXP04I/2HK6HTNWz3UTmIY4vJdGMM2mWguPoUSi5XTc/DgnYnyqq6ULGbrH64EAH/TWWZOZpcB40FS58TbpMJS/lvUPDpb/BgjAUPJybA56FJ/uTmq9E4a3S+CTz1cwF23mN4TjJa/Yi7Dlv4G5WWJcGMkYKXKJNwiBYEuAbrrNKG+5MMPZ7Ij0Vg/3GoMB5/uHgjztN2SwbDYgaEskUDRm1EdoeOZ6SuE/tcNrjUHHgzSVcqg2BfY+1epAVBlBjWQx9iROIF6EAstEY/NOZB+AJ+pjLfNejHhEPliu6/qfsOorasBqlTQhut8KBFtmjaLHz31msR/m9ibZs4UiMnzcYV1bfjjSPLg3KmAVxe8i5yUp6Nyp06Iy9UOjSqYxiIkjZEshL998lMiWCNQPbmu+bh+LEGBK67AkkDlN2N3tHcYoyVQBTFt2PVKM3l8BvTVdjy+TcSiGJ/Cg7z9icxgE+bFgJJ7TsODFmelEyh7cC40W624VJv/wrdd96AupMYnYfP1YneOFaNoDNrcvqgOdwnu5JAT70KA+fkYuD4fsVr0Pkm3atBXi8Bj/BN76xLrkRKXqHU6WsJBGBRqbD8rjsQmDAO21yluP7IY0J27ZdqXPdlAPMPuDBp1y6W/aINI4Eo0p2yG7vRzSVJpWWWEZeVgkdaWwT3iWM7UVgAJn1CQsrihT8r7SicTbkwbnDBteE+DIBD05W3oOSuq0/ZmugHBaQefPBB9p0AE5HNDYbIFP2P8e8NGyH5MA0nAhl+2wg8vPE6GN0xLCtRH3cUb49/CDObFyK3mRbLUNCfd1c5JCAlr9+TYSuBKFFPh26sDZ+uxLUXLMCyjHl4v/5b6XXOyjsLzn5L1Dp1xbGaCC4FLY4kKklaSrSDnjmygN3Uar4DWd4mPH4gC/eOzkBAE4/++J8iput1wZBElgYfV+3B2OpB6fj6rINw070TfKt1usMM/MzwFmP0lDHwbFN67akJuHB1+JY3ocWbEJHWpsX9xuUjkbvyKLq4AOJ5FZZeMhyFKTF4zq+04yGBvKcPrccf/+iXJomm5ClYt8kKbN7HeAJzY/+EEuPXsHIqmB6+DTtbcoDdquiLO3WtAPjVyn0KMvQccp//qJJVZbTGUZi5/DQkZ/rRVq/Gjk9aI8ACcb4yu4uQWfUMEjMdUF/mR5fqZQTF1YMRQOnuB1GY+Uem8lzb8oSg+sUD73br4PAHsz3ErejpxM4TdGudKDPFV7aiIooQY2dZIyzT8tnjoeQ6llx0DhLWXw0rBP2sZX1OTHcNYv/SJ/HL+qFT+qLJr9FKvpFhTWoIoIB7A+e1nQe9PhF9nJARJNAc7pkmZox8ZG3z4U4lL/EEizplrehCtmu6cdjcjqeKcxDghLmSPuGvGn2YMm1KqGQjE2g0ufwRulNE1J3ZkY7JLgNiZ6ZgYmIMVBWRnLXctj0Rx0JK182lX8EYMMJufEXirnR5fwVzVx484OHWx7GSi9HVzjIGaf3EUjxxRDQIqFSYftYyxOtNSBw5Uurau/a0szEi8WG0DSQw1eoZY+9gJOG7P4xCEr5rnvSaMVpbRFYZciubE4Robruh3oNHv6xUEt0nFaLnnlsilcFlWaA63qMoS1N0WFVwTB2LwW++Uw4o2T087VA8TO1erDnFe4XmGv1gDyqffmxIo/PwkM/VNA7FjbLbQ0Y7yqDHGqc60ieT4/DkRdMxLDuZAY9oJdWNb78ePOdip28fOzYCVTFfrMLje54L8RVVHJPOGVPtR15NLUZfdhl8OSbEr/klrHACeuDozAGkbDaBBM51Pj8yizLRWdOLZJ0OC1M3SdxQ+k6gqqbfhn4f/awCKSrAX9osbaxZi8nffoOeyYmImzAJqdb0/xqA+j9xpK644gqpS6+trQ2BsN1kVtZ/vv3w/5fQuDQM6OxL3CdxpMZ1jMO+8gYUtUyWslCiR96EOcXoWqV8DRqztjxr1Pq9xWuRQArFOBxiu4q2j17Dh5lpigl+ddVqLC+4JmqdurAoh1mvyG/gQFDZm4LASL2Gx8SJ+6E7cD+b4K/s5nBW661oHTEJiSPOBcwXRaTBRW0fMWIchZg7cwy+2r1Gwanaoi3HyJSpUZpI/HhY9wweQRfu9V2DnMRg5ugkSsZy8uee7mbcve4KcL5ORUcULUiiiBw7Dp7DBsd1yNLtxVqrGw93vANjIA4rEDLAFS/IOWcV4A9rj0lzNJ3P+78sw7y75mFkfhZyJiZHHE/m4BsoTnoYDm8K2nyF2Oa8XBCrA48x5d8hBolwX9AVnrxh0VlmZdpDR/jn2TVV6wpgjHfD1atFV14fkCmUS2nStjjVJ7XSGCqMA20haQ7pj/1s0QbyT2itE5dFk6MAosQgEcPTY2Px5LLsqCn9cJPfsWc9h/2fxwiHAB4lx97BaU37wXOlKC+6CNszpynKuCQ8S5ppfxrWinHnXSKU9I73RPASr+84B+c0uBGnHwnDYECh40alvzVxW/CSXfj9uGYOzpgr4QnMQMCsgd+gVhon099xKtTq1agw62CrcqEnj6xcOEW3E53B/q1tiD2zICpnLTEwVXGuDvakCDYeldXBTshkpqJN95rH8GeUJT0IV/5EtGZcIXUHFle8gzklgrDjyexDxDKfKMsRbSyQ1MnSMKkTuT9ieEZxmviaxxuAj/rQxgekxoFkTiVY2ZxAS29vk5eJZDoDGrw/OEYSAFWUfy+4AP6xY9F2rALJRYXQJGSgobxbcitIGzSCC/CSBRaFKsAjX5+C+KE4YkFRYndt66nfK45GeLZ/cVLxZHnI52oC9aJ1EZ2fSA18YOSwNKQkLFXo01GFYfzobAl0lpWWwq/WQCUTCJVC1unLSPmBAKqq9kVqUKk4BJ6+GwUli0I8s7UkESH8fEF6D5rOdaFl0n2wj52HMzuThAwjdwAq7iPleeSA866+FEbOhZjv7kFNfQE49CkPCwE4Vj6OuE2VkpXR/xyQqqiowE9/+lNs3bpV8bx4oYgv9WP8e4La/PP685DiSmFeTmavGQafCa9vcOOy7lApj74TqJqyohiOmU5WzhMTWdNmpkYQzsX6/bHmY1j/9np2LWPRJ1kC1Gk1Ebs0upkG0R61Tk2kW/mOlf527exzWDYKwck/39sJ/aEHJAE3muCTyp9DEqs2CB1jdrpBgmnwPd8cx6FvW8POCId+0pmLlNWB0+JFqtwOA35mmMu6G0lYVPcqVLgZQCSRWGPshjG5BhqmxB5ijNDi14BWBqIo5B1RTBclbBdNprVfa7LxcGI7OwfhdiN03KsnmlHa2QXdCTpQwp3rxXKQRRWARd+BdP1hFBq3wHHul2jr0GHbR8tgTCxDlur5iM/mcWoEQUepq5OHf1ANZ7PAa6CddWOiC24Tzybt/PiRWBe+qz2BDYk8bCNyMaziXibAJ5reDqtYBVvJ4ye11mGfMaz9v89nRHebF2cUmFgGQ57Sl/s4ChGAy3gblj/wLZzVXnT94nIY3IKhN3VODju2Eplpm/AefyNrWhCjLWBDwoy5Utmty7Gd8RDlvMQ/JH2ExMZ3ENcKDD/Wh7SWUJdjR/EippQucg4JxFh6/4b+SrugcTUiTlKgZ2FNx2tTFuLF1iNSSfsGTwHmpF+P9a87pJZxeXfXJcXROroSgDGXMI4UZaJEL7RwtfivbVqhdOV4BdxPKNu7g2Ux6fiPFV2Cqfo4fBZGaJYTqeUAi8Rfm+Pd0Bp8kCmaKaKpvRuV1bUoyI1FppZDSl0V436J3XwU9FjMKBLgoK83ag7hob21kpTFQ+OycXm0bFSww87Bm/AZfsY4WWTbEm5JQ/fTzl0HkaRz4+v1whxn+K6WbcZEAv68S4chWz3ASlWUZSGAQCCKxExtJS5kzF+EpJyRqN5fgW3/+DPrpJXfE2nDRoS0uEI/iLxXgsesYzJ5KWE2EcpSY3imbUHyAkw/X+BadX3RivjyGAYyb+P1eI4bDJ2v8dnIzLQiM3M88vPz2d/KhUPlAsAoGA19cy10jijZSFmnLx1bXt44qBoiaR599knoMFqF2ZLuHQI4JMcT5AOm/eQ5pI2/nJW+W/6ykzUYtRszsNgVplTOqZE8/jThNcYthX/7twhseVLRdUoC0k5VL7z9gFZmZfQ/BaSuvPJKRjRfvXo1UlNTo3bw/Rj/nqCbgHYUdAOY3Ca206IuDL0nIYIPRY/1TgvGXZrJOFFUzqNM1FBde6x+X2CHZamFvX483yN1aWR5fRKHSaE1BS0mhdWpYwIc2+HljpuNa34v7Fg3cEYcaRXENcUdtL3/cKQthRhhXl+9RhWOWQYjMlJssdIL/mjiwkVBYzIpMwVmqxV6+yB8+9ZBs+dRCUQJxx+IqgETntUoyL8DMbEjJdd4eXqdRExfXqLC5d9wcHPd4P0OcOpQto92jE+nehXnrSxlOyu9XpL8AP6gTYSDyOtuf3jFFmr4kaOjjEwUYneYXxeF3t0J/dEN2PtNPHi9DR5ncoSdAs2Zgw5dpKAjgNYEO0zuAWZF89iIezFq/CwpE3GydvuhggDRhF8uQfxjD51QHFb8XcXzYZPxwZ5UfN1SAP6FF9jkvujaG1gG48SCgAH4uIPQ97dKICp0MjgMx3480PMGHrVezlTIiYh8f64PWYVZ0mLXoNcikJqi/FNwjEcWpwmwLsf4Lo8gmvnZzaiLfStC2JOuAVNb91mhPdIDbtAvKdDXdh2QQJT42r9rq8TMEhv8brXydWTdXVHVwM/7EzDpanRv/Rx85c6IY67ymfFwokUajwQKCdhn9gxnpXP6nUqS0Nj/cFT7kK1NWxVaXsLr8kN2rf39nafQ9vEmVvoqBQ8dOrCg1oHLfzEBbxy9KMSdGv4ubHoyQzZK3KaH9gkgSriKwMP76jB9SgYMbj7kdRncUDh9NlT4RoPTGMCrPYwDJFowSeeOD2DvGy+Byy1g40fl18Eigijhg2Dd33di/nkWTCvTYEy1lzkc2Lt5JPQL4EbuXKC3Xg3vwDfwDx6U3RNZ0JpOg7c/xGPUmhaAU4X4xHJOnNYEpjpO2lTsnoxSaqQIdz2gNWBYdi7+svYRGFQWWLRxgLcH12lNGH/JLRhWkgFtvAs7m3cKGUWrXdFRT6BMLgBM52MwNRuafkdkZiqs0zcuZxQe9Mo6EKGCq+k8XP8GAeSqkCgmbYJp/g52cIvzLJVnP07TMlHfAGfBiqbb8GzF82wcRAjBWtPROXoY3lqiwhXfxmLQmAS9qx1/X9CLUQ02uHeZkD+yBXGnoOX1gwNSRDbfs2cPhg0b9q8/oh/jpDF+vLDD2HSoGnd8Vs26LyzqQESru3zSJfA0FIASQ+w8G5WTjfybb0bbuk/B73+fbbCoi4k6uEQSJtPY6eiC3SXsyCgjQF800Xwks0gZ95NUqIe7sTA2GQvyspU7aIdQ0hgaTAlidyv7DYIBqUGFcRPNzApFBE7kv1QyfhlsWZHpazZx7H0Dms9ugkao7SgjigVGtKxG5fGngv9WMXsbKlfIW5kb4634riQoftr3GptI1bpRUnmVslDh4dT1Im54JhxNg8ITBjV8I+KY+jIXBFHE1Un13Ubsl8hzE688dz3HTWjeZQU+fQHTwLESY3PqdLTsvkxSDSbQ/WmPFheNuAtVn6+KKLt+uOQy9JtisHDjxzgvZ4SinBNRxtEMCv5swXLWiYKyTSPDs03BGKp8JFly5CyC9uaD6Kvej7VP/Tm00+d5rH0lxD2hDj1HM3UCRdg949Dhm6FyBJDCaVlZLlw/6SrTWixw7cfxiS8if8wYAUTJFrtomwgafUma0CJEFi4EpJy+OBiqecR4bOjThQjNBGgDjCQvfAQ5Mb6ic09UQ99mz2HMvXRhhJxGNPkIRWRMgG1BNrgPd0WoxfealaA+XBiS3sNhbI9qH1LaVhrhcSj/ebhXW1X9EQlEUdB3DxLRkO3ErMztGJFUhraBRCSbOpjvJpX/RJHeoTSCXn12FzJ9xPsJdn+mHceR/nnY0PtLNvvFB+cEmFpYdxptMtnWiw8wQUkT2e9I3cFGxaZM1DD68m88uOHZGNnQhhF1vRKAIA/NDW8JUhriGdWZF+K06y9EakEmG4e0gfRYE9GWNRGDJITMA8mOREkjisa1b89qGGXnl1TSSeDTM+NZ6Kachc4YhACQ2S6Ank8/C3VV8zyb6y5cspj9u0PbjSpTe1C4uA/DMvzY5f4WD38QyiiSov8wy2lShyRlp8Sqg+id18vFYM7VvwLX14NN7/xd2jTNv/AyFKZlK+5dsYKxv7kS1/+9Dn6vNbooJs0NwflBNHzvV/NBECWc+7fTzsKG+En4IpVDSu6IiPmEzkOzfTq2TVseFGAIoNn+Lgw2GxqHGxnBfZE3hvma/k8BqZKSEnR0nJyQ+GP8+4JAwoSRxXCvbmQLOHV8dZsPIqEvC35/L9TqWMydHTj5pBvNBiE4ceTMXIjmV21IndDNJtjzevuRv02LgVGDyFV7YKe5QAZEolmk7H6vkZHeXYa+yB2rNR0NBdci7difWV083NuV59RYG0hQuLjvyzfguF2DC3fugC7gwPjRU5Galcy+ItLXssUwIqJYYMizGj0+IeNAi2WcuGAigPJt98KYbMHSwumYfv4aVNYfxo4vX1Qs8KSJUnBRMR6peSwqiKJF9ay0G3Badj5UTUekz+bPMAMJWry8+wFM8JcjVeUA4v8Y/YLJsjXefl4AUcFFgRbMYeXvoMs2HI7qWehrKcHG8c+gDi60NVyAS8aejoXXJg1Zdl075xxcjH6EqwkFNFr4TDFQl30AfHOXwpboZBwFebZJ7KQqc36Dl0qfjCgfRRuLNZnZkSRfPoDjx2ugK/NI4y4u91LYJ70liYuK1y1gAxyX+GF9Rw2O1WI5pE50COrUnBpZy+9H1vgzo2b8wjcRdH6X2zyhcUFdZi4/jgwsEBb0D1RYwT2I7/LexdHkbex6k1wDZaOiEeNTdLrI7Al45CeMQ3ZhdL7eiYIWa1VNLeYvvxzr3nszlEW8dAWS8q+Dasd9bNMVLgwpArX4NCaWoQBKlDeix+EA60RebZXVByMEYelxm0+H9ICbgSf6CjeeZVpjDh9ieaA3TIYkLtgEIdovJfwiSwJRwnnjmMGtR9+FAk0buhI3o8/tw6IDalj8/WwMixONX+OSMtxUolMaZ/M4lJmCMQ8/jviRI8EZbajb2xY5BHnAHEfG6EI7v9roxa4iDzYWn81kWqiEPLt8P1YYvdK41ui9KDhbOddpzRy0c5fgw7ateHitsqQ6enCk4loI78uj2zWA8ow+bB/VJXUYTz0Uj2adQ2lHwwfwwr4n0F8ZAOe3sozR6UXxGI9DOCtI3aC80mqchuLxv2Zz57AZc6RNE52zNppXjUYmhSMGXedYTgO/18GUz0m0k/SmSD0+vINWnsmjITF6ohn780Jl2kZDCiqz85FiVRaIaa7YfsiN2VUXSaCXwBQ9bkzcC2j6WZfghCYH7JHSZD9sIPX000/jjjvuwBNPPIFRo0ZBq1ViwdjYE2c+fox/TYg6Go99uBeZXCsW+17DFkcmmxp84OHfeRw4c9pJMwbhOj5i50jBum9huuo5VD55L3RmLzz9WhhGadDvTwOPNuDsBxWvHb3dXMUmaQIU4TtW6hZ577MjMKsnM1+1FIMTs5OrBfI6p8bthbfi7bowg1GiH5s1yFswC0ty7QxAiUETgEIQNkr5i8XiJ4CSc6OeFyrfbXdq8W63RuKr0KI51eKHaYsK1pVqtPC3sgU+9q47YIiPjVjgaeFKTzDA1SJTWA9O8tcUP4A5ORMx2i6Y/BJp+I7DpeB8LeA1KXim/jWcFdhGolEKoCfyIxTmqMHUuWf9FywTFU7GJEK3yxCHr9QaHKm+jGVEVP44gVOUL2SYvji8D/c6dBKIEv5YDZ8mMWppIYbvxc0g/SA+agn2ZCG2vfNqB8wFT0llRzGjMVVdCEeUsdjz279ECALS43a3ERXvhMB7T/Us9LeNwFk3JUOl78PhwzdKvz8wIwB3SQDD4+5HwojT0eqqQVXDNiRnTENG7tQTZvyWOfsxpd2DQ7sToCH6yqUhy5DhFf3wuWyKBZ1WtrlVF+Gms3+GI51aPFnezJ6msR2NGL/cpsG73VppzN1cshTZ8aPZ38j5cScjgMtBqF7Wri4ngz+o9in4T3eOuQdzps2TgBqNNWpo2ZuwN9TQ0jkOBUbqslVyY+QRbqdTkDuKlfPkYIoAnFOTAe/H7dCe0y7U+YOZXspGyRfc6zgj66gs1fmEbq4BQa5CDDqM5ladQqdKuCIcRk4ej6faHoBL42LenSY/jU0S+/UyLhCVsQJqD5yxx2DpLYoqdkv6X57UZHjqSXphJ/z+yG69cCHNusE+bCweK2nd0feNxWNQ3VoPW/C6kAMEbXwIyDNqXnBT16JRRwCgh7Y+hAez74FLNQBjICQ0SbdNj9+B7aM6Ze8FbB/ZiTHOAxHXSCwt+wesLGM09/piLMW3Uicc3VdLOXpMTSZWiacWXlJcNO9MZKbkS6VVynCN6DuKuUH7GLonv0uco2jiCd9g01tSVeG4XStp8sUNBGBpcMEJrTTWxbki3aPCRcTfkI81ym56Y2HQ9DOpBWeMrHT6vwKkTjvtNPadRDn/fyKbEyfs1ltvZV2Kd955J66++ur/9iGhUN2BC7VHoXIBm1qypClLIJfmI6d6P2LGpkeI34lBYKZ503dMn8YYiOwckZOAP+kz4b5vaxGgcrkPeNI/CnINcaOqKiiZGJrYOCJ465vQFGXHKgrwkQAbfTUMxKG8Nwlzf7oCl3jT0KhXWhCJQXPv6VOGIfVkbvFhi6FwQGoJRIXKRyERvB4/F1zQQufxvW4dRrrcSF2plkpD9XFmHFz9ntBZFcZtosnEklCgtN0J45DU1ztwvKYbA7otiG96JjgFqWCYeiMQ+3MFpyB8MjvzzOnIy7cInC1rOnRTlwKqFyPkA2bfOA+bvFocWVMG/0A+y4TctdSO+oGD4DRZsCfYMWvyHPRvO6w4bTQhTrClRuVTUBkg3CriVP3G5Caoal2HkmAaHB8t5XthjNLFlKfy49nEORET9mJLAo7xygYEb388eNcoxCW7IzWybCrETV+Mz/d8BLP7eUZy7qz6A3Y33YpzZ/xiSH5WT5UZvbvikEWrQbMKiYvugOb0EUIn2oQAGvZVgl+lnPfoV3NQBKOhGhfoS+Hw62FVD6JQnQq3W6soIU+1+DDM4Icl40YMs8+VQJQcPB3uPIwX974YdTwNtSGidnXaEGllfDb6m/yESdjTWYUJCXkYE6/0EiTATlpyyQPJUkOLyW+C2qVWqnNH4UjJwV1eZgmSz52Ftk82sY42mhnWTynB3nErGBftgYE6LJ9pl7r5oi24pOl2y+WjkW4zYu1Te5VStCogtcAa1ZZp7PgRGPx2UHA1EIVpD8Wz49D3dWH+eefDb03A2rVr4dF3Q+3moHcq72PK4lnMieh+S2hWMao4jDWqUeoK8hnpfS4swH54kedWMbpC5yBJaXBIHWxD3kADqkwZaNYno62lBTbZuHZUmdHfbEDG47fDOOMMNt7qmndG+vERmKp9HFwWh/Ed45DjzJVcD3yxfRG+nfQ4idNEAF55aZlKpB21R5ESzuOTcUZpXWioPIbVn30OnrJ4xMHsT8GelQ7sxT6ptJo5TIf5nd9JIJTuzXmdG2HxXSnx3aJusHkg0elnQGp81SADVpv5HmwJvq5tpE2aK7qj0FbosU4rdPTSs0kFBfifA1Lr16/H/2/h8/lwyy23sM/OymoTJuC8885DQsLQCs//7qAFbu27O2FzTEbAW4/w5lUCAT0eI76IZhw6KUshwobh2czkkumFUHChzhECGdSNcd9TJzaI1Lp2YW7sWmzo/QXrViMQRTpKTZoOHIZJsWOlxaFW3RbR4dIfMKKu4DQ0VkUvHZ/MnkQRUTpHxCxPtPIRgcbSmnWRFjHg4KUGsiCIcmnVrCVYzM2Ly4motVBmKUab36hQMqbPLS4yb7wndCPxGsrKPC0BCoIHD+//LaZfsEb63XBSaHLKMfQ43sS+fbyCsxVVPmBGMS4BMCdNxZSJDyRV47cVdyNQIVB8H5wuLMTPF2dJ5VOCHc8VZynOr8inYP9GXERmSM41Gwqwy3kvlgAQ70zDoDsOA1JpR8ho2IvHw6FSwa2NDWkbeXuRWlKIy2Oy8fh7WYjx9KBPF4d7zsgG59kLrWkA3oH4iCyBwWBj50feOJCdfR8OlB+XQJTwvjxM7udR1346spJkfLTxl6M1eQba922D+r0nQuM0EEDHoy+gYN630NrsjDQeNyYB3Lty/oxwHJzBh89WfQYTeJjUQnaVrmdS8owIYjyVCsenTobNNjqqHYhiTEbhJEUTNpW30je5PcyA+kDvAB6r6kQAVqgaOvFcsYlJe4hBWU8C7ASe6It9Fo5jzy+zKsc0Rfj4pqhqrEdVbT1mzV4BzDwbeytLcZ/DhB6rUL4jYv+jlhycbSyBzaBjC/exneUI+PsUArOsocxoQHp2HDxR7JdScqxRbZny0tMUoO941gAuOv2XmGYcw7JzTo0ZR2tJCoJjmakANaymZrNsFd3FInnc6DehX3ZNs/UqJGs5aJbkYkuqBhc0tyKwvyt432RirKMGlzTtwrMVL0CNAPxQ4Y7CW5AfPyxCK803qIVm/FLAKiih6xoHYHFr4TQEZ3IZ14Eyg/sS92Kc4zRM8KZg3Pmj0WfZEbUBaLYhFRrZZ49WWk7MHhZ9kxmfp1gX6OpT9s4fk85KpiF9QaG0uuDyyIx8uCeembJcUSRQ3ihJQEOMFUfeKw0luIOvW3LtMGmtIdoKZSZJQFd0N6iyNMOq6VfyYf/XgNScOXPw/1vs3LkTI0aMQHq6sOtesmQJ281cfPHF/7VjaqxpY10nNLij2YfQIPMkF+Hul0tPqjyu0Avx8QiMvQpV5U6k691MCuBAdcVJDSJ19ikYbroTWfr9cPjssGpaYFZ34rDazhbJp8bcAHvbMXzZuxp3lf6O3eRFI2Mw/VACu4PEySshJRmqqo4ITZQ/l2RjotV8aiBKjCidI+LOXb5YiyJ45t6WiMkpxm2FxXoe3IZvWecXtQJHeIuBw9zk4yiI6cC2jlYkq3+tVDIOBmWixJZuMStjHrSy8icRfil27ziCuePiWIpbDmJ0un4UFm6XvXWAgQRSJycQODC+GM3le5FaPB5xeYLzGgHG3gcexKA5gJeu10jNerTHe2irsBBfkmYf0hyVzpWxVlhc6CjI9+4znCbJYsjBaTS1ata9EwwCV6M9alaiUcGIwL6HsDFvFetiZMBu2oNIyxuFpuuexI4jJmmin1IywIDAcjuk7lBf9buA6054u30YfpoGTdsvhK88F25zEqb9bJpUHiCQGa8thKt9F453xePttw4jNnYbRo/hI9TD69oqFEBK+DxlGNnWiafDB78MoBDPyYMazFieii3vNSsW9MGAM1JXiOfhdhH9IVL5R+QJRbMDCY/wDG80YVO3IR6b+0yoPNiAxzuU95QwDmT2MsHrLu8MjmjeiDKmxX+LGd5PjtWhc6uNXdOjKIdtkRs5885Cz/7jivem/B2Nuc6tG2RzkaDWr9GPiiidheu7URC5m567PMyWiWKojQxd13s+XQtoO5ATiMcsVRebf47ElKBUMxtWrwO9OivSY4ZheKIxIuNsIHX5kTbccahS0VVI5/GbuA48V/GclJMnMEUdad3Lfgf1Iw+j5YnfQGVKQmCgHfZ7hO5VOXC5gEtnvqLtaT3oVis7Nona95a2Fi/54vEkPFieOpGZyz+cYAs1AHX2wJ46Ad5jfjgr7mSfkfckKkAUlZZTMrKibjLJG1W+LtDnZqVQbYaCmM/GMduzkXBqWEYwzBNP192EYeUrUVZ8cUgCpfwdpA38HEadDUcicRjiAyqFPiH5Y9Zq/XhgXhHGlSQhMY6LpDr8rwEpik2bNuHll19GVVUV/vGPfzCA8eabbyI3NxczZ8485dd58skn8eGHH6KsrAxGoxHTp09nHKzi4mL8q2Ljxo149tlnWadhc3MzPvroI8nuRh5/+MMf2O+1tLRgzJgx+N3vfofJkyeznzU1NUkgioL+3djYiP9mqP2hrpMI+xCex4yJ09HqN5yy8jgjYI5fgc6YMSj1GYB36oBVtbBPeBOBtIPg8FCYb1ZI+4XCkDwOPbMvh3XjG7CoBQHN5uk/wT2jr0NR9XZYP76d3SXUsL7Xmo6N6mI0Jrfj/XmN+PPEF5CXM1LaxUQTHDw7RenPdMoh6xyhoMmeFMgl8Uyy1ClfiazaOhTlzsf9W57Do0Fi8fDWKZhTdRHI3OP41DlMe8jWviOCGU8FvqLYDsRoPViUWoGW9jIgJyPiUKicJ02+nkQUt07FHJmIKl3P2r3AG//Yynba6SPjQ7YZxr4I/OZxqnBkyxeotOrw+BFBbVjVrsKD/gexNGa6lKUqS7GA54JWOsGgDBh13ZxeYI/aSi/P2k3My5WsH/YHSmA50IM5998ATcFEdm7lZbuhMpYki7F4QAs+4ITf383AP53bNI8VOlLbTu6CM9GNnWUWmWuJCjvLLRgWNDum19K5W9Ha+jiGVzjZr3UfNyFh9ydCxpCycWc8DCBosbH3DXg/vB0tHhs+Ny5npQ8yUw1vbPDzHLKSBSFKCvnnabIkRmbhglo/4VIZi298EgZugYJvFE1ZOjm5GGazMlsm8oTEiOZveSJOUriwaWPadJQVXQLufRJubMPoSUqCr/TZZZ6R8s7gHEsMuo4cRnzJCMQXhc5NtBDHCm1Ouqc+Co7vl65x91ozMgubGPFa4ZMZ4BHT2qnc0IFnc5hamwOVJiaiS1Hki8m5VPSSp10Qh6I8J6AikdfQvR4O+ui63v/tazDmf8g2Ma08hw9azsHz8y7CGx/XIKABnBqBb0Pjd8LPY1E24MNooxoqyl7xPA64/NC7BL2m8PPo5vUR+rc0bly9bmiSp8Gy+CkpeT1gT8bBo98w1wB5s8qMw4kYO+Us/LpxpbJTlOeRqGlChzoP93x4ELMvMWPZ1Dsxff0jqNeokOkLwH7GC2hGfFA53goEu+kIlPzuonGYkGMLZYrDNpn0d/t37I5YF9gmKtATIT3DSqspaiy0V+Dr5gKJ37fQXil09QaDAH5a2w7Edx9VZJl12U8gTk/Cs5Hmpnm5cRH6hPf+ZCQukG3MRAAVjaLxPwGkPvjgA1x22WVYsWIF428MDgonjSYNIqB/8cUXp/xa3333Ha6//npMmjSJlc/uueceLFq0CEeOHIHZLAgEymPLli0M3IQT3On3qcyWkqLUe6Ho7+9nwIhERJcti+7O/e6777LS3Z///GdMmTIFL774IvMTLC8vR3JydK7OfzvScxMB7piUhKJdnFqTiZJDv0GcsxuGg9WwnnPJKSuP022gTxiNnQOyziCeQ8ueFci3340rSlbhjSNB7ReejD8/QKKLFtJQCSdu/u/gHvlTeFt3QpsyGWnJ45DGVG4fkNLIBIzu7mlGevtD6AvEM4kAT7pZoUskqohHy5L8X8NjS1MokNN32i2Nj0tFsj0TuSMuxJe730A1l4z9DRfJfN04lBevwNhfzcNkrwe7Pv5Y6IhiqtEVDERR0PmO07mjlrryc2inLiydZo+VAYlQe3hoChZT3LTTFrMD4QAgpE7+EUt3548yoSLTKZV9JmU9JWUnerQ54PlyBS/J5gAGd9TDa2mJmIDC+TZ5VdWwN7cwUid54JlcLgz6UqEJAtSh2tXlGUuyhfENHorwCkzuT4dX70DdjjocjquMVimQ2scpHNXbJRDlHVChZZc1NMEHyelHM0uQl65H2xuP4+vmiVBZUsBnCr9DhqoVFVNRWLiDnQ8CUQOGWxXZKPnn6TDG4aWxFzCjWzUdnEoF4933YUt3L9qrn0G8IZSXqGm6GzOmb2RlxZNld6zWC1k2Ua76LQ+5Xll4ROMkUYicxqrSShz9aFA2tgSCb52tGj0xycyGSWEvY9RHAKPW4PVvJX0tmf9bOOFdPlZoofR5Dkdc47pyF848bsPnE81MMZxA1Dm7u9BcujdyQwce05cloWjK+KhdiiKXyscNwq91YZRmGwo2/gXYxEd0kYYb8e5trIHOLoAoCmaZY/8EhweWRh2/R6p7UO/h0er1wazm0O/n4eaBac6QN6h0TXgeqRmTpG49MWiGeO+bMvTxjZipGo5ifxo7Nd7VzXgp/jFM45VEaZpTCq1T8eCBP0jZJvH1GtI3wcxvZqW6mve+QqqmHPbTHoI9bbyUca+OohxPjxMs+kgrleAmU8i+roPR6wSxmxRgkONw3mXL4W63YsdHtVLGddx5eahpOIhRcS3IMXcxGgk1DbF5UMaZlAN8siASqQcU3aXrsTv1Q4xvCm0mN+W9h/N1I07JR28oisb/BJB67LHHGOC4/PLLsWpVyH9kxowZ7GffJ7766ivF47/97W8MuFD2aPbs2YqfEcmbQFdhYSF7X3Uw9UlgZ/78+QwIUTdheFAZjr5OFC+88AKuueYaXHXVVewxfb7PP/8cr732Gu666y6kpaUpMlD0bzFbFS2zRV//btI9TTKkxCsRNHk/hlesRmp3iF/kLzuAJ5eNPanyOE3wBcmLcdQaCwyEC7Kp4XEmYVbGdoxILMOhLdfD2JmJUW5VVCuDbv0wVJsykas3Aw4XOg/txciwxUDFBVjpr9+TyFS+E/yRO4mogoNh8c/sRvpBGY+wfSOnxgAsoOVvwpIXsTf5TNRs2gU+0B/B2Xi44QO0xFXh3ltvw7RAOqyfXIRYbWgHRlk7U844Njk9/v5BWH0qODQB3HuBUOoixWEq75G/Xnh7eDQAIeqGNdZUY/vHO5E1owHeAaU6OfP6OigokhO5lhbf1ngVzCoVOs0B9CR5Mdi2BPrkL9niMW8/j+u+Io/AR1D5+GNIvfvXiJtZxAj6br0KXce/hD/WD3VP6PgIPNGX8IYhDh1dg4yaY0hy96DdECf9vrzNn/g5pS3HFS3mYvahxTIfes7AzKcre4mrpYsglroNwmMqo5kC1NQghKePprCwcxgI4IlXvkZ8Qi/GBHfKVt4Eh2zj29pSiJ7ONMyYPBGFYycruVHBMqR8A7I2Zwr224fh/bMzsdtrwoPfVCJ29wY4tLfigtGr2b0hHq1cD4lCvH7RShHU7dffZoCWSlWGoe1ARIL5zeNvxsjEkVImSq43JAbdB9UNxM4hiwAlwTez4V2orMfhjP8p3Ja5UTmHdD2bHngQnIy0To+7srKxTX8Mz+x/RrImIZ7d4s50CXBz3s6o1zjePxPTa3OQ35KMLosaI/qbsECbCpffjkPhlARwSFf3Mx86OPwK+x2RvDxgaGZ6UbFcH+bzf5X4bnTT8J/dhJ7EONRWurDulbcU5sGqLDIzD8u4cDwy+N1QcdkRG86S3Dg0cJRpAty+IPhSAblqN255+y944eKfIaBWQ+X345Z3/oqExx8At/S37BiIvE0gikrhVBKnj7lZcxQZ/niYYYAaapi1NgTgCdP/UyEufzSWaZ7EtC9uwQGdBrcnJ0rZPDpefeqHMNc5hWuz8Q+oumwN8vRJSIsydsXPIq8eyEOefR0w+FlpcToR84N8JOoEXFGYBvtYO4onprM56bvmbqxYcxjJfDe26DkGnsSNZDR9PgI3+tGT4T5cCcOIAgwe2InK+QvY8d/GAX9dfASH85IZvYE6vMWStahPGA0UD9VtPpRP4Q8OSBFwCQc5FDRB9PSEyKP/TFBWi4ImnPBQqVQs20XvTSCOSonV1dUMRFGpLhqIOpUgz0ACbnfffbfivag7cdu2bewxgaZDhw4xAEWf88svv8T9998f9fUI7NFXb2/vv61+KwKIwvxsZD0xHdvf/wrxv38aRpp8gjGg06ChsRZnzJgeYacRLrJIyuM/b+2HuduLG5uVNzbdTAPaQVB+0KbrRZKXyKI+KYsjzxvKeTLiK6RAuNmIhyK9Jq9iPCq5Avv3jX92N0Ktu9E6fUTexWuvvYPONSuDpZxtCs4GTY10s9PCRqW0NeevQazmOWniJKsRbulLLE3+9jvf4ZoBgzQhrXznKNthXX7hSMyblonyLXtQvkGkeEeG/JhYBmPMWPStXYzDq9bATITUMHVyep+cZhNqUgeYvUtG/hh8c/85eMb9KXjVcehRBXfL6YjvjsN1X74VetdAANXPvYr4fVr4cjpQM5KANA88Bpje1cK/18iUjQ3eoDGqTH1Zfg3+zqnw27EX4KvsyQr/u5VNnYzMnt7vxEURVH4e27Oz0ZCWi1nH9mJkfDrWGpsUxFIimk70+WEMltH0g15mquEbUMHnpk+hZLH4OQ7NlkSAOqiog1IzCBt3DAXeEqzTtkmaO5MHJmL65HOjmuCK0iLyDcitK2ZCW5SEv97zB1wu6x7c5xqPubq90FhdGNRrFTynIaU5wrR1JIHJGUorkaF4PnISOhNcnHgvilKXIC+YvS3MiEVF2MgSxy5lUGO7XsfvJyzF+PjIxo3misoQiBLHYiCAVW//Fe+M2yKdapFnZ8r9PbKD3Cw/yK8pvATPY/TuPyA92YH1jl+gum06FsSRI4YKJk0sJiUuxu6ONYJWEs8zIcyuG26EN9uF9GkkUKvMNJFWExPd5CB0kXI8WtRqZmNF4qmk+1W1+3p0x+pgK0pFV3mcZB688IFHolSSOEzY+Dye1IzCPb6rWYZSHL8FQ5Dcdd31OHPLekw+XIrGpBSkt7ciqacLntoroZ1yObj8BWg+sgXvrNkhgCjxTHCAQ+WCOWCAH37UxXSgb5SPbYKYeldQAFNVcRydh71wfpQAT4Ef/BnKe53A1O74VGw2nIbH8q5DoMIBVYWDUSIomx8+dp+dm4LYowfgjbLhlGdfSSKhMsuJgEaD3DYbqpO7UZXmxJrK97G44ALYbXb0qXjc97ejMPkBrT8JD3NX4wGd0ug7vIO3f1cLuj+sBXgt+r7bj/41D0oVCgL4P13Thet/6UC/nosoWVPIeWQiKM4zWb+XT+EPDkjZ7XZUVlYiJ0fQwhFj8+bNyMsLl/E79aCM080338wyWyNHjoz6O5QZWrduHWbNmoVLLrmEAR0CPH/605/+6fclcVHKHoWXBekxcbcoyBLn+eefx7x589hxEmj7b3XsRQMQJYsm4uuNBZi4ew9LMdfFx+JQZhKwYQ0OfreWDTy5nYYYhOz7zLG4c5sgDNkfCER0SNDj03ktEgMcKiomo8NUBxjrWBfHACZK02Y4T0ZcMluQgLt9VzOlbrrZhF3aAjbB0I6YFpEKlwsqh8CBOZX4v+xGKJNnnpGM3s2t0me0TjPBg30oO6aXgSglZ4NXmRVK5Yzse2w17PlL0Paz3WivPYqk7OFIychH+f6mIKk6lDE6bUCDY9U9SB1rFDywlhQjbd9NzNiYuhxDxGNVVBVr+syZG17B5IndcPp0+Ev7ZIWIIy1Ek8viManMhqRzZ7HnnvV+DpsTSO0OMF/ATvsaJOFnCr5Pk32aUOocUAFHArCb3kRc3ma2Cvcv9+KIPxtepwZ9lg6c/ZPrMWqcYEwafg0ISN5U+j6uvPkiZA/LEbSS3B6pI5AMq0VSbLiRNe22NxWNxx0J6Tisr0e11s8ydtT6TIeVzHXjaNk97FMO6tU46rSBW03nJpjNCH4jEPXbMRewcpzLp8GvrC2s7CoIvu5Evvc6NGAGrLwRqQuyMHh0P/ghspnRSgvr9x6TJBiEK8VjYsduTDjYAYvWA8fsyyNKdNEimngtLdZEnA4vZ4XzfMJJ6Exwcdfj6EpLBDTx0mJqWZoB5+oGtlCFq+wTBExRdSHNIBhHy6MhmYQWOaGMGQy/SoUquyHS0xIBXL9hHxaOOZ+V+pmVSBT+IJV8CNTNtf4Ju2NbwQ3+VPp5XswY2I25qDv0V8Q3HmOAnaKv1gBHspEpf8v1ytx+DzsOar7w6r14n7fg0cQQ4fr+ji70GktgUXUhc3Yz+hrM8PYTNy+AwdoGXBjvwXsyza4LbV6oahKxXL0es9UHUbPsc+RkZ8Pi60fdoQPIHJYWQWb3tqjY3Evgib6EwaDCEWMXMvtbYLemw1SyGH1rjyp2bATirAEjA1Hkx9ih7UFHJuCw6nB/9t3IaG2D996HUCcBBBVsVaoIE2XKet9X/CgC1GQUPNfyxgH52E3duhauX98uvGaUDac8g0W8zXN3T4HdQ96YKhTWBNDS/A7e1/0RL5T+RSgnq2ZjhFsdWiP6l+Bq0zjcfn4cRowcGwGiyFsv5HcKBPpaI/T91DyYFU+PVZDYkHctN9RUY81rf5bKmyIovvLBpyKaK4byKfxBAikqgd10002s7EXokIjYBGhuu+22IbM0pxKUxaGsDwGyE0VWVhbLRlH3IAG3v/71r/8Rv7+zzz6bff0340TimbbTF2G13Q5zrwPunqaQplRw4Il2GvKghe7Ttp4QAdqswQG9X7mQqYF7cm/G+q/WweMN5p/INDK2AipjqAwYjScjxnv+edjoH42faHeBU+uYHYFV44Laq8dXRg+eWbWP3cxPn2vHgiKP5Gs3VJys1ftEQYDv4cO1yIntQRHfC31qLc5Ke59JCvQ1mqFC+I3Io8/9AT6dUQWnwaH0Glx9B3j/7XiCX4HV6iLA24snztZiuFpZnmK/Dw42ar0Rw5qOkuVnI+vjX8DhTYZV2wac9jAcKWdEVbH2lu1G6sRu9AcS4AikYnZKMza2pkpgKqT8y6Hzky2oGDsRc/b7mAErW0w54OUlPMYvSJYmILc+TskXgwotey6F2X4YWpOgaK+P9bCFyDyQiLiRE6XzO9Q1GIU+mIOAmNrtxd8g0U9SUF+08ROJXyJXVCcw1dk5gDtgwB8CHQj4iKhtxR2qRAQa9oe0akg78XMRRAmfmM6B+fGncMGmPqm8mO1rZ8R/cWqgXbxd+zLiFpwLd0MzGm9cdtJsJi2m6a4mWHyUKTLC5nVE6GiJMiNU2rBuehu7E69FenbBCTcF0bR1wrlgYoiyBWK2KRoJnbYDal8rvJp4aTG96swiHCxMwM6yarzacguc+pBljXzXH/76OdlZuG/F1bhl5V+hpiyTSsVKWCauJzz5J+kTfZWdj70pQulzgaMlpKgexh+k7cJZ08eCX0d0glC+zKC2ILG9GTox6xn8VORBV5HDI1PnYZkm4t7Ex4+G3V6JgsJtcPg5PNxsk+4BGlMPJyWiU3MnwTdcrfozMmIr2PilbI8tk8e0Vh+GG/wK5wJdTDvQR/bkHUiNacfBPXV4JywDQhl8iffYr0HCfQ8j8JgwFxPIeeV0Dt/uux2q/SGNr3B+3BkLlyDbXoSv+zbgmwPb2fkkw2hqODl8mMNhPg3DkqcgrUWohFAk9AHLt+bi3Rm1TAaBQJQz/ioFzy1a4wCNv0SXA5VPPhaxXlQUWZCZP1Yqn4kZrPReTgJRwiVQwT54EfStRxGw9TEA/+qUDyQQxcYSOEwYsMOQMQGwhkr7YpC3nqJPwyKaNCubN24/9wWWRRdBlMJUOX+UwlSZxla/3xdV9uW/QTj/p4AUcYYoK0OCnAMDA6zUptfrGZC64YYb/qkD+dWvfsUEL6nDLiMjsttJHq2trbj22mvZIN21axd+/etfsw67fzYSExMZ34peN/x9KPv2Q4oTAYizV1yGiTNrcGjTBhz87H3Fr9DAk2t7UIglF8WrBT3f+g73wKkKsLTwk8tGwh7vh8e7Q/m+xB3wC0bEGKI2L49WxKNFZYcZXnYbTVs+Gtd+Wi7ZQExP24Y456oIjaRoEa3VW7EbIYJ7GLdCDvguUK3Hk7pX4dVz2DImtKvTWwcju0h4HsldjZheCnw9OegtKnoN+v340GLGhsQNMHHfsYXl/m+X4cuLb46YK+gxdaMoji9/ASy3LoBFJs8gFjmJD0SWNSKoJF+4o66gDUkwlzYn/Q/wFA7H1g0HlNeb56GvaZJAFDs9PJiLvRce6MdcisHStxg5OIIvFuTEEZCi9XqwVyj9kJihttd30mvQUb8GnkQetvwpbHGWN/kfHD4RNRn5WLp7PT6bOB99MTJOFd2LnAaG3qO4snONVLIbnrAYvd1Z4M3CoWraiHwbVuqgrkabBbetCPEBp3qrI7ocqQw0ULMV7U+9dtJsZng5YfJl18GbWhShfSZmXITj8OO5VV9hJ18SIf8QXl6OCE6pkh1+j4paRfOtkSR0Gg9+TYpiMe3Z04FNwazXhOTF2Ji7CjwlUgI8bjecyRYsev2H9hyC1dEJhzUBD00YiflWLzYPr8bOR3+D9I4ONCUmoaS9AVktvUzxfF/iPknxPKH+AjiDrfVtBisas0swLX8W8mfPQ8/xA4j79GLEaGTdopwaI6ZegPLWMhgPh4QjWyreh9/jDdOvFmphz2kTUJbJsdb+ZfF50OsHUFi0HZ2Ix14fgajm8D+SQOVf+evwS9/TMKncTFolPX8UalpVzGxatPjp5ONRprcAgyqkebvQx9nw9SvPSCR4+Ub0i6oBmcSHEY/99l3M0jbg8oN3oCNGqdJPJdmh+HFLcS4mFU7F8YZa7H+xPzRPBBtfqMONEbNpHtDHIU51E1bs7UW5vQtfTcqLCqLCGwco69mx6VDU9eK5j29FWY5G8uCj7NXmu+bhyNtfoexAJH80vj0JsPWxz9bb1R51k2ggIlmU0CQaFXOhymhD+diLUVD6Dst6Uha56aqbsGj04lM2VWY8MlLrHzFaEowO9/H8wQMpmlTuvfde3H777azE53Q6mf+exfL9eS50ogh8kSTBhg0bmHzCycpwBOCGDx/OZBeOHTuGuXPnMiD33HPP/TMfBzqdjglsfvvtt5IsAgFFekwA74cUJwMQadk5iLGchUOrP1B25AUHnhjykosUwZR8IM2E2Y1+XLWkEMNz4tiOReSuyUPt18HTrYUzLtSaLq/NhyYHYaGbpq2GmRNS/+OKChCwk1Gm8Cs2fTfrCpRIo0GNpDpfDHISxkV0J4W3eit2I3vfCHnsRfGCy9c78KTmVcbZchg1ijKEzuJj5YC679KEqYJxNtqR1dWHaZXAmOp4xP5iFqaWvsJAFHEzRA829lHJCNf+Icr7lysaAUQODMs2nOT42PUJa6sfkXErLN4UhQ0Jfd8x8EssHNMBfFca0ULsamlDcG4PXTMSxHR4oMmeCU3KCMSdZsP+1R6laS7nh87Szg6PCO20m482hiKuAZlbT+iC7dBz4A89h5phP0HORa8qpCyo/De+qQaxKhXGN1VjY9EYxisTSc/pbjfelkCU8Cl3d67BeVlP4uDHqciY1QxfMi8t5GLQ+XdalCWN2DILAjtlRGSRm0eNDSfJZhKxVd6WT9+3vfEy/pZ5KXIS5ghqzgSwwjIuPl6FmoCgGR0u//B9g92jZXXS2KLXpMe7p49QkNDDMxR0LpM9wNey0iFlPTK7i5BZ9Qyy2pxI6P8EdTOvx98++xLXyDKEf6s/B/zETMT17IBTX4oaawpy2nUobqESoAq5fbnIa5sK6gck7TOTx4qXY91MNFGjdaCHP4KW/kKmmh+TMB/QPBtVELf48nQ4Dh1A75FyWEuKkZp4L7Z8sxOBx+5SZPz8HNBi44RMU2I8ClxeOBrKsAHz8Sp+Dk7bg3jcLFmdhINKspoa+bN7sSArXdpEykVaN2AB/spdh8AINVQEgk1NmOkkEUvljeNXqbFp537cvXFQIfFx/7d1+P1VNnTU8Ah4YwUbJl0HoO2VCNPR+HEU9DMf9NjP71P+gFOzDQ4BKXorcbNDptKF7TZ8qY7M+ojXXWwcEPl3OpcD04MlzIhzGsWDb9GCiSgrLY8Qz6xL6BQODRxyszJQzlUoMqp9Zg5HjAFwbk8E5444iLZlhVJ5j8Q4bskZj/iUPKQ6OxifsbvLhs0Ol3SvyPXzQueFQ0BngDrgZ6BYvJ7+OCr3+6E28v814+J/WkdKBCAEoP4vQeW8lStX4pNPPkFMTAzTcKKggUe6UvIgcEPdd9nZ2UyugHhL9P5ff/01I5yTthNlp8KDgB4BPjGIoL5//362Q6AyIQV1/F1xxRWYOHEiI5aT/AHJJohdfD+UOCGACO5CHB1qzL7059j49sshw1LZwKtrd+KTBlI2DgtKYe/tR0mDB7EuHsWGEGeJdgGG5hq47dns9wwDKYwj9c0rx8BxxySirLiQHd2xFbs+Eib5Lq4f5p6VMHGD7EZQUXfWsX0YMWOelMFKNrUrFjwhAnh6662oGtRKKtzyiMsbgHlpCzy9KuhiA9DmDUQaFUfxgksRZMrZv00ufwSnI2FYH0af9gi2rPsGY//wBkxBzgb9xoTqLgwY82APzqZEcJW3QId8rTqRrbNhYawG/T4eZg2HNJ1KOj5vP3Wc6ViWSRt2fJSJEvlAFKnNA0jZeCcamXnpo4r3Im6VJmYSMmc/j/qNKQKY4nikz2rBI0dM+G2ECrkKKosg59FujYcjNx9jL/Ji/7uC7AB9lBnLM5A15veo3VeLAxVvCw3cYWNIjDXZk/Hconsw03UQT1tfho5MgIPnKrvsH+g+fg0uyZ/CSk3bqmqx7eMPWHcexfCWWozsrMCcGaNQVDIN9uQExkkJ9zyjx1pdABPmPIANK38DjdWHpik2jN1xSAIAeyZNxDnFgmup2OnjjJ+CA+t/iTHmP4HjaHFU4WD/L5A1fTZaVCpmi0TiqsTr0cUEMJDYDrW7mWX/RPsiedB5JGPWwzHDUWfKxF/GBFBsbUDc3m3skAlE3eP7GeMERsg/hGVIqbQXEbyytFfR2BwxtuhxZaOQgRGPz2OaDI9ljmIxNfb4IkqHFm8CcjpTYesjGnoAh46UYWEQRLHPx/Ps8ebeOVjiXoK9iXtRE1OGJiOwJqsST2S9gMMfCrYcZPir9hmFcrVfBU/8DhhSP8QdW0J2Mex+jSKIy2LvG7B+dhOsdH8eFTYTxUt/godW78YNQZkJWvBfWaJCV6wIJHks+8unMKmT0T715wyA85p41oFo6XpdsqeSg0oiyZcEfQYrm5pQXleH4qyZTKKi2lGLvx4xhGgN5O/pysRnSS1sQ+VxCsujx5rIsiGfbCVh42GKc0rXOOBNhK9nElzN50kiq8bUjyII0ydqfOnT9rBGAAKnlsEYprVEmZrXhp+BOlsu5gRz0DQvn7mrX5KRoOt9b5oJY/ztyE3KRFpSgoJ/N2iwsdI9CWDS+Qk/p+EefNSUNKVkH3YcMUrimS36VWhMCG2kTXFahZr8/jwdPp9kQeB4PVTHhaypXCmfwjzJDn2RjZX5qvtdCKzcy3iM9BUczNK9QvQVc1U16xAekGEASuCc88ubkJ5XIM1D4RvOE1UxfnBAyu12s1Ia2aW0tbUxgCMPqm2eaogkccoqyeP111/HlVeSogUUnXSkU0VEcwJxYpBG1DfffIOkpKSo77F7925GEheDQBMFASeSW6BYvnw52tvb8cADDzAwN3bsWCbNEE2X6r8dcv87eTpT2QVkxKxld8OKOiSOGoXB1FxsPd6BXTWdeJobECbocFJogJdAVLgZJy0s2p4OqJ0O8LoEmHQzJY5DOFGWLWRThsH+rUCkNnm64PU7JUDG/oaAeH+XlMFqG0hCgOfCsgdgPAa5CreUmQoCEq0xAK14mARIzn810qhY5gXHPO4q45DPFyCTq4TBE2CaREcLLcFzId6M42FuaoUzCKLEoE9s14VUgalLKFxPhqBLYXUvutdVwMhxMGqFn9GOzLDCg75KAzMtFfPdqZMciJPprgx07GbPd7nj0O+IxfyKvew34zTNkV6GHNCo60DiqLNhSV8JT58Wuhgvvq1fjOPqbKX+EadiJT1KrX+crsUTI/QItBHhHnjmpuGYxxnYNXd2d6JqexfSi2fimt8vkFzgw0GU1FxgiENSogs6XzhvB3DWbGUlPtqlnpaejEPeQQkmjcMhLPV+A9UGHvhOBZz2EGzmgkgBy2AmLHPEaKSnZaDj4EEcaG/D6qRsWJz9cFrMGD52dMSu36DikKBZgpbBSdComuALpCFem4gYezKOXbUCm3dRB5pwDTJnt6C19kagVoXUhF+g+5gxooRHjB9yt6foU1tQ++c/YbslEe+N/Q2yVG0sEyWCKEXLeZQMZFzuhSfsHKVIb2uBKqBldirS+PP7Yaovx8N1DwtdblSOHtgOXVMFnpz/d+aRSOeaFtPw16f7gBZo4YVUrGwsJ/6zp3kett4OcDoDxnWMQ6uxFYPaQdw5605MSZyA/Z9/gL5gxxy9fUxvIW6/cAzuL7uLjcyo9jUyQVwaM421lZjw2U1oVXGo0+qFTrvPbkbMlbPBJc/ElQuLkeauRc/Id9Atu6RUNvcPJqI7lpoTQueEZBw8htG4wvskvOo0rNTOlkDUWZvXwOieilecm+H46O/s85F+nu3CqzBs3kIEEKm2vqX29yhZUcmyse0VAohy6o0Y0JuAdiVJjK5xRmwi3C3LZM+r4Gpeht3HA5iQHcqyRAuaLwNn1+Dt1helLOvVMdfBe/ojuGZDmwQ0BgdDDUDjaz24bEY2NCPikHt8NdJW/VIxtnrMS9l1N6s62JzRk16ErbZHMHWRCjd0PSiVIKN58BGYmXbT2cgvr8e+nVvwTPvvFSCKxhxl2ibNmMTm+2PNfXi8tTFC4V2ulC/PTNFXgUM/pDyDvJHqLI7D7kkTUZWXJ+mvDRs/PnTd2YYz5Fcpd3o4lYaP/zqQ+tnPfsbsUS644AKWvfm/EL0jxdhOHAsXLoz6/Lhx44b8GwJpp/I+VMb7oZXyhgoCT/J6cLQuoJ3fODF9+4v4IrWYtaUL1E+AGxEHZBDhJASmSGCTBPtEEBXeMUbaHXSdCQipoAWnV9bR6T7eXNWJ0SOShBvImo605GwUb74Xlamx6DGpYR7URiyOyxMSpVIMzZnNtSTUFmA32bvdOjj8qggVbha0uw8DTN5+Hp5DVdC5NNAaQ1weUddE9LgT9i6P4CH1Flyu/QO2O7V4scmIBC2PTi+HmwM7sSztQtiHjUNFmLge7QLtxWOpdZXttO1dVXiw9xgeLv2t0IoODtd+6YO/4RVg5q3Ki8YDrnadDESFCLVmbwxLSzOtlLJabGqagr8fuRhTVUdxpU7YmJBa/NzYP0pehpR52pD3Lv62eT+W1C+BXreUqZ+76mJgHjSD+hBJ/2hvSjH+NDcZRSY7+jb0oFXHCSBKVjK6s7kVu6aVYMsbH+PQt29K/KSRCy7D4muj7/DkzQU7BwuIWqVgTtCPLDnT2b+pNEzpeuqwpU1PDN8bspkRB9DXD7BG8YV2O75uKRK4SbJMmCgSSZmk2uHZUGl1cFKGs7cZlQ3l6Dt9iQLs0e6XjsePRPgDwvOE03uON2DLnm2yTQSH+k12xGQ6WSaiue0PSHlei5Eq6nwVsnd076xPnIP+oOo1me7qvYN4acz5DNg2BV9fDFoomPwDuqJmSC03L8DkYU7Fzn9ysZJonp2bjVvufSRCq4i/6WwEasNAq68Tdq4NaQZBeoFeR+FBBx7FFauEclGQGL2t5Xe4ABkKiQQqVuop0xOUJXlk7CMYO0wgJdM17LOGMvus4cRaCWt8BtvsyMPnseDLI8dxepFVAhKiNMoU7jB+Em+USuIi33BydS1GeTTI4ezo1iWjs4PHzth3GcCgYxloPo9Znaj6fRGbQKitGKfuQQKqMJkvw75vZqCgz4ZFptmo29IPR5UAoti14Xl0v/c61OMnRpr08H6kMM6VAK6LZ9+EF4/1YWPRWNYMoa53QnuEuEucJCswuGsXEgYcoexK8OT8aqXQQHMirhx1YP6l/SX2Gdn553j8tf8VzF30Cbp2eqTkLFmk1OkCeHP5eMazZOOENpOf/zJibMVdORslxm8wJ/aPbGNKG9Tv+n6JnCUP4IYOHs+uewyWfhUcRj+6e85R2MeIWlNueyJcE8ageVdf2LhWQd3kRJ+2g91rA/AioKQWMzC681gnTsu0RRVUjSYtQvcKI8YruoB5TNq9BzN/dQMSiosiNkq0EQj3q4ym4/aDBVJECic9J5Ip+DF+GBGtC4gm6Ia4nOBkHzLY1RzugT/RwIjlNBndf+x9nNe5CrGuABwXvw7r6CmKGyC8XBjwdzNXcnnXDXWE3dDSiv7edpba/YnKi7d3fYW3LrMh1hODXl07RleoUdQQE1EmComuXYq89AVYf3QjHjv0KHplHW7CzkmWLqYSicx0s+e4CdUHsuHauBFGVzFyx9QgLq+fnYOWSU/jyBdl+OOuDgR0wkJIf/WQfwbGzC3Bw41PIRDg0B3U1Hy44StMb7kUdvtYpD36iKKMmnT/LejTV8Pk5mEI7rSXYRamF5yJ6tpS+K+6BQmOAAKG1ohzRCef3ieyh5yDp9uDsiC5uU9lwt+zLmULdHXAHtS1ES5uielbZBkOoGbJO7j20K3o03UjyZXEuAuk2E1fFDSBx6rcGAjo0G2yIWP+TFitRpinDuJYQxfLRIVPfnuqGnHs2zdhVFsQo7Whz9vNQNWY02bAnqck7MubC+IHehBoD+DT/Lk427NB4pXWEkcqf4qi+4bAOIGpPK4RqrWvRh3LTCnZ4kDP2SuZMGG4+N6Akdrwg6BeluEUmynELrSsWCIzRxL+6XNFbKzI2LVXx4AUYdRAQQayD/Uj4WgN1C88jiOqHJR/3cgWcAJRlOVza/WKzIgYy4s+wET7AcyyXg0c9kXNkHrL98D88t2YLjdn3tQL7/LJ0gaJvl+9ZD7GPvxrNMTHI6OrCxNvuhHu/LGsM0xONo+mvRPuTacfHIGW8v0yYrQf20Z1YhqJL/LCJmswNQu8Vsgk0LWaVjANVrOwgBEQDi+7UobC4rMoyO+enolMefvhyh48yq1jiyZtlkSS9nG1WcErFPlPH6WawXG9iOE5xPjUyGqbhsLuIsS3vom8pnb8IzOAr4hZMBhgcxg1xQibQD9+hpeRQKCVSvNcByYFOjDJdA67/+rUPVEzb90tzXiuuEDi74W/Ds0S2twEbES+JIbpz7QgkKjHS/YETD68g8kKMA01cCz7SxsXeUSzShKDNk0HDn8HwwCHAdmP6DwOoj0CbNyxKB1xujbw5GND6q1RNpM0tix9+5jMhMiLIjBF5vGc6noU1ltwwfp0CYhusWnRqmtkJuD3XjiVHaNcC1AXdx4MqR+xjSwT/T1gw/rPn8cGUctp+twIMEqVjaOvl6HJzUfVRhtKWqR/+46o3MUUnoc5CseMmnAiO3qUfpU/aCBFXCTiM/0Y/70gcEPgiWrsBHqiiUzSTdWt4iMme1bAGvAhYCCCJY/Z3jWIRycMGg6WsQWANQSiwsuFc654EsmZfrQ3GLD9kwZ2HxM2oJp9n0l4H5qY8tTN2DBuGi7Zf1FI+j93FTILR2PC6cuYsnq0oJ3E2Lyz0b7mqGTlQCDK07IM49JlumUEYoLlNcpE7alfgrKpIe+8rop3MPtX52Ddzk4c+vuH7Gb7CTiUWefh63jBxzHe1YPq3Q2IswBak4+VGIjz1KrRoL55DwNS8jJqt6EUBzqfAvZF1uNpxx7TW4s6hzAR8O4eDO5/k5XSOJWQqiHCpY7WuijNAvs9tdj+yhvsAlL5SCzfhWtwETC0nPsABlJ59B0T2tmdWmeEDxZNgr0Bg0IYk4JS68P0CVC1tSomP+Ja6GqbkWsZxQQSaQEiILirYw2ajtVGACkCNrE1tfiLvgyaL99HsyUBcXs6sW7Fr1E03soyUQSiwrtv6DtlpH79s+WR7vOyiNG4EJOkBYJgW96tGlWrKJjhDO9ye3xpOhZ+RgAI0jUI5GkiyoeUqiKZB+EgVYjJvwGa9Dho9r+JXq8DK5aMwZT8bBw6UAfzY3cgw1GLdoNVEmGVLiUCmGgvxYjuFqSsvDPqZ2tGIuorBxETCLAMkdidxT5nkPAuWgsFjAYcSLeC533oSrciJT4Wo6Ionkezi5F70wlhRzMfz4jRYpClUKeNxw1pVyPemI5NO3YKJPowo2IK4pRG8w0sSCuQjocyUYPN50ubBRqHtCi/dNFYKXvZqfPDFIX71WnlFVk0+p/FY4Mn/maU2QK4oOId7E1xsO5AfZML90/ORVZ/Bfr4e5HU08m6OakRIRCnQqq/H5xauC5ZflInj9QvK8rKREHQiqrc0Yz2wxciASFXCLqavaY88FxINoIND6MWGeYAXDJZAcrhEbim7K8yMxVplUShMCpGOraN6mLXgr0Wp0ILmSmPsmNzEGz4y7Zh5yv34R9yOYYJIyLvIcpusrkgUh6jr3o/1r7yZ6WvX9fWYDcQh5K+ODQ7QoCXjceeSQj0F+HZ8+Nw6MXfweRSKzoZrxkzXtlMEuClyga9xFDaaBRy1XLKrulULd9LF2pw0ISKY1NRwIzchXWismIKJk4wwRD5dj88IEXClHfeeSezUSHi94/xn42hFJGVk5DgsK3tqYmY7GmAB0waVs67xPsStuT14Jg6HtNilyJNJhUQrVy449NWJk6XOcKAoslZrJxHmSgRRFHQDXWQ92N2tQCiKOj7rOqL8Nu4/Wh6uRRPLgsMme6mm+vRBT/FvZ8Wgdd2gPMm4vGzZ0ZyDYJE1u4v16DMkaX0ziu8CKnVfhzaJIAo8ZMPc6xHqSUdY5sO46b977MJ8E+kLzTRgfj8AXbsjybYkJk6QXobWtioM6R864oT1nkc4WsAALn0SURBVOPDOyq9tVvgaz+KzJffhL4oXVLQljcLiGWWw7uexum8sBASoVl+zUiDa3NgNH5zxgByC6ci2T4WWf0tUhbApXExYjBxWpjpDMdh3sLFWGIvjOpRRaXXaKbQozuc8AVBFDuNnAoj4hdhkI9nY0GcDOU8Bvrkfxy3AqVpE9Cj8uNn376P2Zc9JWVVonXf0ONOrx6xMvf5MHkiBIgUL7OZkJ9bo9ePUQ3tOJhB3UyclOEkYdnbDhyRXSHgvsFeLLhlHJJ7fawNW7wGcnskisxZrUI2ilch5cgV0A7GswPyjb0APieHPZ8fxY7VzcK9MO52+Ks+QmxvHX556Ev8adQZQVPjAJaVfIY+LhHDSR08yth+1z8fd3t/hvgdDpbFiGaELGYEmO9ZPSnQR7bhD6V4frJg/n1Bph1FTl8OpvYWo96zGxXuYzjttHOY6HG4lY3cN3DDpysRj250wYa5Sy9hzy+zCsfz1e5KPFSp7PBlLgcuH8sOJvOdGOmrxa4oPnWZ0MI+Iw36DBOOfb4LVaWc4p4uL7wIb56mR9fwEdK49rYYcPQmPTQHtIxfRKUx7+gkPDStFS+1CDY22YEY7M4/A57jX0h8RuJIFaSlyayosvFZ0zxom1fB4vbDaVDDkfoTZOk0DKikejqQN9CAKlMGmnUJsNSXR2RPiIeYZB9Eu0M5luleTlSHvDfLjtdjr8yoWG7v1G8IoI9bgWvK+6DCETydlYqzet1YtfLtKHIMryFGdg9JXZGZU6ICrFanO2ynzX6A9tQkGHoH2WuOseVHyNf4vFaoOhIZiHKqzWyjR3OUxd/PssCXjBjNwCiV8ygTRSDqZNpoighyCLV0niea0bw7Thg0J9GFormlpaUAXV2pAqXBFcMy8vT8v8tR5F8KpKizjQjnJIZpMpkiDISFFPCP8e+IEykiy1P53K51cGwSUqU3lX4gcaRoMrttYREKEr1YX3MZPu8exBoYWBp4+eBXuDXYtXQqooH0RZwoKufJgxbmIlMhDiHkTUhBk5oqkIOA6uSt4ULq97wTGlZStGjUOEzgjzIogT5WdiTHefLH29/iiNoBVtTfJoEoCpqAW3dbEZPqhtYUwAOdPVBRy3EwaPKrbCg9aT1e7KiseuQRDGjVrNsv4daf4nBGB7I0JtgRBErBLJe8zGJy+YI0co5NUPM6vmOcHGY5w/Hotm/A1VW7oKr+k9QRJc9K1MXWYcWsFZgSOyViEQzPXg5lCu12qdEhA9y1gwHsdwWAT5qw+dMmjFuWB8QOIE7GY2i2T8Pw2KkY3k8wgsfXw5ZjaVk18oOT31BZDGYBlSsA4c76o3j5nQ9wh2YVy7pR99t93qtxE+IZUJOfWxHAZfb0Y8TPr0dgwjiJCL+5uy/iChFQrNfwyMpXZglEe6TO47Xw/KMF2jYfvM5WaAdSBBBFVljqJuaNxh+mMbINWeYiDDjpc3E4nid0kJo54G+n5YFP9+CT6j/gbcPPMb1nP34K0XsvFJ2zH8fdX+eyY4xmhEyfr8NoZeaxtI7ERRP/lOnBhSuen0rYfX482NHJzHD1fhPO0MSicMpHUjb74MEmjBz5h4iFSLSkGu3aiXHcXyWg73dko3+7lwFd0tybG0fgcLeSd0Tv29GGlSP3Y9KxZ1mZ+sOOUHlP0mRz9TEQec+nmzFioAuLuRJojF3QWdrgcSbD54qHISEd0/KVHWHaA52S9Afdy5rSDnTNVOOl1JX4WfN5cKoGcXqgAJ6rn0S9pT+YiUqL4Crt2fIe7u/oZvMX21Alvgdt3FxcVfkbPNa0E2rqeiNF8bTJ8Ey9Bdqw7AkJl9YXZ8PXb2ClR1bE5wPsXjb0Z+PdXX4GkFMHGrEsoiOUg676XLRpixAgzlKSn1UM7qxtQu7+/VicfyHKW9ajz7sX3R4jnD69MA6G6oqMArD0lHoP08ij8//+givRb4phQrlzaMxFIYKX2HX41DIM68Q5iQ9gcccOuDt8bH5JsxkYJ4rKeYpKelgDRUSEdVkTHaMnzoyGjF8hY9ZMqIuyWSev6K8nD3FukVMapLnlPxz/FJC6+OKLmeccddBRV9t/QlX8x8Apgxu2WBafj6TTZrBSwbLYUqRXP4S2gQQkmzoxY9gd6IUFn++jDirh2tH3d7s1uKBrH4rTUk/Jk+5E2Y0JRjMOcQ3Km5Y60WAcMt19wtRvlCC/sec2vIik3izMH5wI38C3Ekma/PH+YBuJZVFUMS8vToTqu0iODBngak3kM8hLXX5idsCq68Yzs5VdhdHq8fXxsdhQki0ABw7YWv1XHFvbp2wJDwIDeZmFjIYpvS96bo0cOIbL5izEQHYe7tr+U0DTE9ERFZ6VCKjjGTeINNWsp+DnFm4KLRfOcwV47CdpCPH08MDuD45jo7cMjwQXj3BVdDruhW4dahGH/LAshpwjpSgZWdNR3qHHK/5BfOqfhhxVq9T9dk7Y+BiqW5WFoxF5HVVQISaiZCkKFIYHTcz0tbHtC2RvtsI0GC91wvXDLYCo4PCl73XmY7C7bPD59YrzcujDKix8cBJWtVzJ7iPKWtCCSwtvaNipUZ04BwG+TnpK3ggwdtoo9nmOHO+QFjHa+QuZrqH14L53dB3Hsj4npg+4sM+QAe347UwdXFT5pjJJW1s5rNaQITvLQN7/AFRaH3IXt0NjDlkCqdffh6bPUuAb1DIgmLFwKW6HHs9CULSnkXEbr8fh9x7HZbnrBc4aeQg6+zHd5Ua9VoNM6toLAK3aNNz/7Wsw5n+INk8sYrtPQ+rEt6SyTevuy5AwTGheEIOVfCNAiWA3ciy+Ce8atrGSNxt38Utxxnglh4mCgEDFvh24v6OTjRcK+k6Pd3Ycx2NN22XPB3Bn7V7UDe9H7F13oPepZwSPQZUKv7noYjiMreBj7PDEJ+PsT99GWl8zYngXPOZ43P0WySdEv670uMs/HDxnUVAvCOjsG/sR4pv34HRVP9vw0musbSmAN1ZYvr0uNTytOuiMagSbSqPKTiS5m5E5u1WSSQl3Flgz+xzMN1px51IbnvnsqIIIbuGrJBBFMdKjxQjtPKx9pwfcqq2YvawABXmxmHd+AdZ/WCk1EY5anoAj7gPI6lcaa4vnvae0AnE+G2ukoXi9eREeibscfJcK3MdNmNv7JVK0fpj7G3Duip9I6vKnNLf80IHU1q1bmSUMyQ78GP/ZEMFNwB/Kvqg0MVFRv1iSqth6CeINPOINQq2fSlKDyXcrRRiDYKqu143i4Dwd0fkTpZsvWnaDG/TjQIcTU6Z0YOd2WpzU4OBHt/kwnKpC9jfJbgfSaw7Day76p9RoaQe56uOvcPHxB8AF+jE48KqihOcd+AattrE4XHImRhz5XNGFNu/s2ah8VWabQEFCmjE+RVlJ7h3YPWjD349chMtLVgWJ3wJHSt4dEi7iSG859aANDYkDDCgpWsLFMouMpEscieakQfx54gvIyxnJFvmdzTslECUG8/gLiv2JXwI36IhCAftso/mU/dzChfOc/sguVwJKLlOytAhEU0Wn30mMVZrWDqXuHE5ab+ET0BJIOKFbvdbohzbZDRj9EaWBND6A51LPwu1Ft4GMRuQChScaRzd03Y34glikepJQ5M7CVW3nwqEaCPeEZo81Ojd8LiUwo8t3uNXJzgtFsz4ZtxXdhmePPQcNbR84NbilLzLbGBVH9i6hvxUbAbRBwCh3B6AOQcpKUkaDzvdQWl7i5yDrGBpTZClCAIOyRBH3VrBJg8RkR2q68Ua/kXXHir5zy20eFBuDnVqORvgqd6H1kXtZyTPgUeP4ZymCXAf53wU3VnTf+Fxqli1MsQ3C3nEY7yUsRBMHpPFAXcfX8Kk7JBAlBh0Ds30JZkx293okXqTG1A17/ptKe59Jb0FjvJa2WNJr9MSnRIAS0l/qMiZhesd4iTdI9yQtuGm9vUgYNixCMiZNWwN1WCKDxs+I/l4JRFEc7EnB182F4H8v2KPNf/whFKZl47mendjR8gri2gS2Yk77OBT1dErXrNVvkK57+HUN7wiFxgG1phsgWyK1FTmDdRhW4QyJK3DAwtTjODhYg573jwxt3C6TnaCguWrmuXegNONBlPcW4k/WWyUQJbywCnd2UEkRuOOikcjrDqAkN44ZN289QPeD4GJhCUBhEcPzwMYPKqGP1SBGzWH5hYVwp1rwnWstfnXg1wjUBCI2knTe179VFrTJfIV1I1tQKoAoGVgbz0+DysMhoAX+/tUxPDhG6BaUzy3mzGwcbO/CqKR4FCf9d/xv/ykgNWzYMLhcUQTlfox/e9ACmD+uI6JFfagadGcrlaQihS51fe4oLuhAHE7c+TPU+4jZDTGDQ1yILfobMSwpHg6fHVZNCwyqbnwx+BLG1h7HjfvfR/9XAVSG3fwtVY1oLK9BenFO1E4xMSobajDr+IWsXOj3d0d8RloUbI5OfDF7KvYOL8b9Wh4zxhRLrykvE9HOjDhSVNaTl5XCvQM3N05DdWsWHpjDYeLI6UhIHaF4z+gijhxymk2oSR0Ap7Lg8IFqWIYJ7cv2KKTh2+ffhzGFIU21cLAVrUMrXKVe1HIZkZh2yn5u4cJ5xmoHtr18SPH3lFGsMZqkkhTTJBIRtvj6ZKcTF0kgH0rdmQxNbR2DeGzJcNz35dGg9UZQOiA8GxlNEZ523bLSwCXNqzG3axeqL1uD3MT0E4IoCtG3jpnHantw0FyB72L34KaEX4LbH3l/+DyR540OZUSKBarOEIH/ndQzscE2EUXbD6J+MBk3+edi+RBt3/LPGd4aXh5bghXnL8TsFC6qlpeYmZXGEJPf8GP+/iE8BGVNGoFBF97ttoZlpXW41JQknWu+n4xs5Vp6QbmOYBmcTjtlcinc2lgcW/U2qpyxaB54BRZtHBq8PXD5+2DRGKVrGwoVcMFrQOZk+JCImNKdSPJZ2XWg7Fg48KIR2N5xBD6vmwFy4gau7avA9gln4oa9n0t2I2Ra7dTUMBBlHBhATF8f+mJi4DKZUP7AA0ju6GTnRbPgLGmj0eNLjdSxo3Jb1niJv9fn1QkgSgbOyFMw9pmn8GH5X6QuOfpen7wf8+96EQVZo9g1o02ZvGR2JGY4GkxZeOMneTjs1KLsa8reA9q4XdCnfgiuhwffw2GcLRcWJjmjDDV4mBva0PzAs0NaHTEpleYmVhbr7hpAZVktCoZNxbxF62BvqsTTNdGdSOjVnu7oxI2re9Dg5uG5dBhyR2ZDhUp2TkiANdwihieA6OdhVHFwrakBd1M2nt7xhMJYW9xIkkK7CKKEv1UxSZd89YvgY1RRwRo9m91XhAPldZgxPbrNmaq1H88VCxv7/wkg9dRTT+HWW2/F448/jlGjRkVwpGJjY/9Vx/djhAXdHIfXiSCKgsfh9W9h+vnzIyZZSp02HfGC14Yp/geAVFU2xndOwN6EPaIYNntcRF5iJ+z8iR4tpZtQtWsT3jyiR0A3DLmqFpa5oZStmLaluH+0DzFrv2ZlgfCbf92nGxUAsXjGMoyePyFqfTzWnUTKMuzflJULb4MlcOQIxJAZINqS4jBt2gjYZYuqWCbat+0gfrmhDRqjHzkeZVkp3DuwpO8o20UequBxmPtUYWQq19qSgynan04ui8eUqlnQmReibK8L5dxWqcR2MtKw/RQ6tOTGwGJQvqYrRn3S0my0oMxUwthkGM/KgHN1g2B4DB5rjV5mBUIlqf32Yfjz2ACwZg342FCXn2/gG3hdxC9LU2RJonF5+ne1SLYRXRlauGfbgQEfYNLAnx40x5ZzKT69MXSNmWbOjcD5r7F/0yJH3BGbzoU0tCLN2wAYTmw3RR2F6h41TH4TBtTCWKLo0vUif+ZI7KjYCUO/Vbo/vIYBTL+2CL5WDbZ9fFyRpS1MicFz/lCJm0567zEeDT2xcGj1uPfTzYi1ZWJOSSE2F807IfeP+IHT4oDjZbXIH5aNrMKsIfludI7FsUFB1+mVxSpouzMxrLUHiOIhKJZ9Wqu+BH/gJcV7E0ho62pAdhCckvp+VLmOPg00Bg8DVZSNarJPk8q8emsAnoFv0O4+FDpun56BkKmJtXB4jbDpPYhZ9gww8rzgONiJPB74Ox5j3KYdCZujAq+33lzDurVqYmpYgwXdX/xCDqW5ZyGpOZ3ZjXSZ4vDC/Pnoff41TNy5S5oZDk0cCbu+HSq9n805pvRx0r3Rixh8htMkbTMCDKtxGsbp1OgrtDDRXhpfEVn8QACV1YciTKTpsS/VopB4CQfRJDcwdlIWqio+hLngN/B5YqExhkq/BMhKu4/jQEIqZqNJUSr2ERW9ikPREFZHZUcOSNnxI5bhWJc4W+A2bS7FAzk+LLl8Ggq+eweVWXNZwws7u74uqH0t8GvsTBm+y6JGrMvHstjUYPTk+aPZJpmM7EU+Z+hYAbM62Kk50I2mtYcR5/BLCuriOaF5Tt8UubenqsWnqtMl7l00sEbzUKfPctINZDQx0B8kkDr99NPZd/K8k4dYp/RTuvbH+LdEtKxHNENiMWUd8Adgtqcy/zixkaNhcxqm3DAFN2pT8e4X78KpcTItmOVnLJeyBvLdTLRdsDzWP3wt9h4m2xUO83gecyzb8UHyUoX+EQVlex49oEHrwrsZ2Xtx7U7hB4EAGnYekIEo9qlQvuUD9hXuvk6Rl5WOTSBBNuraimGcKFrEBelOYF3CHHiOeKBHCzQ5B6GaTOWASL++zPlWdO0UyL3hZSX55Gfw9kmpeHZ0PI+1r/wOOoMRacXDJb5Nwjkz0PbJpqAuT1CSgLNAZ1rIChDRSmwnIw2fDGwxY+AoXVDF9hiknEJpNlrQJHWvaQDms+IQ7/TD0TcIV6WbTW10fm5dMRNpCWq4v3wXcNRDpY5DwN8DSmFojQnKLElYWp+NBcegBKJa9RyeKAkKhJK2WbQJsX5HlNmXBwa6cbDHjq+bC6TyFJU9Rsk6/uTRUtWEpmNN6EU/vtuxgV3HJRDsUKpjqqVjHZU0CpPOm4VX1v0Z6a4UNBpbce38n2NUocD+KpyUEpGlFUvcq4+34b3XP8Li+rVsvJRnOLEtvyvSPmWIIE5S/wMPwk4O9yoVeoJZpWh8N2deQ+QirgKennEGAv257D7LknkISmFNR1bRWVAd/F1ktpO0uYLPCeXusJ5KjoPuqr+i93gLHO+/BLc+VsGVI1BN96PfS/dnP+um7I6Nh7vTiEPHheNg93SPHcNl44C9P1S4sfliXGk+gn90d+LCeE8w06NCxbEpDEQR6N2TsEd2ODycBV+hFXcxccllI1Ix3mmGc9dumewtMGrPQeQtbYXGGGCiuBpXu7TRIMubfdxIHEc24tGDLsQxcJV8XI3+VBO64rVwtKsRqFMCiADHw2ZPg6o61AkpfA4uQtcrmnaSCIShCUATVsKnoDE9qOrC7YW34JmKF1ipmEDUPd6fYV2pJmrnpyfWgq9/8ygb29RlJ4Io9nqcCo9Wa5B6cB96VK8hvfZbqFWj0RqfBEs32ewIs5bT9lPEO8costi0uaHNjnvAhy/aAzir1BUszQFjjGqWjfLUbGayL9Y1PP7IAS8vUWH9GJUik16migRi9Pg7Yx5GdFXhiC0H3aRRGybpQo9HFKVGbCATuzuR0daChmQ7OmwJjGLyPwGkyBrmx/jvRLSsRzgBVd7ZRyCjt/4nOLLyS+hjB+FxGjD3kl+zRd9Q5kF+y1xotG74vAYYXPaorvfhICY8EyWCKOFgOKicA0iwtuNudUj/SOFDxoGl38e3liPJ7WA3f4ebaTZEfQ9527cI6sj+Y6xJg/2UwSByuX4kRsXmw1FwDPfVpqJfI2RFmbJ1zQjsb6rB6YXKdDe91lAqu2KmQJz8SnfsweG/Ri7kq196WjpHSVNG4wXvOzDMFcp5lImiYF2EYVwimpy2l+3FyNF5p9R5NRTYom4q9cGDWLR5MyOL8ioVs8ZYtOlTxIzJRNoJSrNiJ1Y0Lo04SZGsBZO2SNYC6UY8mpaMs3KE89ZQ3i0B2IDPKZH82/vceLhUliUJtwwJqo6Ll7verBK6t2Q7Yr8m/pQmxD7KdLRQuSV4XsGxxzk+PVNJl8faV7/GsV1EPKalh3SjUuA2Cd6eEzon4LbTb2MZWfEYTwRgh8rS0vEuMBO2FEBUv8GH7aM6JRwS7VyEX0+J8yLL2PKjpmDDWyGjWBGMn35vYUTpV7T9oEWT7rNl8XaE5fdOnO1MnsjkF6kPk8p3xImizJOYmku9+gxoJ58N4qOb5p2N2g37gA1hWnWcCvMvvhb7SvLxfEM3TE4Hfv7Ws7Jj5Nkck3pHfsRtr4YaLzZrkNLShrjTH4IrfyI6OlTYtPELSTctPEkmesYV9tuQu7kbmz7bifE8zxoiJMHTwR6poSR1ogO+LOKAZrHzaPIb0Uvaa1wMA1DsNXmg9D03LFmXMn5WfSIUDSG0+G8b2YWZvn5WTn1lMYeAioMqwOPaNQEkLKY0zYkbaMTSsnnQynz2yG+vXx+Sj6Brcs7Yx7DdOwxTE6Ygy1GPxn1atNI8akRE52fyrbegp3Q/9INeuHUaQZMubO4hyyFPk/Dag+pa6s+FpVvutcAjput1qPwPUu6e4eOBOA1uO3KcEeBps7MvHqjO1OPdrAykdg7Cs6aGZaIIRIkXlDJI134ZQGkuh54YNe5KvZmNOT7XhRdMXiwcEEp3rNvX6MXTl47D+Oz58La1o+HgXli3v47veq+TOLZzrS8j30hehzHSBvLMLevx67f/IpV1f7PiGuRO+7/5//7HgNScOYJB5o/xnw9a/JkGziu/l5Szwwmo4Z19Gv0o8IEcTDo9CYWTitjvEtiqerccS8ykJmwBr+NR+l454lOFCS5SsyQEYuTRUrpVadVAwXEY5q7CB4YzMXPBhchTt+Hqz7oUPmR0M1MaPsnTx/gK7vGjgA/CO+yGzrrRQpytU4Ez6VCvBTK9QJZPh61fHUP/KEFwMxQq+D0JQwLEaDtFedBjy4RhOPJamIijeGzBczQp9UY2KZJKMXGiJpbZhIkimhI8Arjv4B1wVfQpMhQnAjfhIeo5dRp1GFWQjpz6CnRbExg3LKa/Vzpf0RZ9uRZUNC6NxcdH2nDoVZiUFrL8oPKS1jAKam0Oy0ZRVooaH2gxiFbqEAny4R2Cmf0BGPs2wNz9mrQj7o//KXKNsgmRtHGidGB2q6PwwEjUNCxDS5koEUQJf8kx022PvgsBtYf9TaY6emk1KtANMyGWh9bZJWUJek2+CNJ6+LmQh1x4NPQHAXQerY/Kd9M7LQowRCCKVMVF249kVTf62g4AyeqI4xwKLB6v7UGN4+eYF/tnqLgArGQOnupmIISZbDtfBxy3sNejMWpfPA/cd1vYe0tXhuMRO2Uy7jt6HPHdnZi6b2uErha7Tu3VMHB6eHVd8JpE+QkrRvhqoeG8wOr7Ybjgr1DFhfiIFq8lIklG7210J+JMl05oijAmodE+HeXFF0uaSsOOrURBzEfC8akArboPJTPGso1GT2k7yr/ulTo1CUTN9A1HO2dAZ/Us9LeNwLTrtPhT+wNM7yl2QMOurdvEw94ZYJy0MceBFhvHOgYZ4T9aJjAsqOw9vG2axPekeWFj3rsoS9nOHtO1LU47AzSjLUzJwOqyVjyxj4y9Izs/87rq0Pb8C2y8kLMs6aw5k82RorGBAMaOGoUHERo3dCrje3mkdvNotnHoig2w+zjGF8ey2K26SPGXHpMKzgwjkkclwzcuGX3fbkb/GuUgVfPAg2Xnw2abgKSyOPimDLL5Y8XFJXji/UOI9XHo1fC4Y3E6Rqk6YPHpEFOYhSxNDXDga2Tr90ocW0YRkXmSJvV04daVr0oWXgSm6HHS1RcLFl4/dCBFsWnTJrz88suoqqrCP/7xD6Z2/uabbyI3NxczZ8781x7lj6GIzK5ejKzqQk1sMnJ629hjeUSTLaAFrmjK+JCoYnUvS8eK0hX0fbRBjbovNp9S6VAM+5jpwOqNygWX53HWOWfgtmnz2E1DRMu21esUayCV5Sc+di+yhuVKkw2R5pXlPQyZdaOF+OMMrVQSolLWPYdcGLO+KmLioEl9mNmIT04AEE8mtSABWJmIY/g5oslVzA5IcgbMfsMJn+tbaM2nCW3HwcmS7Tx5SBkKw5ebTwhuhspciErfBJ7oK9r5ksLRCG/57qhZD5FLQ+WGfXUHoT3SB29JruTJSNo4rmwvkBTZ1UmZT7F0GJ+hOilBXt4hqPJ3IabrNclvLLQjvihUjqXJ8+zfovfTe9APPcwYROzC22HTu06aoaWgcl54VpDAlNpnZECqV6fHrsAg9G7PycsC0UjvxDuKkjWmMRHe1BHNzkWMcFFX4Q9USBieCW5NKCMl57stswlgiLwor/97HfxeAURdqF6PJzWvQv01D3wTeZxDgcXKqh5UuhaifnAc8g1bMSv2dZaZokwOCzoG2YImjIPhirLjjOVpOOY5gtO3bMUtb/8FHo0K64dnR8wTMWpg4KwyVLmfljSOLJUjUePKQt6ACmmeduD9q+DSaLE3cRrGdoxjnLa0ttloTN4kSSMQeLQPChsXikGDDeWs3ChmylUoL7oYU/QboEWn5L8pHr9hXDKwJg0Zg/FwqFywBoww8nrU+IVOXm9/PBL5cXhwugA+BoyDUgYvI2Yca5pJ6AsgoY8/qSK3PIh4PadquYQKCTzNrboQN3s2ITfQjgZLHSA0OrNxuTQ3EU+F6TxR52faiEK0nXtzyKeOSpkN7eiIMWF+50asT5gtdCMHArg/18d4d/QfjZvS9lJ8+dtbcc2XfoEPyQF/WaLGhVfORUFmNsv+17cI3XxDSYtorHoYCgRfSkVwKhRoJkDlEzp5B481QjMpT7F5DVdtH3vtTbAUZGISp1JybGXXjOaoxr1rYAqbiykbfyoA9gcBpD744ANcdtllWLFiBfPRGhwclMibpC1FPnw/xr8naAH926ur8dK8OyVhtJte/QDXywilJ5UtcDTC3FGJ/vDWdY6D5uPVQDwPoyZW8ltz8/1DatfYx8zC+BFvhsp7PI/xI9Ix7/Qzpd8ZqnyWH1Q2Fwm0scPy0F83GtygC2r3APTtgrdZeNt3V9kRVO3bh7fizAhwgm0MgaknRhiwiutnvBAqaVDWiwDbYwty4N+15XsBxGghijg2HTuKz196JmLxJsmCB2NDu7zjWQO46PRfYppxDDt/1LVH5TzKRMnT9/S7DcdLYT4BuDlR5mIope+Iz7X3DbR8cQsa23UwBZQddO26GDTvrkRN5ga8VPokOyarhYN77/kY9E9nujYaDx8hSTBUVyctMKTxFeNKQJ+xE7fNFdL60ToEayq3gD8U7uEWytqIdinOgeHYxl0jZBRJc/Drf2A8DgZNjguDi3j0z55WRJmrHgWYotwXcWOO2DOxsWgcVta5oao7gifzYrE0tpV5eUWYn4YJCIpGsax7MAgs5KDb7NZg+qFE5mnHeCEnsHOJJjxKC7Ll/vvQo/NhyrJs7PioVrqnx52XhwNdTuSqeKRa7czQ+4mz69h9lsR3CCBK5ChGOc6h5pe83uOodXej35CI4+7pmBHzN6V+mmxBizYO3Py3qGm6Dq5dsbjlbRfLFISPUbpYoxo7YC5MxqHjvxBAFFmKcPPxauHP2dxG3nfPHXsOl7R8gTqNCtUxNWgxtkLvSkF9w7Xgemewch4rY/qs6AwnQYdlykmGgrIbFuIikQK47DyIwB4fVsAcIKkCHqUuP9x8dNAaXu4Nv2YnUuQWg8b1gf2tSpTNQo2c/nik6Zth2vc7HExZiNwR+ezeGmoujetqRm84qABwxkVX4PLTFqKz3oGKQ00oHJkGW24iqqurWeej3Wpn2bPMLwPiJRBKcl8FkH5aFQJtQMu3bdCSZyBtXEcYGJiKJi0SGAg1bIgnjSyyVEYBRPEBPwL9JN6cF8r0+/rxlzdflubS0uLxeJaPB3/chRWFt+HZiueYA4coIULXTORfEpmdeFh0vFKcIoD9QQCpxx57jNnDXH755Vi1apX0PJkY089+jH9f1B2tEkyIZeTB344+X1KTFhed3JE21mkRwY3Z+wb6PrwdfYOp4FQvKRcWPgBTRyVmxU5Aau5PpE6sgRG+E4KNeQ++guGlm9B6YBtSRk9j4Co8hiqfyQm0tLDpYjPhNrcgMb8V2akV8PRpoY/1IWGYQMTc8ewT2LxrC5skf8LzaMwowcqlK6RyYWNSChZX7MT49gqoXv47kipKEbhxOZzUURK2I/5nxA3pPBRPmwWPyyVlpxhwueBSqCqOY2nOdEw/f82QxHDiRFE5T5mdUyGlKwDnEB040Sbk8MxFZlcfEp1u2P7wWySWCBpUYjCgWl2PbWufwWMZdsRZgT+uFXafFGuyJzOuBbbXwdzxFNvls/PD8TAkfgB/ZSFU/rjokgRD8IWGtU3Fir0PSSWYYSXDpJ21PHz6LiSmuqE6JJQ15OeEzp/cQJUyVdM0CSjSdLCX/QzzkY9qZHb2Yu7hagzodExNPq26nhmgysuj9rw0FE06jGO7AtK4rrCtxp7sGlTmPSARpekI7j7eDSNuRAJ6FH6KLIYwipVnaOSgm4A6jTHiSp3MzkW6dxeeiYKg8OiRgX68t3Ej+PJywUT43IXgtWmoHhzEinWHEfhWyO7S4kr3mHifdR36VshEneQ4hyr3zuQ4HC26GC2pM7C+9xeYZ/0zKzxJNiRRXoPGgMbYjS1b72ZnMqnNATW1DAeDjdG+AQzotOw65T3wADyxpE0knM9OxONVCCCKXQtOzfS4ChvLkDjQzLLOJHnQR+MeKpg9VthcNtZFRt2kty4djhK3Cvs+qmKXKMJ/kuD5OY8Aw4dHPX4R2BNtoLq6F/UfVrLnwzei0cq9JxSLjRLiuE7we3EFYiJI1ZymF0cGFmBD7y/Bv9WKTVyr1OkbbS71tuiiZjIz5syDp8oHzYdNGM4D5Ud3Y7O2THiPoIBlsccrlcfEIM+8pjvvh+WM56U14twGL6Z1+NB/dQkKEi0RmVtd2JykSRsPbdY04TMF/Bg88DYMtzw6ZPMUNSWsnXOOdP3fDkqIrNx+HLGDqYj1T0OfrEuVOgKJzE48LCohniqA/cEAqfLycsyePTvieer46umJ7Dz4Mf510WRJijDRJACxyduDdVv34snPmqW2YXFylcLRiINvPI6vmyeyKSbP8hUmJp4uLSwCURBILRRAFAV9Nx/VsS4r0acsWhB4igag5BFePgu3uxF5K7ylEYXMiBLQx3glEVFVe6oEooIHh/SGI8hqrEFdeg5Ufj/S21vZDZX16xvQHPAi8JiwMBgDOLWszSmGfKHU7tqL7vsfRp1sNzppiJLckATfYHngVA07o2UuaGGKmxXSoAoHqgG8iCKVwL8QJ6AuvZWBKJq81LoOCUSJQY/vP7MbpxVMQ1bSqe306LrKdWLoOz0OFwJtanqPXVc6sgttWrzXrVNkbSjLINqlCC/DYZsvB+lqB8ycl+Ue2t02eHf5oIvzQ5U8wIxr2559Tjp/8vLooqsXYvT8JjRXNKHMUI6/1K6HW1ccISpKC3grn4oEdCn8FAnoNPbZMCGYCT5RhoZC7ORkv9LtRqpDD4veGEFAppADRvHePX1YMb548UVFOXrzlrXY15KAg3G5SHQ7kObsQJMlUWG5xL5GjhPKeXISOqfGnr44pDtcEYA4nOROC2tJxSrEXbEEORPuhCruV5E2JKQd5W7GgKtGyt7Rv0VgRAbCVK4l2xYxjL4A/LfejZTpk6FOsKCj5iA8Th10Fg9akBZJjObUeMs5E9lNVbjFU48XSjiWhRo1qMKiIB+Kxsw3Jh/OGJ3KPteoiXZs2d+Cv3xShjnuEKGZ5DsmJk1CpjVhyK5kmuPoa3h+HDInJJ9UPy/8nhQXcZovCZDJ/R3FkAv9qjUuOGNb2Lwn9JzycMZWoAdWAUQN0ekbPpdGmw/oMWe0MWkJugcltX5xPARFSlNnL40EYXT7WMi1RHk9Utw8EgdVMEQpf2vDjsHXtAf9XcehMichMNAB+z2/VoAcqmD1+QPgtTpwXg8641Mirn+jIQX7THrMHFQzGkC9TUkZoI5AIrP/puAOjBq36L8Cov5pIEWeSpWVlcjJEcoqYmzevJn57/0Y/74oKMqACuWSijIFTRPP1j4BTtMHdewyBByT2E0a7mdH7t9imzhFlfMgWlzVuOC8n6DzyRfAD3RBnVgccfN0+t2o/+YQsidmIS075EF3KkE3y1CK1tHsbpiInjqSv06T81DE9ryGajSm5+CpDBsmvPQbrOlR47YNLRi54Ws8LZscxB2x5cEHkDovUnfr+wbrfPT6UPH0M6EdXSCApgceiFqSE3WVqDSwJkrWKtynj4DRiSYGBhDyEtC77zvEjpuDuPFEMQ2d98baFny7sgoqXi/xL2ZXLUd93FGsH+NgE9BPY34KviyYAaASCU+EbFnJEjysfb9BxcEXoQnPzgwRVdUkgxD2JC88P9pmlxZgEURRTLV4Mczgh33Y75CfMJadk60yu5TQy3DoDRhgVnvZuLf0OdEwXQfHJX5BtS8AWFeqYd6qjloepcwUfY3DRExpnI39VQ24uzcAh8x0m0pKKWgOPgqgq60Cm1q90uJ3kfpneEL3V1ZyCM/QyLWzqKxHi3V7gxrbP26VXn/kpYVQj4hjXUe0q5cvrOwdg/du/oq8SIFXDjizcQdSHe2SXyTNBQSGazqmhBZXmfAmZaKIH3OP56dYtbKOqauHb7KGIrlPTQ/AnE0+hXERWRw5EBaV/gl0ihciYAO7LtZ31OACHOso/e2Y8/FVmRkjdr2P+Z3fBRsaCpA1oRn5ljokJbejPT40x1AWKtUpWFl11mTjo+ufRvNAH/bv7mfemiTGS12xi1wxiCFyTzBSrQYc0/tRpvMzTSLKWrnUgqzJqXYln4p+XrSQ66PRVEslQ8p2iSEX+qWx7DKWsaYH4utRqZlXuaFmmlWq7yWmGy0r5j4euhejqvXzPOq/bkDimEsxWPqWYgzwrq6IJhn6PKxRZIiIkx0DzcNPflkGe18HWmIScVv2ZBAbjIIoQaK1CwpGw9BSC6urn82jvLxqwAcQ66asZaxgXdXmkACnGN2xaqTNXgTt9/Sd/K8DqWuuuQY33XQTXntNkMlvampiljG33XYb7r///n/9Uf4YUtj0Pcym5I0jy6UW5UtLVmGdqgcOv4qp4vr6i9huXu5nRxP8gbamCEG5Ab8T7mwb2y3QohNwtipunh3eLjT3W8B97cCerw8gf7YJSy6ZpixFJJqjlnzkN4uYRiZJ/xOR4ukGIYu38AWdJuehiO3XzZ+FF0aXBBelVNz2lJDFaLISEV1ZQ9f5/LCMF3SfTjlO0KHVUrYvalqcDIkz7YLeGsXJdJXCffrofGnjY2n5itj5k5YOgVPvl7+D73dfsB2/k1uFnlvPQc7VTysnqUSw3a7RJXB9aMRQmzVxtHpiVRi36HSoyoVFnMYMkXaZsjJlEoKWIXEa+ny8IjtzIrHNriF0YrplF0LMXKi6wbJIlL2IswVQEhMHW/D1mCBqEChI5xY8YlVuNgSW8utgie+FY45NWLuFDwjHxX4Yjqig7iFWbgBdhw5hsKNNkX0QMnUCeftGzoXVE83Yl0d6XH78DC+zbBQbXgEVWtviFEBnlX8eNrnH4NMVqUjIDJWJ5Ne4qD4G0w8lBAe3IAvBumdJ0LisEfu8nZKVT45L8E+Th9HPo7khEEmkDwRQ2FaLWZV7pc5A+k4t8Db/TwFZZ6wovEmm0EvfbkITL/wsfJNF17Le1A3L98iIhgNh+k6PZ0zfyACV+LOB6Tx05Tw8pRbcMO8mdJjiYfY5MbfjO5m4Ko+6XSmYd7QW7/puwvOXXI3PZ84XGkgODyLWowYxa+g8aHt9yNYUYffgG5JunHh+HW3jUHekS8rAXscZWRaqVOcLecb5+vHO9+hK/r4h10cT3gDYsvoYqvwuTM1NwNiUWIXQr8k1gEkHdmPPxAnw6j3s+k7cvQfOK34GkMrQKYjpKkRaZVmx8O5Ya8DEeFAGV0jt3W00MWK9LnsmNCkjEDNbhZZ772DXhHf3sCoF8Zw4lVoChSeqTFDQ+5P5NpuHDXFoNwizmDjmTPCE5qdgdGYPQ/aEKZhcdQg780ZI/N855aXId2Ww3/HDjwfK/4TehKtg6f5bMM+ogjP+KuYz+t+MfwpI3XXXXQgEAkyQc2BggJX5yCiVgNQNN9zwrz/KH0OxAM3K2IYRiUfRNpCIZFMH4g09ONimh8Mf0lPx+6ySsKQ4wcf3xOIsWpo5M9vFUVs+E1BMLEbc5HRpJ+Hvs6JndTm6+prRrC2Q6vf0/fjGATTNaMemttAuOloZkTIidLNotU4YjX1wuWLYY/JcEzNT0UjxU8/LQXzBT+EPFKC29jHFbteeNgszJ20Klfd4HjMnzcCUyROj7va64zyKGrqfA15ZosJlJjdOmRm19w00rXkUVcZ05Lkakbb4fkXnU0s8B1MYWKP3abVxktlOhPp0FC2hcJ8++QTfN7hOtmhxqDg2FQP1cTj9w2+ksgl9H3jhE7RMOweffro2dDAcWKlANxgPdUDPeEjU1iyCudGpWXhyGZjyNq/tAD9QhJuK/oa8pAPoqX4sCKLECMDlqsUX9dtOCAqLc20ROjFUerkgV4SFYIDQtEUN60qaMDlWAnJcEoBxesgEOtHlYFZCxAFkjQOBAK47+hnOf+g6JBUUwIpr0NX4OdDytPKaqYHu3HRYjgyg3RLAl6++FMo+XHYpcjPs2PCWPwTgeeDMXU7kdu5Dtm0fJuQS8UjIADTtmAfNmYkI8PWKt2jk43HMOA7TrAkR19jkUjOPRflqSos+yURQd+MZewZQmapj+lwkPPr5yDyFgv6oQTWzx6j7uAUWYwGc1kqB08IW2d1I6+2IGKZE6I7rbgOgrBK49Soc4Xxw6VTAoGyMBjdZ29q+lI57wekcrv2KYxuBk/FNRCDsHbDB40yGztKGfl0PttSvwYi00xmg6mvch9bLboO6i0dFop2BKIo4r0MpIsnGKce4U0avG7eu/CvO8xYhlYtDktuP1d6eEKfRrEJ//RYZiAqd30HXUmx4q0bhQ7rYFYNbLh+Notw4BhrrDh045aaTcBX5Uwm5PhrFo3F+fNXTD+7jI+zps2dl486CdDy2eDjuX1PGSrP5VVVIbW6GM8bCMqwmlwtZ2fkwXppxUjHdE5mSh3fHmnkDFlUMwLr3M0lIxDH+bJizhNcc1MXBZ8uF9d5H4XjiAQaqvfXbkHDJVJgL0qDKHg5NxqllfarD7LXkY86u6lVcg6P2bGwsGitkovKsmHr8MJKcPYhzObG4PwdmGBiI+m3qO2g3GuGOmQePcQzUvlb4NSlMhf2/IcL5fwJSpFq+ZcsWXH/99bj99ttZic/pdKKkpAQWS3Tvnh/jXxe0ANEsT+CJvihowJJ7u1yMT9yBcRqHNFHqkAit5TyoNGkSLyrga4Lfa1LU+Il02rHuEbTasoHiqwFVSNqQwFTZ0Wbc/V19RClCXkakjElyyjGJ60T3TUXFVPa8vMQX3vXVp+KDWa4LMTV2LpxtFbAkF8KcJCywU26/B+nbt6Jp106kTZqMjKlKN3j5bo/Ow7rRalbCIm0X0njpsapxzxCt5xHhaMTKXWtw25R3hdZhMsXd9TwukXU+ZeaPxVNL1Lj6S78E1l5dosZd+WMiRPdOpCU0lGJ9W90h1HTLd/48Cgq3o7VmlIJ7wq5NgEP9/m8jPwcnKDdrfHpMvCAdU0t+oygpauN2w1zwNANZlLFKSHoQY1UjsE/u1sqOh0N7cx8e3n1iUEhjYN6kdLyytw5xARV6VAH8dHyWImtJ2aK4dzRSOpI+Cz1WX8NJigdUblpcswPjW8qY5liqs4MJuKb6roaZjSErTPqlQAsJPcpKEgEVjth/Aa9FjcFespCRgdM33sBZWQ7w/CNhp4jDhO5aOAYs2Nl2HmxdpfB2q+AdaMGMFQQYlS3n4abK8mvMZDAiVZOY1pZaFcNAN6nFE5AiD4h+Dcc2Io+/tx3Jgz1Y6E6GSiUsCgZXKnTeeMy9MAGDN/8S5gHBODYiomSP5KW3Z2ZzzHSb/CLF4zeb+/Dw2tC1/HYMh9I8Dd4Y9QzsxWNPWFameainahZadl8azIkF8F3eKpQ1Pw8V9xsGrhd3pjMQRUGAQZQlIZHIcKNhukZMxiNYzhnZ2AJ1Uix2d61lXn2M07hoPGL+PgvdTpqPRkec356acnjdxyIyVQXGcdLYOxVB45MBlBNl4uUZoCM6XgBR4vsA+HRTLWK/aUW6m8Nby0rAxeYC215h4Im+5NeyxG4/oc9pOMc0nEdF7gQkrJs3Kh72oslw792Hvl98Kkkt0P/j9q1GIGkG6lVW7KdSwLsV4DgbZj33PvIS+qAf2AHNxtuB6uhSH2I0h50Ts04dfdzoVIiPjZeugVNnCIEodlAcduaPwKubmpDv0sEAPWrnA/fV3c88GNUko0DrliaefYkf3Ey6d//F+N5ASq1WY9GiRTh69Cji4uIYgPox/nNBZRV56pwKMP/o1rGyHmUH7i4mG4tYJGYXIyUjCzubd7KJksTWspqdUGvSpdIYgSm1NgMavUpBOt35m2dxcFim0JLseFUqS1DQztgbaxpytyFOLBaLF4WFO+S8cPaYnqdw1h5E//E9MOdPgCV7FLvx5YTbpdDiDhjBQY9urg49SzjUppsQKNuOncF2WW7LtxH8BkV7sM8KT8sydKd+xATmTtR6Ho182tRWhVsLb5V1EalwW+EtiKv8BuOHLZa6d2b/4hHckPcQkrv8aItX44bFDyne41SMh4ea4HXWQaA7rK2Z4zEQZ4gg8vIqHq6sTPAV1RFdQMXn2TB77LSIyVjKpASBCH2nx39KuBsVdVNQWLRD0uqpqJiCwb7GCCVmsoZoPVKDxCIb2wHTBK/f2I4VMDBuCnFU9Jva4TzdLb2/wMkJG0QBXtGlKHYBEXhiCvhhgEHIGBiQk/YkapqETjECUS17LoXPFY9AgHzLwmUVCBH1SJlO2QjGcs27MKELn3lPQ1lXIjQDfYLBd3/XSc2G5dfYpzFGFQ8lwVJhHIH5mMm1eGL7ynBF/ZtsUSD2Fy+751Q+PeJTCmG+564QmVi8sfjo2aPw0hvJFxAl4HDHMPR64tnxu/mWCIDfEcOjpTgBmSch7fpcNrTsuUy2KBP/7iLUx5WxsjGNocmz35JIzHT9RFmSfo0F3yXOwbzOjULaj6QQGtqZRIJ4jROvnQ3DsGyc5isROh/NKgai6PfJT1EUbg2dXR6NcEbNVKm11Gxgi6oHF63p5EQA5fPKthNm4uUZoFI9Dy4ovRU6TqDBxCHNBdZdSJ3VvhNIJ5yIpxWNYyryqD519YfMfIMl5HOM9O7hJKkA+p2d2K8NJUHoNTd91ozey+IxfeMDJ5T6GKpRIjNeKZMixoAnAKvVxmgeVKFwmCwKTpQoZeMx2GAmYEf3R3o6ulp62WVV+7th6XqNlfMYPzGKvt3/TGlv5MiRTIiTxDd/jP98EOGXuCpUZjEaszHSz7HsRlH1dljX3KMQCswqXoQFpTwTW3NYjdg3NoLFDd9gaDLtOngQB9MTZTwkmoy+BsfpwGlSUTA3BaNHpEP1WbliHYz198PYUYW+OJ5NSmpNZ9QOMI2mCw1v34m0Y3+Ghda074CGop9DfdZD0s2YBA63wRC65XnA90UN7va14qz6NxR+d9H4Dcr24Pno8JyPfW37MC55HPNQC4+hyKcH+QTwYTMhdRHdVfY1uMMvSCWtf8Z4+ObxN7MshvjzcJ8+8vBKPns6ktJG41iNUgqPQE17IAPlC7pQvK42SOTlYbrlHBSNPx3PlV6L2R35SEQvOhCLjYnH8YvJv4DFHDkhD5UtazS60dpaiO7uNKk0S4tnXmI6xjbNx+TapSx7RcvZWKMKCZVetHA72SLSE6tnk7Fd1Ylhqmb0BFLRH0hUEGWHEp6UZ1WG6kSi55UZg3jMWP4pjPENWP+6g4Goocys6d8acwe+S1mFWVUXSWrSm/LexfmDPbD4eSzlv0FTYBoGyJoimK1YnpCIaTl+1LUdQ1ZykaKDkTYfMTW1eLTwZtxf8SLL/GpMcyMyI1TWo8P5cqKZZaNELR4SUV31yu9kZEFlKVDkxljCyMQU4r/9cTy6urdF7Z4TgzSlfndhMvIzZgW5UbqTAvyhghbxcOaynH9Hr9lscKNQdv0W1+/GkiuWomvKPHZfWnxXMpCk2rMPvU89I40BusaWKYJ5egz0wr1dHQRd9JzWg4WpFcwEWQRTX805B+841bgoSpeD10WCjkNLU4SX9IYCKNQsEa0pQJ6Jl8sozDnegd+/t18BXehPMwaEMSGCnvTvKZ0gxqCBi8pFbOD8uK28IcLMd3ZeWtR7TrN0AvCVslxMn//Nj7ZhhvnEUh9DNUp8+MtpJ8ziEleWaB5lbR34vKFPMVKJG5c5EHyGA5Iz0vGgLjR/GpwbwddmwOObMKS+3f+MjhTxoR599FFMmDABZrOynzc2VvA5+zH+fUGTpSgWSLed3ecH1kbuHhIs6xhHiDAN+U1JICsYhJcqXC6oHAakogv9jspoLXPw9n/Ons+w3xAhCjey7yjmdX6Hb1/gsS4IRAqnE2AJ18JVAR0uBqJEV3f6To+37cuDVWdG96AN1JdI7kryoMdF/sEIbsVQ/AaxPfhkJO8TcZPiOD04fjCyi8TlhEOrLGl9H+PhQx2H8OLeFxXHRD8Tffok+wnvO1jsvxLZzvNQa/yApS/o8lVWToHHY8aBpOnI+s3PkK4ZgKVgPCzZQrnjwfw8jO14jS3UtKebl3/VkMc2VLZsbMkMHN5Yw96HvgwDdsT3FqLyWw5TcbYsE8HhgItHipZnmSnaicf+fAxKjN9gTuwfWSYkwHP4ru+XsCZPPyWQdLJOpGgZgy3vNqPoGgMcgT5JXYBAiNq0AN6BryWu1vaRnRihB46m7EBdXJnC36y+WQO738+OOV7VB5cqXspWUJmsIpjhqWhVSR2Mcu2lQpUKn957CxoWj8T+o/0K6xxOHYPFV4+APc+K84wqxumgTBTxOqLxdsRSoEYTo+DGyFvsxceshLd16O65UKgwMX8UDAbjiaU4TiFjG61RROTfyQFZ3AWTTgASjMJ9O2I0khctPjGQoEYP0XWdwFBcK3LM3ajkU7F86ovojYmHxemQXA5OphVn1MRAa8iChmUPlUGfLdyDhjJerIkiSib+8wPNODMovSDPTE0en47zO3vxwbdVEpwvMRmR1hNJHg+/rqcSrT4fI9MTn04u8aB3uSLsXGgeqI2Nw4go95xmThG4NR1h15LHMS42wng+XOpjKC7UgCdw0iwuUTymWK14ztzJgJ4/OGLvOTKIlEFeQW5fZl2Gsf4EHC/bikZVIR4tN0HNe6K+7v8MkDrjjDPY97PPPluyGKEQd/TEo/ox/sMRFApsUatRp9Ugy+tji4LnyC6pq4xMO4eVr0QZ858SujC+MnrwzKp9uIjsJLR/RZJXAw6TI7r7WPA81r7yO+gMRpxRPByz75qH8uMN2PPMn5U8FAZEXlOUIMUJ3lNWK4EoMeixoesxPDNbz3gc5Y3T4Q9aVYpBj4+p9SgK41acSFTzVEjeQ3GTGqsqYTZaMKdiP74rHCN1kcw6tg812qaTeqZFC/H3rl57dcQxPT3racmnj+xlhAMBqmtLEXfX50iJ1cKXxEPTzsHmLYf1lVsEwnWYpATxuibs/Lv0kMDUhJ1vANNvjypCONRiWmgvZPc3pd85n1bSuQmedeX5Ip6PXwBS9EDnaMRc65/Y4kNBwGRu7J/Aqa5XZAbCQZJbq2GgIlzbJ3yRETMG1P4ukoqJx/fs5hfQPL4Kc6ouxLDWaewwtww/jLrYRgmc0rnlSGqM5xl4EhXm2S7YK9iB0LWe9cuHEJM3lh3HUB1qsf5hEVY7A4+/gMnrvoXt0kCEdU7BhBT2a1REkRNjhyrrLrluJlIL0xWlHTkXhTrQ2hoOoKbz5N1z4v0XrtR+omyq2Clat68O6155KyJjO21GKrZtbhbzw5LtEa27P7NdEOLgnQJIGOp3FN2hMjkHmr9izrgP/bZJ6G0VshFOixVrZ5+DRRs/YddzKK24k8kT6GmePLYSZYUXBctHfhRXrEKh6f6ILIslAPz943L8dvVR3HtBmG4fgBcWDsflo9Oxq8WBxDYPmkmZPorI5/eN3oYy2Gr2otPgw8vaBIXEw81xPqBTuWGmz2BB75DCofKmHxGQVanicLcvZDwfTerD4a8eMvM0LT/hhB6mYlySloC58THS5iJ5PB+hwXXw9Yfw9Ve7ghKrm7FywXgEFtwsvC512FLGMkpX9Q8aSK1fT32ZP8YPKuLz8WGMBQ8n2KRd2YOdPVhaMkmRzk1r2Yb4nnJwz7+Ky9dWoZdxezvxuOZVweMsStpcETyP1S89LU2oecl27BmiCyZzhLIESZO403uQlfPkYIr+2mVUSzyOOzuG4blBLe7gDGxSJhD1DNyo1ZiwnrgVHd8xMHUyUc1TIXlHW8S8tiS8+8Ua9hx5jWd2taHHYEaMqw8VsVvhMrpOvQwSJp0w1DHRMUTLDJEhqpsUzvs1GPBqGSHX5O1Hqs8fJFyHxSkqb5/KYkrp94JkE2p2HsWmtVHGgnj8JFnBpIWFhUmramL7Y3n4BgDP+i+gm7o0IqNCX+Hl1VmXXImUvMIIUCVmDPyeg/D2h0pnlHmibAiRnjfmv4efnX8BYhNMeOVbgSMoglM6p2POfgUPDrbj4dLfCuARHB7s7GYbDwStKNLGnyaBidY2srwK3+MHULX7c/jUHBN7DVejL5kx+YREYXlE4+3MuvgK6E2kleSkLRD7PaXKOzCvaxMmxh9E8aLIY6N7LpwCEGF3E4xo2VQ5UZ2Gk60oFV3lcez6fLjyDTSlFiOhsgMLYzUMRJvVHKY5zsQHtS3QO73weXahb0bH/0lSIGo2+eaDCmHQPLcHqtYj0tU5OHwi6jILsSojBgVZWRHvH02egB5TKY4WbSrT9n75FdKatiK+8wgzP6ZMPm1CqStSnmURuyvFbNDKd45KZT454CXJA/qicE5M/14in9Gi9qNHkVn6PIaDx2Ydh7t8V+M9laAhd/64NMTo2mHpekPGI/LD0vU6PINXsI1MNNAqNv1Q+fLSd/ewdYHiPf88bAmcWOpDb58Ed8syRjkgEHXXUjvqBw6C01CDif2UskW0sZA2FwYhoydGX80hCUQJl4zDlm/34ppFzYg5vveEvpc/aCA1Z86cf/2R/Bj/p2jRqPFwYgK7oSkITD2cGI/p6ZEllNz7fo0jOUno5arY7+aqWhTpWzFt3jTpCXy+6tMoZYdQ5uniR58TgAhCkgocNyBlibqQgCpYkAc9kxwgYjlxosTyHr3y0UILBvXqMB7HTCRBxXYmXzZ04auvBKXs8tgSrDh/IWancFH5DfI4FZJ3+CLG6/Rw27MVNQvzoAtXLD0Th/yHsG/TOxhRG0ArI5UP7Zk2lLktcdbCj8mmAQp0Ptwz8SY8sfslBY+qI8ChOyE2xFsLepQVDOUnFVYCOZHytjyilib3voHYz25Cns+GzXhFIRAo2m+Iu9dslQqZwd29OtOvOIae4yY077ICn74AqF6MMGOOVl7d+PbrwWPnsCisoYDAhTcKqVgAHQIw9Sb3Is9eHL10VXg2qLg7veDMEHik0niYcrdScFIZ9NE2fLYB3uHZjChNYq/hPK/vI+hYkenEP+Y2wNKvQqLDAH7l3wSfyeCGJXHCLAUXhb6tj58Ju0WDIr4srBqvYsApnAJwqkK54Rk4upSZs5vR12DGnsypLOvzp5ZuqGZb8PCOZiysbGQq2EZVAoqdGWh31zNA+318LE81mzx23jvQ9Fthi9WDevdo8SUitVgaolnkwQkjMS5Npqd1AnkC8WTS886vP1NkGAk80Zf8ui632xlYWr29Hu6P6iV+En0/bUCDY9U92OhtH5KQ/s+KfMozUQSiBvzx6PGlIk7TjKc0r2K7vwR1SMHH+5pwxewSlLTUofDYWvQaYxDLNoB1UTd9BByp8YM4i6RBRYK59/qVJbkbl81BwsisIa+NJm4XLJYKPDX1NbT69uCl0rsRqBDutztH3YKZ2nFRN0SnGt2V+yI29fS459BGxOy596Rk+B8skNq4ceMJfx7NPubH+PcGy3SEzRD0mBaKSVHSubkOF7vJTX5gwJsNhyoRVk2IcBij86N43hno64rDxjVvKJRkxSDg0VzZgWGzr0dVqUaSVCiaJBDOVzZ1RnSOUBo3Y/gIOI/q0ctpUDVNi0GDZkgeB+1MzsuPw9SxqSdNEYfHqXJA5OTTXl8A//jo44jXIh7g6Xs0mPD6IHRmLzz9Wvy/9s4DvK3ybP/3kSVvW97xiJ3hOHuRSZhhphSS0kCh0DL6UbqgUGigQCl8tGW0BQpt+cpq+bMbRkoZhYQQQoAAWSRkkD2cYcdxvLclnf/1vNKRj47OkY6WLdvP77qCkOLIx9Y577nfZ9xPfqFLd35coOG2heWbfY5pTpoTl+R0Yf/2G5AHC5475VfoSp0i6qieW/lnDD0KTBla2pNWkyRsKS3AHJsVPVPMVGgcrbXh+EA3UKPjp+nrszqfxheJ13h3uFUd+7Aqr1SkE9oswOTLxqNweFbPTtJzDN2tsltEKcevcRuv3FWJzz9eg2ZLKtJdksrfzC2KSEy8/uJzqC4fjwlDCsSNk9Kx2mpgendK31HkiYqelZtGd8MMJG36KYo79uFI8gh0j5thLB41o08CiaiDq4rQ3WoT35jGDpFjPplohjPry3tjSqYanASc+wX9vnxT5SdkDdd1eT/emS1sRdwdsrJhCi8Uo1y9QnUSUx0FKUJEkUM58Y3VKzHnxafQ7jEdTZz6fbRYGsKeY6lGL3JbXpmKf9/yKx+BSdeuNjUUyE9IbU/Q88PRj9vsm6ZVV0lp6vdo/Zmdn4mPNTd3IapaunH7O8EL0sOltfIrHGo70zs+hrYyczP/DxNtlah0DhHi53iNhGm19Hl2IqPLbR427fg0pDh8vz/V9+37/Z/RnpyLlI7jYoNNGxyjuaiBPht7Uh0k6T08uvHpng5g2YUHNj2Iiz8sQXqnzdBBPhjZo06AhH/5dWlm5WSEHH2PKyE1d67vPC9CXSvFNVK9T7DoizacSxfH3ROGoemTo7R/xfOtT+IM+98xIeV9783XgTwU7irEBaU/QW3HEXx27E2/FWj1kmOQLOnez5/E1O71MsovaPaKKHXnyFxbK4rfuhHpVhfSySGwMklEpNxbauObgHa2lFmCddRp56KR0PCrV5EkZDqdaHtmEUZdQBE393286plFuqNggqXYlGM6ULcRLbvIwFb5Xi7U7v8DRk99HS/+8yH87V0n6lOT8cUozW5MlgPv9qddiZbcE9C6ZwPSyqkIfZKpG6gC/Q7atn6KIs/xd7dZkPbZRpyUdJc31WHrasTSc3+NVmsmzjy+CrlDZ/s6HntctSmdJyJR8E9/vfDvz/Db/VbIUgomDbka89oSPb97l4gwObu24Kux08XN+/G9tbDsrRVifL5OOpY2DVQDZZEtuKH6MuQ5skV65cOHn8YzX/aMUvnb0T3I/N8FOKGoImA0UU9MEHlp/4OPnljlFlEKkiTGDo045TSfcyGQ+7uaYB5UtGFJrj/k9WHSurwfra5AfV0xzjt3CsZNPCugiFKMctHViYSuDrgSk/2MchWvOl9vLqAhJ8crovLqj+PmF58SRqCer0DnxhcgjyuDlJwY0RxLvfWMTE7nbKZuTP2OXZ/UUADU9gTqGinncd8ROXtHjsCWCROQ3tKK1swMnD1yJNRXysgRWfhYR5DJ6daA1jDhmHz6kDXBdwYfLFjZ9FPszzwsPjKKIGVYPH5UamS3t5/yGVMkav3/vYvts+/xRo/r/u9lnOZZzwKtt8pn4+hKF15907OO4qohx7Bn/1/g8qShFYrr7Mhw5iOxux1Ln3kCltwCDB0+IvAmToVIkToLcfJZ00Q6zx0Hl3HmqZNgac9Bd7sVthR3baPZ6HvcCKn6et+hud3d3fjyyy/FeJh77703WsfGBEDbRRNKBw5BF3TrpzXeRZtOz4+afoZhl9+A9OHueh6HZ05TqjUTZemZcMidWFe71BOdUrV0axCeQ7t7RJQCyet9xw6iWCUwiqs7kVPXjfYL/4CUkfMD3gTCJVhHnRq6wBWPE7XgSDm0HTkz3CKKoMei6fXY+NFKFH7jW/6LTpAUGx1PYpcdX+rU3hzau1LYVZBxozApVFwBlbcJstv3rTd6TewEy6bP9hnLoAwsVd9A1WIrQ27CLzyF/V3NtExIvqkOAJdU/gftKRLSna36ws5eImqiKJ2nbbk+5krwiCiLKNilAbRqMU7nVpOt1icC4hXjc8b71hRBwviC03B3TS6KuvKR1pGA/V+sxyEL8HOPiBLfFjKuW/82rnv3XWHMqjemR0FPTNDzoWUXwtH2OZrTMlBvz0V243HRxUmzG22qn9/MSCA90UBiUNvSTr+X7BSbqA2kGkHR+AAZc6z7xfBmorsrDSMr6Pqx+w0SVkM3U2t9DZKqDngDM51Fw3xuslqvOrE6WICpMzZ7xdzQmmqViPIcJ2R887tXIe/scyIet6Jdz+xt7gHFZjp2g6HYE6gLmrur3eelaBhIScHamTPFNdfu6UjXm8pwBhVoq0w7T7xwKCydh5HhbEFzQrpf8XUwF3IzOBOKIeOo7+8BCSivt6IttRk//f5JqCi1624GKQqtUL91H7ZXUNORR5hLFlFcP2nbfhQEiajSZzMv5x688gklUi34tNKFSUOfw0jsRrbsQL2naf/C9bNQ2HkZkG4B0lzI6lotov2BNnFqfP2pTsSfrjodsxKPwrK3Dk2PPI5K138AaQiKZjYga2SrX/Q97oWUnpo855xzkJiYiJtvvhnr16+PxrExBmgLc2dddSUSpw7zG4ZLs9No8KueA6+uVwr5byZPQro9WzcMPjJjChKyRqJyWhL2f9SK5C59J3sJTlSkHoelMcPnNiTMB/NL/QRGcreE5JLzgRiIqHBQPE7UKTDH+kr/eckW4PE1X+P9jRl+xny6Kbaz73ZHqjx/b3SzHtKcB+r+JcikkGpwKH1EBxCswN7IzmFeboF/d6Ise2+gFKk4ePCgV2w1IQNv4WzMx3IkZjj82sFpsHKy1IwEZ4/Xkh5GNgefVtZ6oyvUcaS9SZKYaksv9YooHzHe3omTPenY43sOoOvVaqQmZAJtwN7mTVhRuxT4h/tuNSknvad+SYxSgXC5J4NWbQenGn8x4Y6W5hZNgONHt+AJOV0cG41tuUlq8fk8zHSLGokGSk2SRYOY0+fZfZ9TuBslxdlwDU1Dx6xCSB0uyCkWOA/UgO6pyo2JPke/QcLDFqHYMs7b7JAkyV4RJX7P1KVWdUC8rkYpVG9s3IAtW3+B7jY7klvy8aP0Z/FU6pU4VFAIpyT5iimLBUNPP8NHUEaCOpqc252GN9b8KqgjeSB8IoT2Qp8Iqvo8pRl02otdfa3oTWWo2rUWnz9xI1I6u/CTpES8W3QWtmSM87bn00DlfwdwITeLnu0EPRmbUIyxHS6Ur94I+8wFuptB5dhpjThQ1+Hb1Sd+oQki4kx4XdF1UqUUJXrt056I7Dn71+KCN7aKjcrfJUmM5do5NMstolRCrTNxDlJbVqEtPUF3E6f9Hlp/qls/7sKqH5yMphvO79mYyTKq1mUj7frHYRszvX917RkxZMgQ7NixI5pvyZi4UX727P/DawcOoyNV9u583Wp+haEDr94FqR2KqQ2DvzHUhieLk1BcU43Dpw/B7N2JOGGfYljpvtGSiJprfwLl5Y/iwdZknyJQMh8szs/1ExjdJ/0WXV8fQuLwBOP6ElX3WxVyAg5LDoRRaF1ddEnHQBe4+iK3jprpDSsrkMfKkaQhSHZ16ddBTLsSzTnTUL97I7IdR5Cx/H99Cs+Tp12pe7POt5yGXdLvvbYVJARyW9qR89hfkTd+YsAduJGdA6VxjHapPkOOVXyJidiDYbjs27NRNKkJVff/WSxglTmZ2DLUXfxO/yJ13MyAx6RtuT6eAdSu+A8sCWlwObNFnZWeseBGW7EQKmoxRc/zxTT4DG86tlWqxqElm1HjrMFaElGqYbje+iWPazaN8KFRQWbsK/S63ugG84iU6fWipGN7FJn4fkeX94ZjplvUUDTsfBullbcibVQCGrpSkJXYLjppj3Q3YNnpFwpPM9njPfjxmBNw/aQZmDC8CDlD8/VtGvb/ATlf1COZAlfzH4UjcapfLy49d7Z6atJUuI09c9Cw9yRUryMXcwsK4ML9M/6BwnOvRvpdd6H9d78L6AMWCDOpT3U0maKQ1DFYl5GNnOZ6LLz8StPRKDMRQuU8zd6+Ax99tDJgREeB1hBqcvj0+nsx92CNd9+Z3/IWCh74FsaUDxVrwqEd9YYu5GIdMrm+aeeT+kSrJQu+2JaC8h0HdTeDPptwpCHJ/kPvcHrxzyEjd2yJYW2rnndUXnuDcKz3Rn1lGT96V8Zj37lQV6iltdAGSV+YqjHypzqyZRfS1dFtpVRALoStj0RU2ELqq6++8nlOv5Sqqio88MADmDp1arSOjTF5oyQnbHehbadYLEZlTMPtS7YGLHgUF+SpdVi5yu5xbHJi7qxqpDesASw9fhxKGPxgdTO+fPV5vPSYuy6CdqMPX/5DNKWcAHuHCyemP4ch1l2w22qQfuFd4t9fbod+EainfobqhRo+2YGqG+kG/Zh3MVZ3dGm73+h2+2j3NfiX8wxdgRgIo9C62lRR7xjc4isVeWc9hKQVi0R6g0QURWymJ9bgBLkGnzmG+4zI8YscUmShKF90RKq7S4xa1It/91ufYyq/625knepfm6jFyJOoZOQozJ+f6LdLJfRElEKzlInU8fNgn2NH2jkXYM+a9dj8InlEed6bfj9b1+DN9e9g1tjphjdEpUZP3NA8893SKoCOqoVoaZyFZSld3hopWn9PWJCP0Ql7sfiLJXh39kJv9Ic8glIKLwKKer7PjoQjeCt5NSwtjUjVG4abnISU7jbv0Oq6TMm0fYW264126bopa9XQVDPdooaiYeR5gOsWwNYlBJT7Z0gQQ7NdkmdMjgfqzD3+aQva3tmOjvPrsL9wtX9dF6WnUhKQTCnit36B7KtWmZo1pyB3lnhFlOcnQcv6b2PGBYXIvWwWus+YG7Ijd6ipT4XNY6fjie+RlHMfTcWYUkwyIdBCiRDSz1BYWIj5mRmGER0tx7dsxkSPiCLocUJlDdJbDqHIXhF846pa3xY7z8Dt3T90zyI0WN+USNi2JWuxdq07tdvzpgk4/vVBZI8p9dsM+m7C3eN0RHmGSBU7Mfe0RjSlWLBoo05ta06GOL9pwzmkcq/XO4pmKFo011yC7EJzapaf+TNtnFsz6B0TDIWp3sxUBXqn2uwCpAeZiNBvhBSJJe3FSJx44on45z//Ga1jY0zeKJVCW/H/sgvrD+8OOguPdkDjdv4QZfk5aHQUwm6tRtq+4wDV2Gr8OCgyVVV9EDepikvp8eaX/4EDj72M06eORrplrF/7OGFYBGovQXd7Aqru/4mPoaG6o0uv+426VH5v/QdWOiejWs413RFjND+rKM+Jao2povoYSHx9/uJ2pFkktLpG4JSLPkBqxiH8652P0CK568Pogqd6lbwkh3HkEJLw5iJbCXGDVHWX6LWoGxnnBSPQLLFpuXl+u9R9+/YZiijtDYSOYV9ypl9EgxbSv350N2q2dge8IWpvaPRGKUVLcPa+/Shs7cKJl/0ARRUz0SF/gI2VP8axbuCb02VM/nwj9tWO8NYjZRVSgb5v8TT9DFQ47ZuAdIuE8c8/j6TGFnzg2oqPdj0iziVtDWGgQbRqKNWh49ePxuavUZ3ovnGHWq/og5ISfvPGnnmA8x8Ro3ksuxr1R2nIQPfbVXhgzFP4eZmvRxv9XYpnZhmdcxlyfdBZc2raG+kc10QW5AR00OuFvk0sgWqz1ISa+iQoEqjbvOK5wQcSaEPThwaMEOrN2TSK6OiR1tkNbXk3/cZSOx09wq6jEid8pwhfvlbl1RfCkNNy3Lu+Vck5uL37GiGignX80Ua44pThWLtmh59YyR1Xqvv7+/zAYTSlZoiRRAQ1czS7ajC6AJiRthHlu/bjk9rphhuF1Lff9G7ubhg+G3+ZejGOpOf5D6C2WPCzb8+F450t2Lwjzdvpm9T1OY6lJwQVpoR2eoYS6fvp0kP4xpSLcMOm18XGKpxIaNwIKVp81VhosGh+PpKTw/fHYBDWjZJmsn02sc7HcHB6yShYpJ6IlN60+rb9G8TunVrb6Y/3dYcVqVaHnx8HFZe2am64XQkShlRvgewqBrJLguantWk19+Ba/zBt03tLkfmNee6LQ6f7jVx2h1uOotqV6y8QDTCan3V820HdYyAB05mUhb2Ld+CcDKtXvG56sxEjrxmDFmmDzz+hm5e1u839pPEw6r9c4Z9iI++TrhS3kKLtqafwXG8hJ2wpTtgKOgDF6VwHPQEQaJaYdpdKNwm9TdHFF1+M0lL3rlbN6NEjsEWzcCpCPtgNUS/lRSmyDfnD0GafgLFDxmLisA48tOxOLK5P8qZSL5m4E+X/6YajPcnvpk83Oq9YtSWKwmmlBkgRCTlj3YPVF2zYjlmVh3HQakGpw4XCie50FqXB731tM+wOCxqtLh+Ham2tiNa3iH4PNET1V5UrfSIrZrtFDVHuHB5R5Pd9ZRl3bPWM0hB7/ARktZRi964RXisEavrYvXMWZnR9hGS09DQ77Nsq1g7xO9Oe+2ZqciSgrblLXM9Kepxqsz7Z/hCqUYhCVOOUsb8U0Va96z6c1KeZSKCRQHvhvBcMI4RGczb1rhUFrWDMmjwZxyiSqvolyRYJWZMm+Qm72y69FWPax6B4dDEKafadaobgcVcGClCPavSk0QKtbxR1mj3+S5HOU8TK1IoOtCIdNtVno07VSd9bhPM/fBcT9h3C9uRcLMubLWoVLY5v4348jVPbD8OCdL/a1tKWJh97iHn7v8C0mp2wPPEs0mb8Bu33/94noj9uzChgzChM2nFQRMhI3FkKZ5mzXvGg2DCs31+PG/71pfd+9t6w2dgwZCxeW1CKovEVfS6iwhZSw4a5zd7UNDQ0sJDqJdQ3ys/aN+GFbQ+KRVdZyCcXDsf9Cy0B5xzVd6Yg2VM/pUAnKt3oU63Nfn4cRRWjsMuTXiEO5mS4C6DfeAmr/vNyUI8QvbRaRbnO4FoANQ88gJo//tGdYjtnjl9xukO2YL9riK5ANMIotJ47vhTVBqHio/uaMCXFvYMSXy9JmJycgPZmm78VDekiClV7wvTZXf6jdoT3SaJn7+r5x4YLuY6Zp9axVzt1/ffzxuG0omzxsyr1Q+F2KdJgcj3Khw9F7rzLcXzpSx5LARmfTeoR8oFuiHopL7rZ10hjISek49dvfgI5oRqL660+LsavNCTi8R9/G5NGXez3M2mFYHdWPpzpWfjOggswtLyi5+s9kc1C2YVCJXD41i9wtOBkvPjyLlzbluznUP1ha5turYjiW7S+vgq3r7gKksO9EdEKyVC6RYP5j9Gm5vLiEvF9d9e2IO3pbRjSoarXgxOd3Z04enycsEJQBk3TnMTDjq2w29pFZKvZkSTONzVqGwGtSPCryfGc+Mue3uq9jkdOl/D37R/gafzdO0rph9ufwK9zTsXe9bLfdV82NfTUp14kUDSvpPQUjOsJtOQ2CdXbv8avxy/Cvdse9IlUpXVY8ZJOY0bN8NEYV1ysG0nXFvPnDf8VOlMmY8idvxTjgRQxUfzbe0QtoJLGVnywDr3zEsj333utT5/g/aVOTDiATy03iLEs5Cgufi+0iU00vk3PuHGBqIkisdLgzMSa5TXY+Ocvvb/rrOl5PpG8Kfu7MaV2Dk1UwkTIONLVjc1JTpC//x2Oa/BJcgnuTZLxt8ZdGN5+GPtTSnC9vQK5hw+hVbNO57fVo8xVj7QrLkP3OWfoRs9J7NEfBbO2Bwp0z8pJ96+Xqkm24/Cw8Sgr1Dde7RdC6g9/+AOGDx+OSy+9VDy/5JJL8Nprr6GoqAj//e9/MWXKlGgfJ6NBuVGWYjJOG3eO3843mKlaZvlULK+uwNmFu7y56OVVozAnv1LXj4MuDlocaFdC85yULjI9TxezabWye0/y7ehS402xfQDb/Echv/ULSLL7gr/T8UOxawtlYKX2hqCE1rPHFEMyGJ6bVl2DVk33jkWSUCB1iW62t3Cm1xRvvrwC9ub53pugdtSOu0ZqV0/dC2Q079uI95983G8hH1FehHTNzZR+/mppBjKGj0SyRULNgQY8/PoW7wI5oSMBx/+1D//B/pBbq0NJYxD/8z+XYc+Zp2LDto14uPIutKR0m7ohalNeJKI6qxaK7lKbfS2Sipbgka00EMg3lSQqzIqG655bekLwgoUXYZy2tdrA16vq6804py3Dx6H6/LpmbHrzAzyQlgJXdq5uKon+HMJRr4hSCHX+YqgjfsT3HpqD1vNHeZtASEQ9UPBvHO1IRZnLCngGTbv/rYxDY3+C8fMXiH9frzMgWbERaO5c4df4QFElpSanek8jlv1ja4+fvOc67shPxtP4sbcLkx7/If8ICyv34bMXOvyu+yvHnxRy6lPPwVw0r6jEjlaoVxxMF95TX334nDgvHrvqTiSdMNy7TlYa/C5uW70Bh0sa/IqstcX8n7dIWPzxI+L8pO/7u38swlmWCV4xsabKPZ5I7YOlnGc91/q9YvaiAk12oNl2q5yTUYNc3Ipk5Hfpp94VSKjYCvKx7I7Vfr/rsSVTvGtERpsL569tVVW7SWLEzT6bEy0WOo8SsKc+Gd965/9wtfWv3qhmvePnSLj6R/6bXlVtki2Moctm0auXMruBjmsh9fjjj+PFF18U///++++LP++99x5eeeUV3HLLLVi2bFm0j5MJgNHON5CpGt2Uii69D08/8xDs1lY0dqdiTl6lJ+2k78eh1O3s+/gj4LXnTXu6GKXVqGOlxPOelM6jSJReiq3Lci6aOmhw5hE45GJc+43p+NbQtJBczrXtyupZV0b1SBkj7JQQ8am5oVRURkYNpmEzyrEPdchCDhogvrLyc5+boDJqp2HOPcj6/B5kWDt63khKEFFBWlBbEtLQYLMjq7tReDK17V2PdM3NlETk588shw2TMCWVol3AK0gXMwg/cvVMgNdrrTZKHapRpzHM1AtRZIr+JOzqCumGqKS8NlbtxnXPVsLZbYdkbRQiihbuVhct876VTvRzledODSgEM4szsevwLlSUVGBU4Sj/LzLw9UpKHQ4LDT31UFS1Wgz2lj6X8RI1VHzvWvz35DOiWlQeEJMjftReSL/d+BHeXUuzAS04IMs4ybYfFdZaMaeyuN6J8lPme69lvRpLUt5NDftQffTX6GqxoLMxGUn2LiEaqBFCiUwlZ+hfx4frciBLHZpC+ARs3SPpfj1dfwvHhJ76DOZgrhbqFInSCpc1zz2Pa2f9Exlpecb1ppIk/MH0arDUJq0NDgmL6xO9kVM6B36z6xHMumip92dRnx9GRqviWtcUa1PpwtMJGyA7T0W2lOm2oQmC0Rqb20xO/+6jzvH8vxo6JrIfabG4hDgZ1laDbI+IIugx2/o3dLZfLjaY1ff9GZbUfLjajqHwjpt6Ja1WpKmXCmUDHddCqrq6WtRPEG+//baISJ177rkiSjV79uxoHyNjYhhuOF/vV0tj7dQtGFcj/FbOPAvS6+5p8HqdPzQYVG12R6kmsaorPePiH8heq4VjWTnYP+dkZOvseCzZhTj+DO288+CU3Qtg0nsHMPO2Wb5O2iYxmnWlt6Oi98+5yNcFOWdhBaxl7llydrnFLaDEz5MAlJ3odxOkUTsZp34LKE73G9uSPWwytmWMw4rc07wpkTPrViF15HRgle/7uGQLOpyFmEHFmp7X6P9ox1rpdA/e1bth7ftylWENiB7adGGwrshwaoHoa74xqhD3LagUiyMSa70Lt+eX6RVTZsSZTx3KVoMOMIPROaUjxgLSavHtkjrq3SIKqoaKl57GmvGTUZud65dKiqio3Ah7CTon/haJX90FSaKonQWdY+4CatNgRSccSXU9qTd7EY7BhX+t61nGyR7hM8cIfN9ZhpFyClJTk1CU7fYG0quxVKLKn7z2CLIrMsToG3GdSjKKZh/F3tSPUFpxtvh3uulxCRg/vASWr3d7i6TF67ILm9euRinIbkHStVgJJ/UZzMFcOR83b1glIlGBNnv+9aaSMIBtSbfrCme5q0hEaOhcPeags0QKGI1Unx+6RqsWi+61Tr/fibZnIFv/H7om/w5W+6lBfy9Gn02904E7y4bg3sqjqMtI8KapvccMWdiP0LVO4qQ4ZZfmWqT3ccFmqYJz2ClInzfEuxbahhnNx9LHbDOCHsEyLP1SSGVnZwvzPhJTFIn6/e9/L16nxZrHw/QCmvqZjjMfRG3BQuOxAwHqbfxqaUwUjDfWJuC07/8Eq158wq/zp3Vttd/4hZbxwEcjF+PUPZeIOWjkGvTxyFdwUeIEvHnE5s3hn3/5D/HLl5726caQyGjRYMhoOEIqVPRckAXzH8WRpb/H3pRijGw/guJ5dwJDpxvPuVNZPihCtaWxHSvy5vakSiQLPsydi+asUUhXvQ+JKBoDYZHyfUYxKWIqLQE6izSQYGvXNec0SsHqmeCZ6YoMqxZItTh+eXgEblv7tGaeowUPnvYnTCmYEvC9Q+oA0/kMKK2iOFTT6Bu1TxiR4HKh5NhR1Gfn4ndDs+HYvR3NqshexEXlGmgTcmzdVCTI/4TVcgQOVzGcm/KATZvRUPIRjk541if1tr/9TL/6EfrbbjkDJL3Ee2quFWUDdWTn13jn0T+K86KjPrFHRBGyhKrPh6Dq8xcgSS8KwTFu+umiZnBTG6Vf3XKXng9LobRbGW7ZtB9yqwNyqgWnVW5BiqsZLZm7kN5UIcSUt1MtgqG9ZqDPIG38mdgsPR/U5kH5XeyurMSlh5rR5BFRhFY4tzfYhRVE4fQXkG91W5qoxZReNFJ9fnQO2y+iYuo1U4xvUq8ZHgHkfpSRuOVuVI6ZCXvpuIApd71atvdSuvDHf30pRNJdF07AxKm5kNLqsfGV3e5bAW1mJ7+Gn+bvRUHqcZxccisS0k72litAtS7JWSNQ/6JnXRcvQqzztDZaTazDfkaxnrRxKKgzLGai7HEvpBYuXIjLL78cFRUVOH78OM477zzxOo2JGTVKJ6zORA+dYtTE5Yuw/FgG2uQ8/9qYAMWrobrA+haMp+D0q+5HQanT2xlGNwGviFJdbAezLfi64DNU2rfB3pGPxuRjaE1qxJfH92LRnlTvJfvOyWdg3fjJeCs/GUUV5SJCRO+pN2TUTLg7ErSdRtrF4qXC87HoxMk9hciFpbjc4Gbthf5f9ZzSZ1qNSO8nunSmXYnWvFNQv20LPnirAy3OPCSLmgV3ZMmLBNz8valw1nTgy3/v9an/6mqrNayH0S4+JKLe/upIcNuMKEdQ3e87HB1vLkRioTu9R7v+ruqFmJxzGgrTAn9fpcA4rdPuc24Z1ilpPgN1yrd+Wwlarv2rX1T07rmz0HF4Pzb+5jd4VSeypxaSkS7wJHrcdU95cLp6/n13Uh2Ojv9/PnMZ6cZUPmG5rt/OUCXuYHCt0LGlZNi954ejXW8Etm89T1FWOYYlWlBgldDqlJGWICHFIoljTqhrRdKqas9xyEiwtoq7S0dqNbqS6vDNsy/E2MkjoyqitCa62p9Pa/NwyvevQW1TM1xWm48ooa89ITcP/zvkeMAaLFoLmvafitbqCUhMP4YzEg/iw9K3IUtywGhkbjOQsd+FxBNOxZRZZ/h30yprxtY3gGV3+H4CshMrXnsKB6SyoGNVlPN4774GfH/xejQpc8Jl4I9vbMMnt52BorllmDylAMcOHcKOA5fBltqT1hap3JNWIXlBT02qLCVAormrndmAfCisDW2HnlGsKm0c6nVDDTpL/vFPNFgzkeVowsJr/iesYch9LqT+/Oc/izQeRaX++Mc/Ij3dXS5Hppw/+9nPon2MTJBiVIvkEj5QrV15/mMHghSvmkWvYPyLN4/iyntP8n4v5Sbg+72A4q58sdDQDY7+uI/ZAod1CFzoGd9BHM3OxS5LF4pUYiZl3nC0L93vE+UKdvGaHRiroK4Lqt9SH3AmVlBPG52bdahFlG7Ruh+yTNcWDXUGqElrU4fTXSOl+l0MneL++QpGZ2H33gaMGpmF8mFZaD6uDAEOvCtXp/O0RKWoM0gHIv3euxpmortlNCyJtWIQKhWgmxFw9PmOq5njG+0sfyXkOiWR8j15DBp0Gg+G5mXhqbsfDRrZC9RKbxbtWCaF7lSaBeMvu+2JVSL9eu8rnyOjqwFNiXZcl5CHAhJSQa4V3XopA0iMtDgaYCXvL4tbQAkk4FiipDl/KL04HCUJjWIWoGztRsXUEqTbjUVUqMN8g5noaksXDh47jnc/WgV57Zf+s948Iv/ynHIxx9GoBksd9SHH9zGWMbj4tEuRPKbLMBqpd5ylWsNhgtaLCRcC79/pm9KHJOowjWZjaqFjbKmzekWU3oZIWM/gGGzHekSU8t3IGJgmLkiezaDk2QxaI9jQtukOAPd8r+SikK4bElyPvPQ+Vgz9nrccovLl9/GIQZQ9roWUzWbDokWL/F6/6aabonFMTIjFqJT6IVNNv7EDBl8fzoTsQAXjyvfSvQlIQEnJMNxt868lmZ5TCgu2+ZoMOp2w/fImrEodi+2jKcZDNQnAGReNwogR7sLLYCIqVNdktZDIlIEfN6Wop4z4iFNa8NccrA/qaRNJEaV2LpfCvGsnoHCkXXTtaVONRrVNwcwXtek8NWaLOgOKVhMRUa+gdNjhdNj9BFyg4vf0riycvpe6h5WuO4t4Tq/D07gWCnqNB0bdXerInjBgfYJGb6jE1pN/NUyjKmjrCbVjmRRsbUO8tUs9WIQb/vjmzbjq4PPecSEnXvET5I2dHvRa8auX8nRIulNW/samueXDYFno8Evdb+rq9jt/6H2aXMlItzqCmi9qrVFmXTwUuSNthh2kFIny6fTVM/JV/YwUgXr/tX/rD+ze8x8fkV88/1EUa2xGzDSs+NF4GN071onjOp7mQlW2hKJ6F0DHWWaDbcwM/82Wpo6PRBRNT6C5l8pxBxqrEkqXm9GcT0tNNhyWTlg1m0G/89LkhjbQ96Jz12g2qNF1s2N3pbemVHy9ZMGKnNOwc08lpvc3IaWwbds2VFZWoqtLael2s2DBgkiPizHCXoLPT70XM1b9Gla44IAFLyRej1ZPGkA7L8+oyDbUtJ5RMWNye7e4GejeBFQX20K7fi3JZdnH8GJdjjguElFU3JvR7sLqKZepUgvAh0t2o/Tek5CsuXC1BYyh1MzQcWttBMiUEQaCsXJbnVjwG5MlSPOzRGGvUT1FJEWUenO5hEN1eqJYuIVJZE4CRiZJKA5S2xTInNNophXxm/PH4ZuTi4KKqKCi1URENFBXTiCvLPpdkMD3aWIQ7y/5biZCRNt4YDR2Rx3ZO7Zti6bGy31TqN22BRmnztVNXejVE1JNHv1pKO3CvsO7UdiYjeT3W2DrzMGQbVf71Uh1t9rcvlCqUPGKF55A+d9m+10reqjPj+cPS3im4ziymupQWHMYp69ZJkwmfQR4LvxqBkc0tvunFyXgmkvmY0zZkIA3fm2kuy25Cm+vWgV83OOsr01nGRn5kvjV6yJTm7aqP5vGg1/DHkbZg1HDijYC21VtxYqJ+XjivARh0Cm5ZPz4XRfKnvkhbGRmpuMNp6T5Wg5uxpOvLUeTyhwh2FiVULrc9IZyD9l6FZqX1aBZqvGei6bqRYNgNACcXq/ZHXyTol6v68ioVzPDj5432rLQl4QlpPbu3Ytvf/vb2Lx5s88Co9RucMF57KCb6ELpJAw5cTFGtB/GvpQSVNvycUNtA+ydsn4xZ6C6HZP4+TBJ7kLT9n/tQLvmJmB0sWmLkkn0LP9qEXIsdpQeL8CvX65CfkMd6rMq/AZe+kXaDAoYD0nDTbkmq29iio3AO+jWHaBLh2JNsngX/Mx2WfixvDMjTSyQevUUoaC1qQg0l0tvoOjwdjlgbVMgc06j3asZEWVKtOpERB0ogKO5SKQLlPNDT1AqAjHVCdGiPcQp+XllUXRALwrqs5mIkEBjdxTSOrp9B8gSsizGhOilLqhwW6+ekK6dN2ve8RGnd373DsxPn4fmfcOw5+2xsKUdQ3drPoqSToLDfiTgjcgomqeuL2pJsWOjpQB/cx6GKyMLzRlZOFgyEjsrJuNfQzMwqqwMKdYMdOxp8ImcBbtxz5pUFlKk22npFMXpyqVnlM6iYw7kaaRFz71fiBLUR6XswSgCW58t44lZFrFGiLe2SGLW47d2yUgLINpodJbUko25J8/DW6tXm5r3p4Wup1PsLjHkt3hiBUpG+/9ulDmfLbW70fx0HWwdOUELybWfvVmKDWaKBtukKBtl7ExD2xuNyKNrQmdE07iRoXUBxoWQuvHGGzFixAh88MEH4nHNmjWi6PyXv/wlHnzwwegfJeM3KqEqqUD8URj/g7E4qzTbeKdkom6H5pYFMmVUwtp1+5rQuXg7UpSbhubCM3uxKYXCCc56dFjqkNvoFuDUPUULUbNFEsKGbqKZkuRzczQqYBw19fWg3j7aonjFRmANHDhmkbE81YF57Tb3fdFTuN3dSa3oPcd+wr4ulFd3i9/7zNG5YYuoUMxDjQaKvjNxpGnDOnVkRLKkiyJ1ivL85b0dKIKEKsi4aeEEXREV1qgPOucmfxfY9JJ4Sr/DJselaHupCpCqfHa+WkFJAoCMRs+i3721HRaH231ceR/6/Zz7q2lYmtKFc9rcPlokgpenOLDQIvsYHQYjWLFrsMhezqRJmHS4FptL8txiSpbFc9vQYrz/v7/yS10MzR6jW094+PAB3LPOV5z+ftN9mH72ifjw9T2Q5Rx0t7lvePTzL1w0xvBGZJTuVdftLPXMTKM0EpWbOyZkwTnUnRNtTLejbXg5LLtbUb1kjV/kLBrt6epNg9Pa7ptPNEhnCQsWAxPdUNz700uHRKXswQdVBPZIZo+IUnBZJFRlWjC0Q1+0qT+bFIsF195+GzpPOcX0WBX1+zTddTfSaeSWxYI0vWHwnmgROlPQ0bE55p3R9Z1Z2Fdnc4v65J5r7tTLr8bHLz/rt0nx2SjLEoYUX42Cw6eLtfoxRy0yuxtFTeCdl8zpczuEsITUZ599hhUrViAvL0/M2aM/p5xyCu6//37ccMMNonuPiQ1GoxImtFYiqZMu2vDarzds2OC30CghdZ95Y9TBVteBWk0bvvrCC9RNo0ZtWFeXKeGJ8yy4crmEDmsHqho/wXsFFShurcWRtDx8b85kH5FoVMCYKbUF9fbRK4onMUWdTnWSC5dfNg7njyrwqYMgEaGNElEEUIjXKIqoQLUYn9Q369ZmtVolv4jAg98Yi+zaTpH6VRZDdWSEfhhb6tlISJyEYYkSXk1Nd9/D6EaJRFMjfkyN+qAd+lf/8j6lf5ttfQydzunCFyxQC/UQqxWn4Tga8j1RChmilT6l3b37pG+7bV8Dvkp0Yq/VKQQ3CW9yaQ6l09BssWugyB6d57NuugV5v/0t2mwJSO12YuRdd6HJ4dCNGLV017uDV5pI2pHEY7ridPshElG+35O+zNmdqhsta7Gm4fYlX/ileylK0eS5UR9LtuPRKRd5W/jpv9atDXDmJQPJbr+yUodkGDnTfmaBDIDNbBoSHJ7aRHVTqkE6K9Sh3obu/WJqwo2iaFkUL4dR9uCDKgJb1u0QMxHJn8pn0HS3e0ZRiysfDfWFyMpyz8XTq/1qvP8BNDzzKpJzEmFWRoVSQxaotlWvkNxnM0UDl016GS7WiPo7K5rQsOwl7zVHYqqwvMK7SfHbKEsyjo5/Fmm1kzC+9iCurl3qPmBJwvjmbLqboN8JKUrdZWS4C+BITB05cgRjxowRM/h27NgR7WNkVOgNL73pxafQ/emH2G3QvRIMikQpIkobUn+n1eGXSrokL93wwjPTTWNkaHg4x46PxuegxZKGYy4nnl12r2eem4S/HvsOqr45yrtQBypgXFhxYkBvH6OF4/bvTkXpcLv3e6iFG/1/2skFaPrkqDfykXnSkJh64mhrMQLNGztZFREoO9wK+d0DqJUPeyMIrpFWLNPU0nS3LkeqbQSmpGT13Lt0bpRGI35MjfrQqZEigz/ySBLt/QF2vo66JrSqUj30SKmfxM4cJLiSxP1q/IgssTCTeCJ35lA7DUMtdg0UvaXzfJLm5p5wvFY/YlQ+VBRub39nNw6mWlDa5sLY80fBWgRdcTp2aDn2S3t0070lY/yjZav31OqmeynVQ1EK4kh6nl+9Cf2qLW0OuJIssG1rhDVXp4YuytEK9aahsiYHy1a81yNqTz8NjQcPwOLwjwKGOpZEbwjxkcJk7J2VjZT2brSn2JBjt6BhT61fKtR0e76nJrV78c3IaJLwO1cjfjM821sucPfxehQ6ndjWfo7whpOfPAhJOijE5LAE/QHq9z35PrYWjPIxxw10PKHWkJktJFdvpsanLMdc+9/dflOS/ixQBW0NZ0p3i3dWJ0GfNUWkrv3bP70/i+5GWXKhybofa2uX9yzenus1Kb0cxRUlMfcoi6qQooGmmzZtEmk9cjInC4TExEQ8+eSTGDkygrAoYwplVMLuw1XAFd9Hfl2tqZ2HEUbFmNtrarHoULN/m/+c8boXntxeH9JOSG1Yt/vgVnzx7iPuG7wrGTdsfN17odHj9RtfxYHt30XR7HFBCxiDmUQaLRyKjYDRYnDP1gNIzYQ38tG+tRLnNpb3WlhZb96Y2iQyr9uB9Mr9aFxG9Tq+wqjthIO+4TTPX6ZK7ZCk7IA3ykAdm0FHfejUSJFbNxlNBmuhdib4p3roOaWArI4kke4cNSwrovERdDMyW+xqJnqrvbkHqq96qfM4Fp2e3rNJKbHh8rRcXXE6sngY5n7f5pfuVW4c2miZUe0b1ctQqoeuzeKWWm8kxvuz09ftbIStwwmp04VDsoziXvBxUzYNJWNmY/zksWJNOrbtK3zy+MOm2uJDtU8gvFGPJAmdSe4obNWX/4t/Lt+PnckjsOh7pwrhYjZiqYibhC0ymt4aIn7HFRYL3vz1jag5a7L7+nA40bJ/D1Y+TpFK343JZTdW+NV+OSUJVel5Pg0ktes/Dng8odaQmSkkV2+m0iy1OD3z/3rMa+XARfrahhYahaWs7XrXHH0uXV00w1KzbSSX/0b6nPz/7XtPfAJrYmlIM0b7XEjdeeedaG1tFf//29/+FhdccAFOPfVU5ObmYvHixdE+Rsbgpmo/Vo1KRUSZ2HkYYVSM2ZCS5ufzpLT5n6xz4bV+/kVIOyEFuvl2OWrwhef7UzpPe6HRuA563UwBoxlC7UBRFgN15APRMqsMAfW8sc4vv+gxiYSEiYdqMFwqQuopv/T9RxROX/uuavSKgoQ2OUXX5FN9owxU/B7U2VzTNUo37fru64XhZLAW6pJhhX7HTD/nN38wAyXDC7w3zFDqc7Q7eTMdeWajt0Y1LHqjmI7s+hiLDqZ70z50Ri3aXik+WyO3dNOt9wEKwKnomOplaIOT39GIGze97q2Rcv9+gYRG9xBq+jcUoc0MFK0IdVSVGQsNeyEsjm78+/mnTUUK9dLOZm6m2qhH6qcW2F9KwJ3yi+L38bfa85Fy01zsevJx78lvxkNM1MdlpaG0rlmsf233PoypZ30Am+dzbEhOhSz7lr+QFmlDuk/tF4mov0y5GLUp7o40+hy/3luFjUEiqKHWkCkY1bZSaQdZvlC3MjXaZFmrYNF6msnGRfpaUU9zRen3q17jlWvOt4FIUl3/Fowefg/kBdOAx/7rt45ZErL8rGriXkjNmzfP+//kZL59+3axg6DRMdoRFkzsUHYezkwnHAUyrDUSEpoSAu48QinGLMzLgWVXtW4qSe/Cs6Tqp1MsKcGFhvqGJludfjOhqMO9aGiG3+KdbC8JeW5TOB0oejt8uywhrbFb7NZ688IlEZ3R2oSnnlSZREIWhc4F+2qRIrsg+aRsnChI2gZb6hXobvvAO8fOmno2OqV0bGp3iA5M8W90xI1R8bvpn1nVNUoGf5nIQ6oJAUvn5YIF/uflmBP8z28z9TlGkYVgHXlmorfB/H28ESNPa/yupKlwzf6zz9fkNNThwH/fQ/5Js1BYqC9Og7beqzASmOr6ouuGleHSFLf56VeHGvDH93b4R/ZmpuhvOoIYrZpFz0JjRucoU5FCo7SzmZupujzAUg8hoiSPlQbd5K9b/zbueecDnCgXB/cQU4kbUnObh+Yjr7kNKd1Ov81koI1Juuezqdq2Cxe9WYljyT1t/fSZZHY1mPq9hFpDZoS6S5gsX6hbOe1AEVwyzcGUTRXpF2lEfYctA7nzLkfD+y/7XHO2tG58vUndQORepyZO+Avs9mlinT/kqBfrlqNtuc86JlkyDLu7495Havfu3dizZw9OO+00EdUw45DLRA+RRnjgfBxJfd0bBR3WtiCsi0ZbjJmU1Ia29vW4f+QQ3LG3yXBsghpXW5v+6+3tQb+/OgXSkWjF1qF5mHio1lMALaN4RiNstuaAi3eobuahoF0MpnRZcW67DR8/uQ2faHbB0ZoDFeh99FJStDq3uFqRvvF5JE35PiQLfWJOMb09zbobZ+evwocNP4DT2YwEqx3T0pciRVqDoqQdyD3vJjiKzjcUN/SzDR2ajqZ9jcgcYUfmsMzQfhhV1ygtOmYFrGGRcIgEqoUK1pFnqpXehL+PujW+pKYaFhqUSykYAN/89EPc/OJTIvIabq2jHkYCU52CpG0Ifc2c8lwsmFqsG9nz23REafSUkYXGv8942VSk0IxRsBHq8gBrjewVUQoJMoR9hd6wYfVxGF2LbYk2t5DSpNWCbUzocykrLMSiDPdQb7WwHTMyFatMRlBDrSHTop3gQL55ZPlSXp2Pj5p/hrmZSo1Ugq83oU6UUk/UN3/rHJ9rrq7+M50GIhmJibnezTKJUFvyJCTYhsPlbBCRKEVEuX8X0bU+iamQIquDSy65BB9++KE42Xft2iVqo6655hoRlXrooYeif6SMH5RLPpD+754XLBDPh3bcFFaURinGpPDquvXunQF1sr1d/ge0ZZ6jOzZBTTi5eTXeG9qer5D15mVI7upCV7MViRkO2NJo3Hiq4eK9pOaLkNzMw0FZDHbua8CWJ77WdT/f9+WqnqJuScJZl16JiqKyoB2MWoLVZeiO9yDfoq5udB/4FI5jX6P0z48i6cPvwopj4q/Hp36AsuSv0Hjhu6ipTcRn/850H2YrMFcai/HlxqZ25LvV5Env0PiJBJ0WeC3REpR6RcKhEqwWKlBHnpnoranjUxXeD7NWC+H08OU/RE5Tg1dERVLrqBDJhiKvvRGZxw4gMW0YECjCF4XRU1R3+N7uzbpdisdtraYihcHSzsFQygOOZa5CM/7XpySPjupoloTmSXWYszlHiCm94wh0LRql1cykaY0iiqFEUKNhtaOG7ByE5UvpHEiW6/y9CTcYb3S1ol57zQVqINIToUJAKR+YyqqmLwrOwxJSNAqGxsSQq/m4ce7iX+LSSy/FzTffzEKqlwg2wygc9PyZ6vb8CiefNAfJyT3KX49wc/Nq3BfXmYD1T0Ik2VK7enY83a26i3fdkXW4Z605N3OtE3qo0ELgTOnAFp1dcNWuw36dcR+8/P/g+voAUpyy6ShDsE4ycaPsqsS0/7kCG555wb2gSlQjdcy7Ay684yaknT4DyLjLx9U+/cK7gBGl+M9Tq02nQ4Tv1us7e/rSRQH7zoCT36Mxdy6ahFoLFZMomarw3pbqwg+738Cs32xCY2pGj4iKoNYxnPFIaqjj9tj9v0ZiWje6Wm3Iv/1e4/M1wtFTSju8TPP4RtEYKNnPQqPwzJlBI4URp509kSk5eZxIx9E1pNzKtwzNhzOhDbtKW1CV34nHZzyMkcMn+h2HXkPBmZdcgYriYQHTambStHoRxVAiqJFg1CVMvnluy5eeKHM1rUlVG1D235tRGGaUMlgDkZEIJczUDcadkFq2bBmWLl2KoUOH+rxeUVGBAwcOROvYmCCYUfC9Lc6ilZvXdWOnkLHO4n3AajXlZq7nhE470lAx2gUfbz7q3xmnhPhbO1B9359hGzYNSaNLAqa2AkVP3q9b5XOj/NWtN+PUxBPEgprc7fD/vev8Hht0RtAESoc4DhzUTF5zF63R69bJo6JmKRBLzLiTB0WVsrDbS0KPkmkK77PK2zCn6Gu0HUvEkcPZvr/jECK5CqGMR9LzHmp7ZhFGXeD2t6KPruqZRcZRsQhGT/m0wzvs6KxaiKSiJUJMaS00zEQKQynCDyS0D+fZUZuRKiJJdM22JSWgKbVJHNMtZ96JKRVzDf99b4kbBbMR1JCiw5qUnF6XsF5pxxK1eB9aiLtr67CwpTWsKKXZBiKtCO0rARWRkKKOvVSdwmLaoSUlRc8JlYmOgifMmmRGQ5yZyc0Hc1HXdWM3WLyLiqcHNYZ0R9ruUHV7uJ3Q6aINNTJltAs+mtLi142ihPhtw05G0tQrUP86icHDuu7QwaInXXYb7lnhe6P8w+aHceZFS5GR1tOxE+z3GGo6xCod8XbO9OCEVaqidpOoWAqE28IeChHd7KJUWE3/xpF/OhwHKmHt2ALbp7+GPbUDsrMJVeuy3N0MmkhuoKHNakw5zRvQvX0dimZ4TEI9xqlF0+vRvn09bIXnG/4s4Yye0rbDdzfOhKN1NO7+dgG+MXZiwGM1OkdCKcI3U6NJ19voK3+AH40uxYycIkzJLom6uOktTEWHDc5vdZewXmmHn3iXJNyTl4OT2juEX1Y4TvE0P7K5KhXWIhuS+1YfxVZIkdXBc889h9/97nfiOX04LpdL+EmdccYZ0T5GJkIFH4pJpp44Kxp2NzYcJmv/9qi0+gfy4QmKzuJNy24wY8hjtVv9/Efo5ztWuw2lQ0NP8entgrMb2/Fg3umYW/uRW0xRG/ShY0hNyBAiyttJpzG9pNSZ0hFFXlyW/Qdw5qVXYsUrz/tET44nNId9o4wkHWItK0e27SbUd//Msy91Itv2f7CW+XadRZJGC7eFPVTCutlFqbC6Z8ZjpafhaCKyz/sUaaW1yMoZibT2BG9E8XgGsKZqDTbuScUD7xzwG/MSbFKAodO8AVSHqG24pvOCXg+IidFTZjpgLc4szBt1MgrTUvrsHFEL7fcT7fjpoXq4KgFL5TE8OCZZiIpY4TM9IoqTEoyiww1FFlSUeURrkPObjsfomHTFuyThoM2KQno5RKf4eCsJiKmQIsF01llnYd26dejq6sKtt96KrVu3igjDp59+Gv2jZAJC4scoqhLquACtOFu+04Zrn66GS/4i6EJu9P3VkbBwfHjMLN5G3jsKHe2ZOjNlJXS0B677CoR2F0wi88qrL8G9r5Qho6sBJxzdh/Ma3oQlp0JjR9Bjetm5s141gkNGx8bn0b3/EyRZLLj0tlvhmu5O2ym1UWHdKHW6aEJKh9hLkPbtC5D05rVwOIfAmnAU1gW/MVwgQ02jRdLC3itEobBab8ajENTv1iLptllCUNvs7oiiSJUsuweOrnS07r7NGwlUmzLqbWi0kwJ0neYNsI6aKUbFeE0W6SbszEOjNB5ZUbb3MPK4CrRJC/scCdHnis7R5rRM3PnZNn8j4pyMqIocBb1B5NESbUbR4d++extq8rrdNXTWvLDPb0PxfuHTFNIM6fqIx5KAmDub0yiYxx57TIyKaWlpwcKFC3HdddehqKhvpzAzCDou4HiaC8e2LcPojHMNF1kSZjRk8ldvrPCb12W0kJuJhNVPnx6WD48ZAhlDFhSMwQcfzMGois9FLQaJqN27TsTMGWMQTbSdNnntN6Jj+wE0Lu3yc4eWEhN8b6yQkDT5e3BUb4Hc0YCmB/6IUSs+gE0pMG+qxC+m/QKPbHjE/I0yQErKKB2imwaediWs5WfBqpPG0UvT0i5yaNFQNGzaiKwpU5E9brzhIUbSwh4qZtJkfl8TYWF1oBmPWhd5darE1UU3D18B7gxiAhtsQ2GIvQTSgr94585tbT8HH2lGmEQz+hPqkOOwzpEw07F63WqKEXG0hZTWYiAc0RaoTEIvOkx2Dk2pjp4aunOfRWGY57eheK9YgFAJtyQgHgjbRyo5ORnnnHMOpkyZItJ6xNq1a8XjggWh/xKZ2KC1JFgx2T0cWD74J1gOPRSwq0dby2BmIQ8WCRvyxhvh+/BEAC0ws2bdjKVL/4Xk5CZ0dGRi3rzvRiTejOo1fDpt7ClCjFjSqv1H6nQ5/W6s5P1kSS+As6PB27n1VvNqn4WKxNTEvInBb5RhpKQCpoF1IoFGaVp6n2rP+1RbLGj69c04euYk3Zb8SFvYzaIdnKoXXaWv+dU7W+FMtSKhzYE/nD/B/TVhFlaHOhxWnSqxJJKTv681rZk5ggGd5gMx7UpI5WeJESYf6YwwiXaE0MjjSs++IeRzJIJ0rFG32pBVr6N73FTYRk8N58f1P8TGRqw+XBORaAtWJqGNDpOI+mxSHdpSnD2lAehGYQTn98JwxXuUOmvN1hDGnZB67733cMUVV+i6/NIvgoYaM/GB2pKAIlFCRNFdxERXj9G8LjMDYY0GZybV14fvwxMh0TJ3DKdeQ28kDaV6tDdW2eWEq6XG/cRiQf2QFNyzyrfAnCJSSy9aGnzBCjElFWoa2ChNOzw9A0c179P8+wdxS10CGuwJfuI9Gi3swdAOTtWLrtLX3PLFHnSdVig+1G5Zxi1f7HV/TZiF1T62G679SL3QjuNLGtDikJFulVB80WhvNIp+nwkNCUh1pqItoQ0WW5PoZqOuNhJToc4RDAvq6jQYYdIbjtFG9g0hnyMRpGP9B8O7cNMLT6F79Urshoyia89H1i8js/hRBFCzLQnSifOE2aXe9IhAmC2TUGq/9m5bhZ9suQctqao0nCyjFLawGwciFu9BSgJmXXkFvu7ai7JWh+77m9kcxa2Q+vnPfy4MOe+66y4MGTIk+kfFRBXFkoDSeRSJMlusHE4tgxlzzmmFhVETNH1h7hhuvUa7oxn17UeQTZPskeQ/PBkyOr96UaT1lGjQzqT2sArMRbSsvghZrjykW2p1Q/ZaT61Qp8YbjkvZttXvfcglurBeRl2mvngPVLNltuM0EGaiq2urG9E1PqunkE6S0DXejnXVTZhPXxNGYbXWdqNh76mobrpC2EcIAd7lwnhNZOE8nIcNeRuwL2MfkrM34Fenz8e4jNNNpcCiQW9FCEO1bwipri/CdKx3MPyubcC11yO/oV55E1Q9/Q7S5l8RdmRKLYDSuzpw2s6NWDV6iphDGWx6RLjjikikTBmah1u+OIZ7UnJEQTiJKLIqKGz3zFM1Or8jmKfYaKY726Dg/7P2Tbhu2+/hWqbviWZmcxTXQuro0aPCeJNFVP+BbkBUE0XpvFCKlUOtZVB/P+dll8Dy4r+8QRfXZZd4b4RqQRPqxRbLUTBmCKdew6gbRRupkttH+3hBlYVRYO4bLXtSjHIYn/K+T8hez1Mrf/hpYjGnGhnvz6X2M9IsqIbjUsZPwFG/KfZAdbYUUAjq1WyF0nEaCFPR1TSbbzeC+wcC0qxh31DUBrfdbdmoXvd9r1+UIsCzhtp8IgvE9OPTsegbizC6aHTI53ikNhLRjhCaPR4z9g3qc0Td7ernyxaBz5XPYPg9a1HpFVEeZAldX68LW0hpBdC46gMorTuKGad+EyeNHYmy/HRT76N3/dFoL6ttDzo6kv0bkHLKsbC1HSe1HxFddaXdDndnXSBxGYHtx4Ywu7NJ9LUmO3Dv6w8G9ESLpPQkLoTUxRdfjJUrV4qoAtN/0CsMpHobWsCUv9fDzEBYvQ6MZVvXIWncMK/BXee29Rh2vNancDDUiy0S5+a+2rEH60bxmWNm9/XgCrUTyz9aJmFl089QdvkNSB/uFgB67vX0vGvCcvxl6kW4fuNrwmmbps//bcrFuDvFjiKdBdU+7UrdNG3O6ApYfKbYA0+eZ0FdphRSS76SauywZaI9JR8p7cfCHp1iJro6Iy8Dkrr23yN5pudlhH1DURvcdrUU+BWP09sd2X9MN7JQmhB6vUm0LAKiYXIZ6vGEYt/gtpHwrTn0+rIpgpdSVb/YHHa6ikgcP9M7HNeLJCNx3Ay/r3UcPADHgQOwDhsGa+mwkARQRmcHTnjnKCz/bUSrifFLeuOKCgt3o2L059i583Xs3KljOOwRl4Vv/QKFHVRWkIDuk36Lrq8PIXF4gv81FUGdWWOE3dlmRHUkpSdxIaT+9re/4Tvf+Q4+/vhjTJo0SYyLUXPDDTdE6/iYKEOioyKrAl/WfImGzga/DrBwRYk2SqR0YJC5Hf0RaDowQr3YInFujiah7tgj7UYJpZhTN1omA43Jk5Buzw7oXr+zqhLvDZuNdQVjUNRSi6r0PNSmZOHaA3tQZLCgGtWdqR3uP3BtxUe7HhH/LpSWfErnHSmYje1jLvemacbueAllYYxOMRNdpQjEQ2NKfVrR7ywbgiM7d4ifXwrjhqI2uE1Mr/ErHqcfq3h4flQaMKJhI6F1wA767wJE6YIdjzZla3bToGsjofiy7VkckXGqdh2jqBPVRFE6jyJRJKKKfni+XzSq9bUlqF+X6/ls9yN7xnqkXbzQ3LxGGTjFMQ5pSPbzmAuGcv3V1OxA5cHvBTccVtVCNXyyA1U3/hlwPaYf7Y2gzqwuhLRjuKI6ktKTuBBSL7/8shgTQ517FJmii16B/p+FVPyijuioiUSU6EWJzik6LWgHRqgXWyTOzdEmlB17NOa8mS3mNBMtM3KvH11Ei9cWIZ7oj3eHZ6kKuKAa1Z0pDvcLMAuzJp8XcldPV3Zxj4jy/CDbx1yGaVlFSEN4GEVXlfTTgoI0zJ0zXnRNbdl5HH94egNmS1vxcmJ4NxS1wa0ttR6FM17A0fVXiEihIsCLh+VHpQEjUhuJkM0Qg0TpAh2P44O3dVO2wTYNJHR2796GtIQW5DuyVW9Mo4z2whpGBEVJEb7VshS/33Sf38aSCsupJorSeRSJ0oooikT1iCjCgvp1OUiafcAwMqUIoOotlcBb1W4RZWCJEQw6T5wuJyoPmhztZS9Bd3sCqu7/SeDGEk+dGY049Rkeb6LOLMco7W9yc2BWVIdbehIXQurXv/417rnnHtx2222wUC0E0y9QIjpk9EceNdReTZ1BkYgSwyjRRUuDmjKGerFF4twcC8yOpQhmUBmNYupQomVGo4WKhwzD/Qslvx1ebmlCxD5K4XT1tCK9R0Spvm8b0qG6hUaMXvpp5MRsXPHGVqQ6gU5XMZw2CQmqwbqh/Pw+0wdOGgbHRdl+ApxurKMKUtFa+RXSyiYjc+jYXi0SD9kM0UTax+h4UtESsDvU6FxRb9ikURJurLoc8xpP9rwxYLMcCTmCoqQIjyXU43ej7oXs+Yy1G0sST0Y1UZTO06ZsqffOUVkZMMVHAiht4mhUv90Q0BLDDM11Vl3D4aa6BGTrXCymGkuogzP9f1D18jue1KanY9FEitSujbqFsTkwG4kPp/QkLoQUuZlfeumlLKL6GRTR6aif5m2nppsotVcnZq0LW5QYRYmW7V+Gc2efi2un/NNwtlmoF1skzs19jdGct2gVU4caLTMaLWS4w4uCj1KoKDdil7MZLmc9LAnZsFgzoto9ZpR+Gv+jsZjQkYBz222woBgrnT/F3MzHkSC5wvr51dMHuhuqkVV/AIl2usl6zt0NzyHzrRuRGcEsv0iKxENOPwdJ+whvn7pWnLBwJL78916f40msPxhSd6jeho0Ez1+KXsa01vHId2bDdk4uDrdWI9uRjAxrhynBq04RHkms8YqoUDeWVBNF6Ty/WZRlIwL+O/FvtZ27nnovs9EoheoDTdi160RUVHzhNRzetWs2Mi1NGFYeWle1T43iP95T1YdJ4nna924xteGbFgW7mWjYKsStkLrqqquwePFi3HEHDYFl+gvJKFSJKMIinlvTdsKa2BKWKNGLEhF/WvcnPLTeY/g5YWHULrZomb/1Bdo5b+GM74lmtMxotJDuDi9Cn5lwoOMvP6EWWz543lvwO/GsK6LqZWSUfkptcnpElPsmsr39HBzonIp5V2aiZNzksH9+rXC2334bHCdUoDTMGqxoFYmHnH4OYC+g9fb5/SXjcHpRtvd4uqstQW/i5ma6udD27QzUVjdhxZN/9GzGZuKcwt2YlFUVUPCSgK7ZeAxOp4wUi4TirgJIsuQjpsxuLCnqRDVRlM7zzqKcUQdr6VyYQc9jLlRKy8vx7kejUF9XjJSUZrS3Z6CrMxVDzysP6i+o3sSp151Q7VCiZjcTgd1CvxJSZLhJ8/aWLl2KyZMn+xWbP/zww9E6PiaKtLRRN4M2imjBLVP+iG+MLw9LlGijROHUXYV6sYW6S4kH51s9DBeqL96Cbe43428RMeGjpC1WjgR6r60rFBFFyNj64Qs46aIzozYywij9lJ2a6BVRCu2ufCD7BMBTtB8qesK5/r77sWn+NFyuMkkMlJIyYxViNuUcyXxEI3uBKuTg9iW+Y6V+s3Q7PrntDKTbk03fxM2m9YsKhuCNP/1KlZIE3j86GsOvfggZI6bqnq/qVC4xNSUBw5AtUoUU5SKBFmq0mwrLqSZKpPPKRpgWUQo+nbthUDxsOKaNHoXdO79Edlc3ZNmJiaNHideNUDeEKHYroUatos6G59Dyxj1o6C5Elq0a6RfeHTQy29d2OGELqc2bN+OEE04Q/79lyxafv1MXnjPxhVG76LzR0wJOXQ+GEiWidB5FouKhGFyBdscPvvgxipprUZWRh0XfO7VPnG/10F2oqLX601uBjbeGld7pS6I9ub03Zm8ZpcOKyu1RN6XUE85kimhvboArVYJFXSijk5IK15cn0vSzITpRyn17ak15+wS7iZtN61sbHfrniK0UGQaRKLWIIja1O1FgkzCv6WScefr5qB3ZEVa0myJTgWqioonehmXBOBny7mdEZJP836RxwX2ulIYQo78LVfBGRONhbFv8JlY2PgFZbGNcmLv4cYwPEJmNBzucsIXUhx9+GP0jYWJOLNtFadE5d/i5Ip0XL8XgFIn68OGn8f++fE3cpFyQ8Nej38Fpj98W08iUWYNRv4WKWqtnNMJG0Qla6MNM7/QFoRQr06BWGgxLM80COThHo9sxknRYtMfWGAnnczM+FdE2xRhBlhIgaVJSkfryhJt+DjVKGYq3T6CbuNm0Pp13Zs8RighWf7bXP5VLN8LzRqBwWoGICgWvbIrDDcv0CaL4X0kPi8corB+hCt5IItQt+3djZeNPhIgi6HFl449Rtn8P0qeUxK0dTkRDi5n+SSzbReOtGHz/9n34uUdEEfR4/cZXcWD7d1E0e1xMvmeoUQPvQvXFWyISJURUiC328YBe9KglsQsf7XwfMyaf4T0HXjpy3MeniWaa0TiOqKSbIkAvHRYtU0pTwtmTBjvcfTMs8mRkOuf4WDxE6svTW8Ta20eb1jd7jii1aWTuihN/59MNSv+bPzU/otRan29Ycn6MjDA9n4IRquANN0Ld4CyGjIM+r8lIQKOziPp349oOh4XUICSW7aLxVAxe0lKLVp++Ypr5JqO4VTV7LoqIqMGbb/ZU9IiowZtBowZioaKaKErn+bRBh2YxEC3CsWPQRo92Dm0WU+Zf3XkfLLseEIL6xNILvCKKoEcaDEszzYwiUyGnm6JMOPVGgQgknCmSk4g8dMp5fqaMkfry9Ca97e0T7BxR16YldzYIU1fyI6PrK5xIYzTtSqKW7u5KQUaEFiXRpDlUOw26NkaUQpIqRcehAnUg2keUxr0dDvsXMFGHxNPMwpl93lFXNGG0mB2nhmoHisZXxOT71R3cqZFt7hobej0oSvEuLX5EOBYD1O2yb5X7MUxo5777zLNQefXV4pGem0GJDFBEgOZkkYhS1kMl5L6+rkdEKThpZlZ7Z9D3Lp0wuddFVKygm2/a3G/CpnEVlWULHK5iH1NGrVWIUoNKjwvPPhH2uk0Rfd6xgsTTnPLcXmvuCHSOaGvTiqs/w0mf34V530jGlfeeFNIInXCvj2ihbFjUiFRm+eTI148oUh+gvjFwveI49cxw8dxI5CoZEBJPRF9mQDgixcSk4ypebljFv/Mtliy+/SbY2ncCjU40Ij0ijxM1NL/O2vU5khJb0NnVE4hObWtB2pY16M4rDb57jcRiIILhotGyY1AiA5TOo0iUGhJTVsdRWJDqI6Zo2R+REv8plaij6XojEVXvuB5O5BmaMqqtQoYcWYbU5d+N6POOJX0ZtTFTm5bc3YRhJ46ELcRIVKzsSswSMJWZ2/sWJdGubxwfYjo9XjIgkqyVjUzUaGpqEjdoSvlkZmb2+vcPpe0/2h1X0SaSFlexqFOxZNMa2Fb/Rtx8qJDxLZyFDZgYcQfUkSOv9LiEyxBGeNXVozFyzx7MWLvO3UQfJbNNXSgi8chE/7A+DWwNYTFt/fwLsdPWUvbss0ibPSukz2re6/P8Qu5LL1qKFY02kc5zekTUnwLUSA0KhGfOXrQdzEDdu836Q3hj9HnHiliYzMbDMUXr+ogG1XsP48jOAygePQyFI0sMN3c0V5NGQun5xcWazXRP0Qi+eLqnRPP+zRGpAYrWFI8KQI3a/sPJZ/cmkba4ihqkFCfwiFtEEdRaewGWYzeGoUnOCLsDiharnlEr7ptgbul2DNlfj7Frye0Ysd+9RjBcNBa+MYGaDi5Pg6iJonTeiCBde4MCT9db6gggcUqnOVPGKH3esSAeojbR6j7TbkSNro/jDjvk+o6o1tIFwu2DtcMzEmYH5n5f8ktP+mzulBFQxZegN5nUx/WNvQkLqQEILQAkopyJFrjSrJBbHaKLhgpA9SJTveHXEy5Ra3HVuflQF18OGtCEjLA7oGjHpx7++/GhE/Hstu9i0rG9+AMej8gV2DQBXKZDIZq+MYFC7iSeBr2AisSUMUqfdyyIhht2rAil+8xoI6q+PqjeckfFZTjy/GFI0mFhlxFKvVU0RxpROkwRcn6bO7jEcxoJFSgyFYsIVkaodhr9FBZSAxDaRXUVp8IxIctdsSfLcG5t8DPF622/nnCIRosr+RYdShiCmZKlZwyHWF4k1CErog4oWnSUuYV1HVlCRFHa8Eh6nnh/H5PFWLkCG7hMhxOdiNQ3pj/Oyep3RPHzjjbhRjXjqT5T2Yiq3dm9G1HP9dG4dTf+88JRdCRlGwqaWGA00ohqipTvq93ceX4KMVfTSCDFQwSrP8NdewOQ1MzEHhFFSJJ4npLpO8pHr+NKfHkM/XpCRWlxVRNKiyv5Fs34bBsW7GnHoopFcHm6Wqib722cLaJR4UwmV6CFiRYdupRq2vK9ZnK1KVl4dOrFcCqfQaxdganQmGpkrnrb/RhB4bHoKps9K+JjpR1uXf1n4pGJ3887mihRTSGmTJ73VEvz1HU/wKu/u0M80vO+giI+X204ilQq4tNxZyfoZ+kYOsErorSCJpYoI43UaB33ezZ3aixiOLkeRhEsvm7NwxGpAUiLVeoRUQqShFZ6vZ/lsyMx+aRIlNq36MWi8/FRzky8N8KGvMLROB3pmBSFrj3auVHYvOToXjy0vsG7k102fDY2Fo7FawtKheVCzFMbJmbh9Ra8w+0F4ujzDjeqGU/1meoZfD9GMpaldGNzklPXnd1oRmMkI4QiGWmkjoIpmzvt9adEo7STBcKJYDG+sJAagNAF4k42hdZmHq/57HBbXGmx0C4Ph5IKsKOgHHn2DJB0ipYrNC04Y4cV4f6FlT6uzr/83iko0ynyj6f28GgTbo0GM3AwW48UL/WZ2tojmvR2brsN+2xOtCf4u7ObETTRRlkzKsqHoezekwJaBCibOxJDFIlSrju9yQILc3rKE8xEsEId9TQYYCE1AKGTmi4QbZt5fz7Zw6m3CVdQRmLJYMbVOR7bw6NJLHe48bh4D2RRHGvipT5Tr/aIxNTD503EpGkFutdxtEcIBTw+nTWjJMiaQdea+nrTRui9kwXmjIfdegsauv4EyeKC7LIgK/GWgNdqKKOeBgMspAYodFIP9jbziASl8PfZ4+6Q0kmfBLJkCDSCJ17bw6OJugA/lB1uMOJx8R7oorjXDCaf/n+QJDtkuRHn/PDqXo+MG6XqTpo6BOn25F4bIRTpmhHIb08vQk/r4raaZux8eRQSku9HYvoxdLXkw9mZg7GT9C0dDAVZjvGop4EOC6kBDLeZhykog7iER2LJEM/t4dHAvZAfRN7wX6F2/x90azTCQVm84aiDzVENp7UQt+xwe1L11TneW6J4oEe8EpImItn+Q48vEj0f2+vH0BepOrOYXTOC+e0ZReizW1zid+9ozxF/FNSdgGYE2b72zkF7v2EhxQx4QhKUFIlSRBRBj9RmTqMXPJGpSCwZomV6GY9oF/I7ZtyOc4vG+9RohAst3oktK5Fe909IkCFDQkvO/2Bfe3mfLd69IYrjMeIVTWFnxhept4hVqo5+RkodZmne0+y0BjNrhpnNnVGEfkxKGr4IoXA+1iUT/RG2P2AYHeNOh5yLDuck8eh1jY6CJUM47eFmocV0TdUa8djb6C3k9617FJ2J0TH3y5AbvCKKoMf0umeQLjegr/De4NREURQbRbzo9b4i2kN7A/ki9QUkdErGZEdNRFEn4HN3rMZ//vylePxsxdfiGn1myzNijNI1y64Rj7QJiWTNCLS500bo184Zj9enlotHeq5E45QlLVg0ThFknvHIGAg1uJHCESmGUZNTjlbnPNR3X+et88m2PYY0lWt0JJYM3vbwyaPQ9fVaJI6bCdvoqX0+RicejFMD0dlZ5RVRCjTmp6uLRIU5T7FoE00n+HAiXkaRjv6UyuwrG4HeQC/atu6Vw3h+2l1oT2r2fp2Z0oBglhLK5k4731Jvc6cXoTcbjVOiaGfay4QQC6VkojqCeanxDgsphlHhQB7qu693D80TWFDvuB5JyPO5WCKaOr7hOdjeuhE2WvQ2+tdg9dkYnQgIZSGPx/cPl2g6wYeS0lF7HpEQ6Y3xJLFIZcZzbVJsOgEtSO3O8BFSZjcdgSwlIt3cmSmcj2SztqSPN3qxhoUUw6igobE9IsqDLLmHyWrmoIU1AsVEDVa8RYPMEI2FPFrv39uRmlBmuEUj4tWZlIWVL6zu9bqiWNX39aaNQG9C559YSlRiygUX2mzN7tckX6uFSDcFEW3uYrhZq46DjV6sYSHFxHRoZX/Dmue/+NFz8Xo00Bme7K3BClNIxUu0JpYLudn374tITW9HvA7tqA86b62/pTJ7w0agt2m2yFia0oVz2mxCKJGIWjVyMSRXG+ZszsHnE+sgWwDJBczZmou0C6xAWmTfM1bzLSPZrFXGwUYv1rCQYgQ80sMNRZ2yF1agfsku766RnmujUWFDvlSUv1AvLDT/T1WDFW/RoFCPJZbfN9D7x1MHWCwjXu66Ihmy3BPSoOe9UVcUy1TmQBwe/1WiE3utTmQ7LWjJ+hLdBV+gqC4RYw5lYGhtCppSHchssyKtw9rrbu69tVkri8FGr7ejzsFgIcXwSA8NaTMLkTQ6253Oy0uJnogiKOpENVGUzqNIFImo+Y9EPDMt1tGg/kCgDrB4WGyjRbrlOOZm/h0rG38MGQmQ4MTczCeQbiH/pZJ+m8qMNY7Gzthc0waMyEuDRQJaLPTHBbROgXXPcNxwYRZ2rvm7EE/0p6/c3Htrs1YY5Y1ePEadWUgxPLRSB1poY7bYUmE51URROo8iUVEaPBvraFC8M5A7wHyo24PxKe+jLHEDGh2FsFurkZ5wPKL08ECndW21X5SZNkzh0NjYiDoTw85pusH9Cyf5zN68d8EpmD+9DJt/ZBXDmWmuIImoc669Pm6jUdHYrC2M0kYvXqPOLKQGAKHutLSGerEa6cEEgG54fNOLKv29A6z5eK0Y4kvz5wLeVD3pYRJPQkBFIT080NdHr4giZIjnFHUOdbO0YcMGvPXWW2I2IM0InD9/PqZNm2b49UazNyedeS6GT5km0nkUiYp3ERWNzVqhw4nC9nYghexAB1bUmYXUINtpGTklU02UtkZqsEajmP5Lf+0A27xiGd5/8q/eGzTNn6ObbW+mhwd0J67m5kvP9Tpxg0WiFBEl3kKWxfPy8vKAkakMl4RSh0U8+ryem9dvBFTEbAg8dqu/R51ZSA2inVYgQz0qLKeaKErnRWOkB8P0Ff2tA4wiUYqIIuiR0j4UsTC80cYoPTwQO4uj1YlL6TzlM1Kg5/S6kZCKx3qeiCOiodIYPcuXeI06s5AaRDutYIZ6tDCxgDLPQB8my/QOdPPyu0G7XMG7uAZZejjczuJodeJSTRRFC9WfFT2n1/tTPU/EEdE+tnwZH4dRZxZS/ZhQd1oDeWBubxOPw2SZ/glFAPxu0HHexdXfOouj0YlLUSeqidLWSBlFo+K1nicqEdE+tnxJj7OoMw8t7scoOy2vQ26QnVYsB+YOhDRpx54G8dgfh8ky/Re6WVEEgMQT0V+6uOKls9gstC4ml2dF1I1LheW/+MUvcNVVV4nHQIXmSj2Pmnio5wklIhoV7CU4NOpHcHm+BT0eGnXtgIqmckSqnxPqTsusoZ6ZtJXREMqY5drjpGA/FjPHmMFNf+3i6i3iqbOYIlCBisvjvZ6ntyOizcdr8cpb25CWMAtZie1o6EpB686vce03agfMec5CahB6HgUz1DOTtjIaQhnTXHsMClTDaY3mFCkTLaoa24UDNpk3FvWTLq6+qA2k67Y/dhbHYz2PUUQ0Vr5W9Z6IV4sjSfxxY6IGsB/BQoox3dmnLJpGQyinJo+Nba49BgWq4bRGx3LmGDN4WLy2Ercv2SxSHeSATeaN5DsUz/RlbWB/7SyOt3qe3o6IZg+CGkCukWJMp62CDaHcs39LbHPtUSpQpdf9CvYRWms03TxGrfgAZc8+Kx650HxwQZuJNVVrxGO4kShFRBH0SA7Y9Hq8Eg+1gSSesrNP7Dciqj9B4ql0wuSob3ozBkENIEekBiGBRhyYSVsZDaEsHz4Rm+No52Fm9E0krdH9deYYExlGae1QoHSeIqIUaIwIOWAr7tfxBtcGMuEyaYDXALKQGmQEG3FgJm1lNIRyZOn4mObaY1WgGtMhxcyAwiitTXPEQhmdoQy0VYspmsVGY0TiESoYPtbdjvZEG1K6unv+gmsDGZMMZCd3FlKDCLMjDsx09hkNoYynnUcoBaoxHVIcrMg4TiMQjH9htVFam66DUISU3kDb+xZO9J4LZgfj9gY+DSTjhmHioRqUHm/i2kCG8cBCahARyogDM2krowGWsd55hCJC4rFAtT8WGQ9G9Aqry847RTetTZuJUDEaaBvqYNxeNWuEjC2lQzDlnnuRM3EiiyiG4WLzwYUy4kBNoBEH8QiJkJMfWIHLn/pCPNLz/lSg2h+LjAcjRoXVuc0QaWwST4SS1g4lGqWGxNOc8lyfSJRe1JhejxuzRtmFrqICFlEM44EjUoOIUEccxBtGIoR29f0lPdYfi4wHI4EKqxfO1k9rR4NwBuPGksHQus4wkcJCapBBKQKqiYqX+ovBJkL6W5HxYCVY96pRWjtSQh2M29/NGhlmIMBCahBidsRBvDEQREiwImMmPugr09V4jBrHUwMJw8QjkqyNIzNRo6mpSSyAVN+QmZnZ14czIKCaKK0I6Y+F2pSm1BYZM3HatRdkLmUsiKeuPYYZjDSFcP9mIRVDWEjFBhYhDMMwTLzcvzm1x/Q7SDyxgOpfUBs9dYBR8TKnhhiGGUiwkGIYpvcMHSVJFC9T3Q3DMMxAgH2kGIbpPUNHWRYdYPQ6wzDMQICFFMMwvWvo6HKJDjCGYQYPRzq68El9s3gcaHBqj2GYmMGGjgzDvHTkOBbtOOiZeAo8OKYUlxfnYqDAESmGYWJu6EjiiWBDR4YZXBzp6PKKKIIeb9lxcEBFpjgixTBMTGFDR4YZvOxt7/SKKAUnTapo70RxciIGAiykGIaJOSSeWED1MxoPA3V7gJxywF7S10fD9FNGpiSJ1JdaTCXQpIqUJAwUOLXHMAzD+LLhOeCRicCz892P9JxhwqA4OVHURJF4IujxT2NKB0w0imBn837qbN5S34GGmnZkFaQgPTs5qu/NMMwgj0SReJJVMQQpAfjFZo5MMWFzpKNLpPMoEtUfRBQ7mw9wtn16BCtf2A6SwJIEzP3+WIw/mbugGIaJApTOU4soQnYCdXtZSAFwNHbCUdsOa14KrPaBk56KNcXJif1CQIUDC6l+BkWiFBFF0OPKF7ejbHwOR6YYhokcqomSLP4RqZyRGOy0rq1G/ZJdAK2/EpC9sAJpM3tvmDUTn3CNVD+D0nnaZCytd4017X11SAzDDCQo6jT/Ubd4Iuhx/iODPhpFkSiviCJkiOf0OjO44YhUP4NqoiidpxZTtHm0F/AQX4ZhosS0K4Hys9zpPIpEDXIRRVA6zyuiFGT365ziG9xwRKqfQek7qoki8UTQ49zvjeW0HsMw0YXE04hTWUR5oJooSuf5IHleZwY1HJHqh1BhOdVEUTqPIlEsohiGYWILRZ2oJkpbI8XRKIaFVD+FxBMLKIZhmN6DCsuTRmdz114c0Xy8VgxHp7mefWX6y0KKYRimF2EPuP4NiScWUPHB5hXL8P6TfxVD0Wk4Os31pJFUvQ0LKYZhmF6CPeAYJnqRKEVEEfT4/lN/E3M9ezsyxcXmDMMwfegBR68zDBMalM7TDmaRXS4xHL23YSHFMAzTC7AHHMNED6qJonSeGsliQVZh70d4WUgx/XMW2L5V7keG6WcecGrYA45hwoPSd1QTReKJoMdzrr2+TwrOuUaK6V/QFPq3bnRv5ekuRA7MZB7IMP3EA47Secrpyx5wDBM+VFhONVGUzqNIVF917UmyNsnI9Mn0aMYEPJWeGQBQTRR7wDHMwLl/c0SK6T/wVHpmAMAecOapamzHvtpWjMhLQ5GdU6BMfMJCiuk/8FR6hhk0LF5biduXbIZLBiwScP/CSbh0ZllfHxbD+MHF5kz/gafSM8ygiUQpIoqgxzuWbBGvM0y8wREppn/BU+kZZsBD6TxFRCk4ZRn7a9s4xcfEHSykmP4HiScWUAwzYKGaKErnqcVUgiRheF5qXx4Ww+jCqT2GYRgmrqCoE9VEkXgi6PG+hRM5GsXEJRyRYhiGYeIOKiw/bXS+SOdRJIpFFBOvsJBiGIZh4hISTyygmHiHU3tMr+Fo7ETHngbxyDAMwzADAY5IMb1C69pq1C/ZBVDxqARkL6xA2szCvj4shmEYhokIjkgxMYciUF4RRcgQzzkyxTAMw/R3WEgxMcdR294johRkz+sMwzAM049hIcXEHGteikjn+SB5XmcYhmGYfgwLKSbmWO1JoibKK6Y8NVL0OsMwDMP0Z7jYnOkVqLA8aXS2SOdRJIpFFMMwDDMQYCHF9BoknlhAMTR4lmap0RgQ9ghiGKa/w0KKYZheY/HaSty+ZLOYoUaz1GgMCDlYMwzD9Fe4RophmF6LRCkiiqDHO5ZsEa8zTLxB5+XqPbV8fjJB4YgUwzC9AqXzFBGl4JRlMUuNU3xMPMGRUyYUOCLFMEyvQDVRdFNSkyBJYiAtw/QV1a3VWFO1RjwSHDllQoWFFMMwvQJFnWhnT+KJoMf7Fk7kaBTTZyzZtQTzXp+Ha5ZdIx7peaDIKcPowak9hmF6DUqPnDY6X9yUKBLFIorpKygCdc9n98Alu8RzeqTnz5/7HxE5VYspjpwygeCIFNOv4YLQ/geJpznluSyimD6lsqnSK6IU6HknjnHklAkJjkgx/RYuCGUYJlzKMstgkSw+Yoqel2aUYubMQo6cMqbhiBTTL+GCUIZhIqEwrRB3z7lbiCeCHuk5vU5w5JQxC0ekmH4Jt9IzDBMpCysW4qTik3Cw+aCIRCkiimFCgYUU069b6bkglGGYSCDxxAKKiQRO7TH9Em6lZxiGYeIBjkgx/RZupWcYhmH6GhZSTL+GxBMLKIZhGKav4NQewzAMwzBMmLCQYhiGYRiGCRMWUgzDMAzDMGHCQophGIZhmOjQeBjYt8r9OEjgYnOGYRiGYSJnw3PAWzcCNHaHHOPnPwpMuxIDHY5IMQzDMAwTGY2He0QUQY9v/WJQRKZYSDEMwzAMExl1e3pElILsBOr2YqDDQophGIZhmMjIKXen89RICUDOSAx0WEgxDMMwDBMZ9hJ3TRSJJ4Ie5z/ifn2Aw8XmDMMwDMNEzrQrgfKz3Ok8ikQNAhFFsJBiGIZhGCY62EsGjYBS4NQewzAMM6iobq3Gmqo14pFhIoUjUgzDMMygYcmuJbjns3vgkl2wSBbcPeduLKxY2NeHxfRjOCLFMAzDDAooAqWIKIIe6TlHpphIYCHFMAzDDAoqmyq9IkqBnh9sPthnx8T0f1hIMQzDMIOCsswykc5TQ89LM0r77JiY/g8LKYZhGGZQUJhWKGqiFDGl1EjR6wOBqsZ2rN5TKx6Z3oOLzRmGYZhBAxWWn1R8kkjnUSRqoIioxWsrcfuSzXDJJBCB+xdOwqUzy/r6sAYFLKQYhmGYQQWJp4EioAiKQCkiiqDHO5ZswWmj81FkT+nrwxvwcGqPYRiGYfox+2pbvSJKwSnL2F/b1leHNKhgIcUwDMMw/ZgReWkinacmQZIwPC+1rw5pUMFCimEYhmH6MZS+o5ooEk8EPd63cCKn9XoJrpFiGIZhmH4OFZZTTRSl8ygSxSKq92AhxTAMwzADABJPLKB6H07tMQzDMAzDhAkLKYZhGIZhmDBhIcUwDMMwDBMmLKQYhmEYhmHChIUUwzAMwzBMmLCQYhiGYRiGCRMWUgzDMAzDMGHCQophGIZhGCZMWEgxDMMwDMOECQsphmEYhmGYMGEhxTAMwzAMEyY8ay+GyLIsHpuamvr6UBiGYRiGMYly31bu44FgIRVDmpubxWNpaWlfHwrDMAzDMGHcx+12e8CvkWQzcosJC5fLhSNHjiAjIwOSJOl+zcyZM7F27VrD9zD6e1LLJNAOHjyIzMxM9BeC/bzx+H0iea9Q/63Zrw/3vAn293xe9e73Cve9+uq8CvY1A+28GmxrVryeV31xbpE0IhFVXFwMiyVwFRRHpGII/fKHDh0a8GsSEhICfvjB/p7+rj8tTMF+nnj8PpG8V6j/1uzXR3re8HkVH98r3Pfqq/Mq2NcMtPNqsK1Z8Xpe9dW5FSwSpcDF5n3MddddF9Hf9zd66+eJ5veJ5L1C/bdmvz7S84bPq/j4XuG+V1+dV8G+ZqCdV4NtzYrX8yrezy1O7fVTKJxJarmxsbHf7fCY+IXPKyYW8HnFDORziyNS/ZSkpCTcfffd4pFhogWfV0ws4POKGcjnFkekGIZhGIZhwoQjUgzDMAzDMGHCQophGIZhGCZMWEgxDMMwDMOECQsphmEYhmGYMGEhxTAMwzAMEyYspAY4DQ0NmDFjBqZOnYqJEyfiqaee6utDYgYANI5h7ty5GD9+PCZPnoxXX321rw+JGUB8+9vfRnZ2Ni6++OK+PhSmH/P2229jzJgxqKiowNNPPx2z78P2BwMcp9OJzs5OpKamorW1VYipdevWITc3t68PjenHVFVV4ejRo0KgV1dXY/r06di5cyfS0tL6+tCYAcDKlSvFnLNnn30Wr732Wl8fDtMPcTgcYqP34YcfCsNOWqNWr14dk3sfR6QGODSfiEQUQYKKdDNrZyZSioqKhIgiCgsLkZeXh7q6ur4+LGaAQNFOGvbOMOGyZs0aTJgwASUlJUhPT8d5552HZcuWIRawkOpjVq1ahfnz54sJ05Ik4Y033vD7msceewzDhw9HcnIyZs+eLU6QUNN7U6ZMEQOUb7nlFnHTYwY2vXFeKaxfv15EPmkCOzPw6c1zixm8rIrwPDty5IgQUQr0/4cPH47JsbKQ6mMo3UYih04IPRYvXoybb75ZWOBv2LBBfO28efNQU1Pj/Rql/kn7h04kIisrC5s2bcK+ffvw0ksviZQMM7DpjfOKoCjUlVdeiSeffLJXfi5m8JxbzOCmNQrnWa9BNVJMfEAfx7///W+f12bNmiVfd9113udOp1MuLi6W77///rC+x09/+lP51VdfjfhYmf5DrM6rjo4O+dRTT5Wfe+65qB4v03+I5Zr14YcfyhdddFHUjpUZXOfZp59+Kl944YXev7/xxhvlF198MSbHxxGpOKarq0ukTc4++2zvaxaLRTz/7LPPTL0HRZ+oaJOg6dgULqUuBmbwEo3zita2q6++GmeeeSauuOKKGB4tM9jOLYaJxnk2a9YsbNmyRaTzWlpa8O6774qIVSywxuRdmahQW1srak+GDBni8zo93759u6n3OHDgAH70ox95i8x//vOfY9KkSTE6YmawnFeffvqpCK2T9YFSu/D888/zuTXIica5RdANkcoRKL1DtZ1krzFnzpwYHDEzUM8zq9WKhx56CGeccQZcLhduvfXWmHWrs5Aa4JAq37hxY18fBjPAOOWUU8TixDCxYPny5X19CMwAYMGCBeJPrOHUXhxD3XVkX6AtDqfn1HLOMOHA5xUTK/jcYgbjecZCKo5JTEwUJmIffPCB9zWKAtBzDnMz4cLnFRMr+NxiBuN5xqm9PoaK4Hbv3u19ThYFlIrLyclBWVmZaO+86qqrxJgXStM98sgjom7gBz/4QZ8eNxPf8HnFxAo+t5jeoKU/nWcx6QVkQmrxpY9B++eqq67yfs1f//pXuaysTE5MTBQtn59//nmfHjMT//B5xcQKPreY3uDDfnSe8aw9hmEYhmGYMOEaKYZhGIZhmDBhIcUwDMMwDBMmLKQYhmEYhmHChIUUwzAMwzBMmLCQYhiGYRiGCRMWUgzDMAzDMGHCQophGIZhGCZMWEgxDMMwDMOECQsphmEYhmGYMGEhxTAMwzAMEyYspBiGYRiGYcKEhRTDMAzDMEyYsJBiGIYxybFjx1BYWIj77rvP+9rq1auRmJiIDz74oE+PjWGYvkGSZVnuo+/NMAzT7/jvf/+LCy+8UAioMWPGYOrUqfjWt76Fhx9+uK8PjWGYPoCFFMMwTIhcd911WL58OWbMmIHNmzdj7dq1SEpK6uvDYhimD2AhxTAMEyLt7e2YOHEiDh48iPXr12PSpEl9fUgMw/QRXCPFMAwTInv27MGRI0fgcrmwf//+vj4chmH6EI5IMQzDhEBXVxdmzZolaqOoRuqRRx4R6b2CgoK+PjSGYfoAFlIMwzAhcMstt+C1117Dpk2bkJ6ejtNPPx12ux1vv/12Xx8awzB9AKf2GIZhTLJy5UoRgXr++eeRmZkJi8Ui/v/jjz/G3//+974+PIZh+gCOSDEMwzAMw4QJR6QYhmEYhmHChIUUwzAMwzBMmLCQYhiGYRiGCRMWUgzDMAzDMGHCQophGIZhGCZMWEgxDMMwDMOECQsphmEYhmGYMGEhxTAMwzAMEyYspBiGYRiGYcKEhRTDMAzDMEyYsJBiGIZhGIZBePx/ee1pbNkuyEwAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHLCAYAAADBbjLhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAop9JREFUeJzs3Qd8VFX2B/Dfe5NMSZv0THpCqKEklNCliTRFEbGhAhZ0EVFs+9ctYlvR1bWLIquLBVwsFFGqkNBLKAklhCQkkJA+KZNJncy89//cO8mQhosQMinn+/nMZ0pmJvdNAu/k3HPvEWRZlkEIIYQQ0gmJ9h4AIYQQQsj1QoEOIYQQQjotCnQIIYQQ0mlRoEMIIYSQTosCHUIIIYR0WhToEEIIIaTTokCHEEIIIZ0WBTqEEEII6bQo0CGEEEJIp0WBDiGEEEI6LQp0CCHXXUZGBp544gn07NkTTk5O/BIZGYmFCxfixIkT6KjOnj2Lp59+GiNHjoRarYYgCDh//ry9h0UIaUCgXleEkOvpl19+wd133w0HBwfcd999iIqKgiiKSE5Oxtq1a3HhwgUeCIWGhqKjWblyJR5++GEetLHjS0hI4McSFhZm76ERQuo41N8ghJDWdu7cOdxzzz08iNmxYwf8/f0bff2tt97CsmXLeODzeyoqKuDs7Iz25tZbb0VpaSlcXV3xzjvv8ECHENK+0NQVIeS6+ec//8mDlP/85z/NghyGZUGefPJJBAcH2x6bN28eXFxceJA0bdo0HkSwTBDD3uvZZ5/lz1epVOjVqxcPMBomptnUEZtCYtmWptjjL7/8su0+u80eY9mlu+66C25ubvDy8sJTTz2F6urq/3l8np6efHyEkPaLMjqEkOs6bdW9e3cMGzbsD73ObDZj8uTJGD16NA9kWE0PC2ZYBiU2NpZPF0VHR2Pr1q14/vnnkZ2djffee++qx8mCHDbdtHTpUhw8eBAffvghSkpK8PXXX1/1exJC2gcKdAgh10VZWRlycnIwY8aMZl9j0z0smKnHpqU0Go3tfk1NDe68804eeNTbsGEDdu7ciddffx1//etf+WOsmJk974MPPuDFzhEREVc11vDwcP7+9e/JMjtsSu25557DgAEDruo9CSHtA01dEUKuW6DDsGmopsaNGwcfHx/b5ZNPPmn2nAULFjS6v2nTJigUCj7V1RCbymLZns2bN1/1WFlw09CiRYts35MQ0rFRRocQcl3U166Ul5c3+9ry5cthNBqRn5+P+++/v8XanaCgoEaPsdVZAQEBzWpi+vTpY/v61erRo0ej+ywzxAqkaak4IR0fBTqEkOtCq9XyAuRTp041+1p9zc7lAglWaPy/VmJdDisubonFYrnm9yCEdDw0dUUIuW5uvvlmpKWl4fDhw9f8XmyJOqv5YZmghtiKqfqvMx4eHrY6oIZ+L+OTmpra6D4bsyRJtB8OIZ0ABTqEkOvmz3/+M18x9dBDD/Fpqqb+yH6lbKk5y8p8/PHHjR5nq61YBmbq1Kn8Pisk9vb2xu7duxs9jxUXX07TGqGPPvqIX9e/JyGk46KpK0LIdcNqX1avXo17772X73lTvzMyC3DYDsLsa2yKqmk9TkumT5+O8ePH8xVXbMqLvc+2bdv4aqnFixc3WnH1yCOP4M033+TXQ4YM4UFPSkrKZd+bjYUtXZ8yZQoOHDiAb7/9FrNnz+bf4/cYDAZbULRv3z5+zQIxd3d3fmErwQghdsZaQBBCyPWUlpYmL1iwQO7evbusVqtljUYj9+7dW/7Tn/4kJyQkNHru3LlzZWdn5xbfx2g0yk8//bQcEBAgOzo6yj169JDffvttWZKkRs+rrKyUH374YVmr1cqurq7yXXfdJRcUFLD0kbxkyRLb89ht9lhSUpI8a9Ys/lwPDw/5iSeekKuqqv7ncWVkZPDXt3QJDQ296s+LENJ6qNcVIaTLYjsjv/LKKygsLOTTXYSQzodqdAghhBDSaVGgQwghhJBOiwIdQgghhHRaVKNDCCGEkE6LMjqEEEII6bQo0CGEEEJIp9XlNwxk27yzbeVZo0Dqb0MIIYR0DKzyhrWEYc1+f683XpcNdNiW7+xiMplw7tw5ew+HEEIIIVchKyvrd3dX7/LFyGwLd7ZVO/ugWI8cQgghhLR/ZWVlCA4O5g18tVrtZZ/XZTM69eqnq1iQQ4EOIYQQ0rH8r7ITKkYmhBBCSKdFgQ4hhBBCOq0uG+iwQuTIyEjExMTYeyiEEEIIuU66fDEyK2ZiRUysKJlqdAghhJDOdf7ushkdQgghhHR+FOgQQgghpNOiQIcQQgghnRYFOoQQQgjptCjQIYQQQkin1WUDHVpeTgghhHR+tLz8Oi0vL4nfhdL43XCPGQOPmLGt9r6EEEIIwRWfv7t8r6vr4dTiORC3xIN138jFamRPiUG/97+297AIIYSQLqfLTl1dLyyTI2yJR3ZQBA6MuoVfC1uOIG39Lygvqbb38AghhJAuhTI6rSzhty3YN2sBlk24AZIgQJRlPL5zD0L/uxXGrU4Yd39vRI4KsPcwCSGEkC6BMjqt7JTkbAtyGHbN7uf4+YJVQ8WtSqbMDiGEENJGKNBpZbLKjQc33iVFiD57ml+z+3L3Mki+OyFLgKGgyt7DJIQQQroEmrpqZQ4qPW7euxPPrP43n7ZiQc5799wDMWYH/HuWoTB9F7S+2+09TEIIIaRLoIxOK8utPI9nV6/gQQ7Drhf/9zv8es6EV/PUKAoowKnU1fYeJiGEENIldNlA53ptGBiUVwqhyc5EChnQlciQIeD7UkckHFoHGLJb9fsSQgghpLkuG+gsXLgQSUlJiI+Pb9X3rVCWQrLWIdtYBCDPw/ogC3aKjEoY/zUGOEZ76xBCCCHXU5cNdK4XteCPFVMEHtww7PrzqSKK3awPCLIADwcd/mNcgdP//ZkyO4QQQsh1RMXIrcxP6ovcQD0WLciDbymQ7259vO8Fid8eWhkEg7kCAz0qsAtPwS8pGd4jAu09bEIIIaRTokCnlWUEqVHjOA4jCwohqfLx1tG9qDrkynI5fOLKN+YEPhkg402fN9C3eib2ne2J20bYe9SEEEJI50RTV63MM7ASq5zHY1XVJBTl9W4Q5DACCo5o8WJhPHacT4abuAM/S+ewP/OMnUdNCCGEdE4U6LSyKnM4HJNKeVBjMrKEWZPKZFlAWaYGUiXwWs4hZCkO4dHYu/HIlvfsNWRCCCGk06JAp5Wpa31twc0pl26Qmj1DRkGCFmk/+6H8nBoDTIBWcsLB/JWU2SGEEEJaGQU6rWzswO62fXT0Gnd8EH0nLHV9r1iQ03AaK/eIFhNckvFyiB4xgj++2roWtXl59ho6IYQQ0ulQoNPKuvftgSeDTRDqdkbeHjYU/5oyD3sGDmpxGqskywOlNVrMDkiD39kMpE24EaU//mifwRNCCCGdDK26ug4mRjqj7MCXKFF5wjEoAM5qM8yeSsgJbB+dS89jmZ73suejqNgNcyP/i8jKbCiUtch9aQmcR4+Go05nz8MghBBCOrxOkdHJyMjA+PHjeUuH/v37o6Kiwm5jMRbpsf3zj+BiLkdwRSY889IAWcZFIRAfjxjSaCPBZSMHoMSrCHAw4puUqUh19kKhiwc0nlUwXci02zEQQgghnUWnyOjMmzcPr7/+Om644QYUFxdDpVLZbSwluTmQ66atGKVBD4cKA4p8u2P3mEScHqjgfa9YS4gi19NwEk6zOIj7XgB+6Cvg8UP9MCo7Af0x1G7HQQghhHQGHT6jc/r0aTg6OvIgh/H09ISDg/3iNw//AAi24mMr0VwLJ5cLEASZt4JICrW2hKh/Gruuvy0LMj4ddh5HEvYh11BlhyMghBBCOg+7Bzq7d+/G9OnTERBgDRDWr1/fYqfxsLAwqNVqDBs2DIcPH7Z9LTU1FS4uLvw9Bg0ahDfeeAP25OrljZseXQRBtH60PFkTEILuZXKzruaXIwkyMko1uHXJWqyJpyksQgghpMMGOqyeJioqigczLVmzZg2eeeYZLFmyBMeOHePPnTx5MgoKCvjXzWYz9uzZg2XLluHAgQPYvn07v1xOTU0NysrKGl1aW/8JkzD/4y8x7dm/orJHFIxaXyh9avHoZjPE+o11GkxvMZ5lMu+Hxa5lWUC1JRj/OvA1Yt/9gjI7hBBCSEcNdKZOncrra26//fYWv/7uu+9i/vz5ePDBB3mx8WeffQYnJyd8+eWX/OuBgYEYMmQIgoODeW3OtGnTkJCQcNnvt3TpUmi1WtuFve56ZXb6DB2BW2bewTNVhepADOpnxsef1eIvOwU8U1wKsS7YmZBgwbJlFixZLfHrMbuj8b1rNOaNexJ94IiMxJ9RXZ17XcZJCCGEdGZ2D3R+j8lkwtGjRzFx4kTbY6Io8vsse8PExMTw7E5JSQkkSeJTYX369Lnse7744oswGAy2S1ZW1nU9BjadtnjxYtxxx3MwDrsRtc+b0WugAXPLjNialYP/pBXiT5sliHUJHnb9+IEj8K4qhSQAH4QMRNGxz7Fv/xjk5Hx/XcdKCCGEdDbtetWVXq+HxWKBn59fo8fZ/eTkZH6bFR6zupwxY8bw1U6TJk3CLbfcctn3ZFmftl6VxTJHzMED/nB0vB1eFj3chB0IMRrhmCmioMlGggpZhn+5nu+szIKdYjEMTjiPM8l/hafnDVCr/dt0/IQQQkhH1a4DnT8y/cUufwSrCWIXFki1BbbsnQViJpMzCqqdcPRIOEwXrSGODBlCg2CHbSSY6+LNbwuQcdFThAae8EIxqqouUKBDCCGEdIapK29vbygUCuTn5zd6nN3XXeOuwQsXLkRSUhLi4+PRFtiy9/pl50qpCv3rghyGBTks2GFYBufrqMno4ZwNHfQwRbrjo8CFeArLESffCMdypzYZLyGEENIZtOtAR6lUYvDgwdixY4ftMVaHw+6PGDHimt6bZXNYcTOr8Wmr6Su2BJ4FO65GY9OuVzzYMdxhhvCkEU/3/QpPu72Dtc7PYr78C0aVHIPOpMcXwmPIzKKiZEIIIaTDTF2Vl5cjLS2tUTsHtmqKZUBCQkL40vK5c+fylVVDhw7F+++/z5eks1VY15rRYRe2vLy+huZ6Y4XJERERKDqbgppdu1nUZvuaLMqQ+tUiKVvCa8EBkASBr8p6qfBrvJxRAQtEPNHjcfzTbMSfvMIxvFfPNhkzIYQQ0pEJcsN+BXYQFxfH+1Q1xYKblStX8tsff/wx3n77beTl5SE6Ohoffvgh3ziwNdQHOmwFlpubG9oK61DOmneyYEcWgNPdPGAYJuCjEAMPcuqxLuj/LNAj18EB73uy4mSB70I42mE+Pr3/yTYbLyGEENKeXOn52+6Bjr00LEZOSUlp80CHqc3LQ/HqLTh1cTcinH/FBp9w/FtbwTcN9C+Rkesh8FYRHPsxNQqAgM9H/ESZHUIIIV1SGQU67TujUy9v43YoD8TBw/ET5DuIeLNYh/lbZL6fDitMXj5VRGxUy6VU00pn4K2nXmvzMRNCCCEd5fzdrouRu4IatYEHOazhp5dRxqNbGm8e+OgmCcOTrK0hGpEBffFJbDq7yS7jJoQQQjoCCnTszMdXxYMcxmR0gMAKdhpQAHhmg7U1xPgEW6MsPnd1uNs5/N+B/8Pt37fcPoMQQgjp6rpsoNPWy8svxylsEN8ukFG6muv7nTfDszubJTyW5Aov3oe0LiASgLTKNMrsEEIIIS2gGh071+hwx76GvPEpCLKE4nNOyD3ibpu+aklLtTs3OkzE69OWwsVD3TZjJoQQQuyIanQ6kkFzICw+Bcz9BZ4fH4HjmtdxemzPy+R2LmV36ut2WKjqnBqIr/+yH0n7ctp06IQQQkh7RoFOe6ENBMJv4Nc9B9yB/g8+jRJthG1aqymFDOhKZMiygJrcmZAqvXnAE7cqGeUl1W0+fEIIIaQ96rKBTnup0bmcwF7DcapvEKpVWhwYNLp57Y4go6TyNlSkvYBaw1AoygtQKlZDlgBDQZW9hk0IIYS0K1020Gnrpp5/VGlBFczKu3BwxAM40XMo9g4aYN0lkBFkHB3YC16iO/zMZj6V5SNmYKf2FI5pypCDEnsPnxBCCGkX7N7rirTM3VfDN0KW5d7wNaVjc+gdWOdzA/pXZsDPpQRPua3D/UIcLLKAX8xz4RLmieje32PH8RB8teluBOn84a/V2PswCCGEELvqshmd9o6tnhp3f28IIuBZU4PjsjNKNMFw9A7AYrd1UNRld9j1dIeV6F2sRI+9L6K44jH8ku+CUW/uxJr4THsfBiGEEGJXFOi0Y5GjAjDnHyPhdXMU5tamIR8KaOQiiPVTWHUKHBTIdvsEgtOjeEXcAx8IkGTgxZ9OYGNiNnINVLNDCCGka+qygU57L0ZumNnp21eBQ32G4cnyamhqPCE12D15rYszJgcH4GF/P0wJ8Ues538w2nSRf02CgK+++g53vPkDZXcIIYR0SV020GnvxcgNddOGYUi3lfh0ShgO+PXCv31uhxki8hQKvOLtCXcj0PeCxK9f9fZAgft+CA4GiJBwm7AOP2qexvH1H1FmhxBCSJdDOyO3h52Rr0BOzvfYm/wv7MgbjZ9190Fn0qNH9hboTm/FY5utjUDZjsnfjhOQ4S8gx12Ek2M0Bhvisd9JgYWmUoRP2orBA/rZ+1AIIYSQNjt/06qrDiIg4C7c6nkDju/9ErIgIlflC4tqOJZs3tyo2/kDsWyLQRmSIGH5lONwqxqGJYlpWDdcRu/qgwAo0CGEENJ1dNmpq45IrfaHq1HkPbGYgPLaZj2xhIZtIrZYsGbQENz7+kcIKhuL9JKMth80IYQQYkcU6HQww7Wj0L98BXyLC6A1lkFim+1cBmsT4VepgCyKeG/2fJToqeEnIYSQroWmrjqYoQOH4pbFy3Dj4ad41oYldGRBhiCzCatLGR2G5X3cagV4lxRB7+GFI7USJlfkQeess+MREEIIIW2ny2Z0Osry8qZUNaWYePikbcqqPrA5O9cLPlFll9pEQIYIGS9/8SH++9dFuHnvThyXj2DyT5OxNnWtvYZPCCGEtCladdVBVl3Vqzh4CJnz5jV7PONGP0zzOY7aShGVhUpkH/CA0CC/YxEEvHXPaBwLPA0HZTm23rGVMjuEEEI6/fm7y2Z0OiplWCggNv6xsSAmFkP5BoGOThLKnFimp3HtjkKWYdRrUHl+AapLBiHLmNXGIyeEEELaHgU6HYyjTgf/V1+xBTssyPkwahZ+dR2BjfKNPNjJ8xT4njoNWQSgpOcOuHT/J6TKECSnF9nnAAghhJA2RMXIHZD7rFlwHj0apguZ2FqqwG+xeXBELQ7I0TiHUDgqC5E65Rge3SLxlVcsyPl8qohiNxb9yFD7r8WBX2pQcfwC+g3oi9E3jLb3IRFCCCHXBdXodLAanZaw1g4f/Gcd1MlxkP38USZXIN85C7maU/AtBfI8rOkd/xIZuR4CD3hGpPaDWhUMJ4sjXOCMv738F3sfBiGEEHLFaGfkLsRfq8HtNw7D7gPfAcZCWIIG4Rvh3yg0iUhUK7E53RPzt8i2NhGfTxEQG3UKsnCKL0sfmjMWe/fspcwOIYSQTodqdDqJYf0jUDboNsBsRj/jOSgEGTqLBRP0NXwKq2GbCBb0eBitD7A9eA4H7MIv+w4jp9pk34MghBBCWhkFOp3Ia//3CMb87X24VpkhydbpKpPRgWdtGmJ1O7qSSzOWLNi54FqIIQeSsDqHipQJIYR0Hl020OmoGwZeSWbHfXQEkns4852Rla5mXoDcECtOrq/bYURZxqjaU3AqN+D5s1mU2SGEENJpdNlAZ+HChUhKSkJ8fDw6G8uQEOQGqLF/mAf2Dg/A53ffC0vdcnTWGyt/dCUPbvpekOBtkLBEX4yQChEvbFuKyDNHkFFVY+9DIIQQQloFFSN3QudUgQiWBdSoFDit6o7vxt2G7VGjEViYD7PWAT/8uhjLllnqGkjI8I0Bvu3bG0OGr8ETZ1dB+e051I4eD8eBk+x9KIQQQsg16bIZnc5skF9/rBAegySL0CEHgizxpp6JPSORr/RC7hFtgy5ZAvLitei9+zw8X1MjeEMValedxql5L6H0LzPsfCSEEELItaGMTicU5RGIIM9oPFX8CXRl2bj9whms7x/Jp61C8nNtK7AaRrsh6ScgQ0Byj1twPHIMPMvMGLr/W4w5vo0yO4QQQjosCnQ6qX9F34Q5Jdn4dlM2xPxjOFD+PtLV/VBVfQZsEZatyXkDLMcTdWoVzvYrw45hg3HO/0GEb/0J3SjQIYQQ0kHRzsidYGfk31OSsBfadTdDrJupOqryweeJ92JR4k+80eflyTh440D4wQ83/f0F3mOLEEIIaS+oeznhPLSSLchhSo3+2Bo2HPMm/RXfjI5u1vzzEgHDdxxH+I6tSB0/AaU//thGIyaEEEJaDwU6nZ1nBCBc+jFraw3W4mSNO37TjcaKKQLfV6dl1i8Isozsv7+E2ry8thkzIYQQ0koo0OnstIHA9A8AQcHv9lTmY4J+Fw92CsxhyNf1x6IFIt6dIfxOdse6qWBi7Pa2GzchhBDSCqgYuSsYNAeIuBEoTocoumPikscRkpWJUkd3uGcKGBI4Fbneedg0OgtT9xbwFhGseqdh3MM2HDyTk4o+melwDulmx4MhhBBCuligExYWxguRRFGEh4cHYmNj7T2k9pnZ0QbCBUC/OX+H4ct/wcXFEY6196Dc5IAyIRFbRp3ALwMUvA9Wt1wZ98XJPOhhQc579z6M54u/g+aLD5HT91UE3PWkvY+IEEII6RqBDrN//364uLDTOPlf+k+YhLCoQTj0/d/xRVUp4qIGwMFUBvcCGcVuAr8khQL7I2Voa29EZuAo3FdTCdVef4gBKdCdXoKKzFsos0MIIaTd6zSBDvljKtRm5LoGI67nAMiiCIuDjm8YKDRoAMqDHuyEUL0TJg8TMoNug8ohCQGmQhQlJ1CgQwghpN2zezHy7t27MX36dAQEBEAQBKxfv77FTuNsekqtVmPYsGE4fPhwo6+z140dO5Z3Il+1alUbjr5jWpu6FpN/mox1JYU8yGEkB0+Uez4E2fYrcSngYbfWlCjxvZs77ghehlV+N6NWaS1uJoQQQtozuwc6FRUViIqK4sFMS9asWYNnnnkGS5YswbFjx/hzJ0+ejIKCAttz9u7di6NHj+Lnn3/GG2+8gRMnTlz2+9XU1PBNhhpeupK8ijy8cuAVSLIEg+M5CJJk+1q1yziU+r+Lmw03NilFtgY7mUY9cDoX2wrvgqyutsPoCSGEkA4W6EydOhWvv/46br/99ha//u6772L+/Pl48MEHERkZic8++wxOTk748ssvbc8JDAzk1/7+/pg2bRoPiC5n6dKlfCfF+ktwcDC6ksyyTB7kMAWaDIw+s80W7LDr7ieKYMz34cvJG2L3V2Al9qqegn/NXqzfkoOcwwl2OQZCCCGkwwQ6v8dkMvFMzcSJE22PsZVV7P6BAwdsGSGj0chvl5eXY+fOnejbt+9l3/PFF1/k20XXX7KystCVhLiFQGywgWCy6yr0TXsFT2adgzY2Hef1zvA2XcQSfbEt2GHXr10ogWuOAlKVgNcdvkBNbSHOLF6AvYv+z45HQwghhHTgYmS9Xg+LxQI/P79Gj7P7ycnJ/HZ+fr4tG8Sey7I/rFbnclQqFb90VTpnHZaMWGKbvmJBz+MT5sLPYTg+QTockwxIFHV4yViJkVXVyHJ0gO8ZB1QeckMmn86S4R9jQK9eeUiPeg3Vpd+h2+EEBAyNtvehEUIIIR0r0LkS3bp1Q2Ji4h9+HasJYhcWHHU1M3vMxMiAkcgyZiHYNZgHP8tPX4Ql2AUWHw3y0xV4p2AonjXHw8tYi7RDng1qdgTkHtFiiM4JSrcyHHG8D2u2/Ip7evWCv1Zj5yMjhBBCOtDUlbe3NxQKBc/aNMTu666xm/bChQuRlJSE+Ph4dEUsuInRxfBrZpivG8CmqtQK+Cid8E23PNzq2QvLi/s0K0yGLMCnfA381Q8hwusHXPRIxX2ffIo18Zn2ORhCCCGkIwY6SqUSgwcPxo4dO2yPSZLE748YMeKa3ptlc1hx8+9Nc3Ul0T5uuEftwoMdtnI8oGYiMt2r8GsvuVkPLNYE1OAuY52rE2aH7sE2t6PQB36JnQmLkWuostchEEIIIe0v0GEFxAkJCfzCZGRk8NuZmdbsAFtavmLFCnz11Vc4c+YMFixYwAuQ2Sqsa9HVMzoteX9kD2zpHwF3aCBfGIAxubehzHMMlk8VbR3O2fWqcQJSqtX4SOkBSbB+gW02eECZgq+3/YcXeRNCCCHtgSDLTdYRt7G4uDiMHz++2eNz587FypUr+e2PP/4Yb7/9NvLy8hAdHY0PP/yQbxzYGtg+OmyZOTs5s35ZBPh16yEsjC2Aj2SBvzIX6T0+hVeZZOuBdX+cDFEGz/SwICg26lK8fGt5Pyj1vfkmkIMGDbLrcRBCCOm8rvT8bfdAx14aFiOnpKRQoNPAocRc/Lw6DjqDL0QI2BoZj3TtaniVWbBsmYUHOfVYhmfh4wreLoK1j5iRNw5ilTffrXrx4sX8l5AQQgixV6Bj96kre6Gpq8vzdtfAvy7IYSYnxeC200swJGdQoyCHYd3NWaZHhIz7snvA6bwFcoUJLH4uLi62zwEQQgghnWV5OWl9qmpre8+GAsrcUa6xTlc1yuiwoDGnDMFnZFQdT4aAZEgQsGnwOHh6smXphBBCiP102YwOuTx3Xw3qaoxtZFlCgVjRqDCZNY5gN33iXFB93MUWGrHsztRjcbi4eQ1gyG7z8RNCCCHo6oEOLS+/PBcPNcbd3xv1nSJYkGOu/A2CRY2dUQpek/PuDIFHOZd+gRpHRgpZRurW/cD7/YBjX7f1IRBCCCFdO9ChGp3fFzkqAHP+MRIznh4IzcAi1JpOo9wrGOWeD6HITQGjk9CsXqchlvXJ8DChwMEF2LiYMjuEEELsgmp0yO9mdtjl4V5349yUUfh5129Y7zwAJvUAnFWmQhLebxTsyHV5HRbkfD5VhLengLdNj2GqdjsmFKcDWmuXeUIIIaStdNmMDvljIsKC8PTceZiSuQuSQotc3TC8O3UOLHXFPCy4+Wa8gJdni3xqa9cAAWGmYqTWKvFF8SwUQGHvQyCEENIF0T46tI/OH7Zl7zasjz+MLfnR8K4yoG95Om4PWY4loe58p2RRlvFUcSn6mUwINpkRZxoMh26TMWPa/XC8xh5lhBBCCEMbBl4h2hn56mxc9goWZQ7ht0eIp/Gd8h/IUyiQ5eiAU0ol3ve8FPT8XV+MspzpGBl3Crq/PA33WbPsPXxCCCEdHG0YSK6r/jcMgyizBeZAhqSDRRags1gQXGvmQY67Eeh7QeLXr3l7wikkH2V3PA/9v7di/9k05FSb7H0IhBBCugAKdMhVCXNxwt/dvuTBTh688KL5EZhlEZmODhh7QuatIpaslvg1u18ZfhKG4c/hwH3h+PC3oxhyIAmrc4rsfRiEEEI6OQp0yNXxjMCD5jjsdHkKYzXJWGMZj9E1H+BT/Tw8tlmyrcZi149ukhB0RoRDqQxdwJfwV5TxzQafP5tFmR1CCCHXVZcNdGjDwGvElopP/wBhUilcLbV8WTnL7BSVBDbvhwUgeKUD/P7mCJf9ArzEdFv7iIyqGvuMnxBCSJfQZQMd2jCwFQyaAyw+CdfQ0LpddIAcF2/e66olgizAbbUCIdkmDCw5ygOgcI2qjQdNCCGkK+mygQ5pJdpAuFjO1W0VKEOvcceH0Xfw5p8tEVnRcuIZPHtsAz4+9xoC1Mq2HjEhhJAuhAIdcs1GBZVbMzoKI3w1GXC9KQ9zJ/0FS0fd1CzgYXmf4OQMBP6YgsCf9Nix7SfkGqrsNXRCCCGdHAU65JoNj7kbY/t8ApceS+HidgA/pd4GvcYTyf69sGKKYOt2Xt8iwkqAS0Y+8n/+BaPe3Ik18Zn2OwBCCCGdFgU65JqVOvkjARchCDJKRBlyXTgTIVVgTGApFi0QsfJGoVnlDntEWVICTW05/rL2FGV2CCGEtDpq6kmuWWZZJl8uzpicL0CANdhhGwneZqzESIdqXPRktTjujXI6FlHEgZA+uL9kD/YownBePwz+Wo3djoMQQkjn02UzOrS8vPWEuIVAFKy/Sr4QcZO7M5+mqt9I0NssY4iiCn4xBrb0yvoiQcbem4fCwWkwXHA7YpyV8FVQRocQQkjrol5X1OuqVaxNXYtXDryC7tUDcaD7U5BqJIiVZkhODvCvKcSQohP4LOsNSJUCTEYHKF3NEJyAb1zvhuniRJiqPOAzugT33E99sAghhLTe+ZumrkirmNljJkYGjMSm9Czs0wuAWgFJzXbKAXLVOhRLOVBkyVA4yXB0su6GzJqAunlvgmPPbShLmouzSVpep0PTV4QQQlpLl526Iq1P56zDlB5RLf5SpYsBvPFnvbUuzrhX648fLrjivQwNSv2/QkjtcSx6fSWtwCKEENJqKKNDWhXbAPCdXsG8jxVr8QBJ4vXH+WYPXq/zhsMX0DsI2J3tjo+3WHtisb12VkxR447i43j18CGcKN+PXPXD8A/pYW01QQghhFwlqtGhGp3rgjXrZH2sajZ+gj1xicj1i8QWeSB8HS5gkMOvWLQmo1FPLLbXTspYHcIPVENlKoFxhg7D1Im8nxZvNUEIIYQ0QDU6xO6ZHd7eYc4LiBlzCtu//gEX1FuQ5bsbpZmW5o0/ZSBVNQhJN07EiGM/IKDmNKCSgI2LgYgbKbNDCCHkqlCgQ64717B+MPltQrZqHd9UMNdD4NNVDYMddv+bsdNQ5O6J9PCpuL/yPHxrveBlLgKK0ynQIYQQclWoGJm0iYtOZZDr9tApdhOwfKpoaw1hEQT8t99IjD/zI/rkHsGWvt2gjzHi+AgR8R7ROFBcaN/BE0II6bAcuvKGgexisfCSWXKdDenbB1+f2ID6hVexUSISwkS4n7oXN1b+hnuO7od4kmV24rB9fAhM/bVQ+BbD0C8b5w/+hBCHIARGDbX3YRBCCOlgqBiZipHbRHV1Ll7+eho2Kc082JFlATW5M9GtUIN3N69sNI1V3/yTZYAMsy0IcqlGQKkRB7TzMPqZ9+15GIQQQjrY+ZumrkibUKv98eQtL+JFdzMetUiYGz8SltLB6FOT1KwwuX63HUEWoP3OAetNw3DKyRfDDV8hO/GwPYZPCCGkg6JAh7SZgIC7cPuUnbjVcRSe9/kOO6QlCLc48ULkyxEk4Bf3mZgc81/8X9htuHh8X1sOmRBCSAdHgQ5p88yOd/AwSLKAcOdzUGplJIwMsRUmN51HZYXK2T5+gCBiVegiHGZLzgkhhJArRIEOaXPOA6cgz9Qbkiwi3PE4/ua9CM9OnYdPJg3EN+MarsYCPp8qokyZBtFcDAgK7KnOQ15Fnr0PgRBCSAfRZVddETvSBiLgzsdRse4lnKkZAFkh4KyyH9LcNXAKPYn9fQXoSmTkeQh8Kbq26GPIEFDhMQ+eeQbc+f2jeHr0PN5IlBBCCPk9lNEh9jFoDpyf24deY26EIFuno7xMCoiyzIObpFCRX3uWyeh7QYJXmQTXkv/Av6YC50JfwdcHMimzQwgh5H+iQIfYjzYQ06bfgwhdJa/NiZAqsERfzIMdZnyihGXLLFiy2no9LlGCxcEZ4YZCHA4ai4MpyfY+AkIIIe0cTV0Ruzf/TIruBanaghSDjBlnKjGyqhqnzCr4b3a3LT1n149ulrB5uhZ3xZWhKOQCMsP9gIH2PgJCCCHtGWV0iF2lV9WAT1ypFcjW+uMF8yPwMUsYUWBusfHnEZdN+HLgqxDKC2A4fxinzqbaaeSEEEI6gk4T6FRWViI0NBTPPfecvYdC/oBuGpXtl1CsMON7y3iMqvkQb6tmN1tszpp1uFUA7kYJ60PXIEFMxewDd+D1lR/bZeyEEELav04T6PzjH//A8OHD7T0M8gcFqJV4p1cwFKyDubMDD23y4IUtTsORMqQb2x6ZP49lfdiq82c2WOt1xp6wQGc2wd/ogu/xOXZu3Q5jkd7eh0MIIaQzBDpff/01ampqmj1uMpn419paamoqkpOTMXXq1Db/3uTazQ7wQvyISPyjhwRVwGYe1pRJahyNGIpNt0zG2dFsw8BLv6z19TqVeT2Qkv0ihuREI3b3Fnz1zNM4uXObnY+GEEJIhw90HnzwQd5Eqymj0ci/9kfs3r0b06dPR0BAAARBwPr165s9h3UZDwsLg1qtxrBhw3D4cON+R2y6aunSpVdxJKQ9ZXZu9g+Gxn0PnLu/Ca3HbmQ6aWFw9oRJe6kouWG9TlBGJbyqyhBXdiccRTNMwSE4tGE3ZXYIIYRcW6DDGp6zoKSpixcv8k6if0RFRQWioqJ4MNOSNWvW4JlnnsGSJUtw7Ngx/tzJkyejoKCAf33Dhg3o2bMnv1wJloliHU8bXkj7oHPWYcmIJXBQlqPWJxVbYsZh1fBJ+NVvpLVguQEW98w+vQNfbf0HJp6Ph5dBDZ/saDipBGSfogJlQgghVoLMopYrNHDgQB7gJCYmom/fvnBwuLQ63WKxICMjA1OmTMH333+Pq8Hee926dZgxY4btMZbBiYmJwccfWwtOJUlCcHAwFi1ahBdeeAEvvvgivv32WygUCpSXl6O2thbPPvssXnrppRa/x8svv4xXXnml2eP/q807aTtsI8BfT+/CXyt68fu9j55EzyOpeDLxRyhkmQc5QpN+WFnd+iP03EkURM6GZlYkhs2mXZMJIaQzY4kKllz5X+fvP7SPTn0AkpCQwLMqLi4utq8plUo+vXTHHXegtbCan6NHj/Jgpp4oipg4cSIOHDjA77Mpq/ppq5UrV+LUqVOXDXIY9l4sQ9Twg2KBE2lfmZ2p4SPw95OFkAQFDJ6O2Bo2DMf8emH0xUQ8dnpjo+ez4MfZrEGNSovSsk3Yml8LdXEMojzp50oIIV3dHwp02PQRwwKau+++m9fMXE96vZ5nivz8/Bo9zu6z4uOroVKp+IVNlbELe3/S/ghKHww/8ysO9RkKvb+EbheTcB6ROBPqBSnJWpBcjzX/LB2kx6eBY3DSdTMErMXGjetwc+RzeCtmjj0PgxBCSEfcGXnu3Lm2jAurlWHTSQ2FhITAHubNm3fFz124cCG/1Ke+SPuSoa/AsawQ+BekoL/mFI6EbERIcSj8LWosnyryVVesILm+w3kvvwQkuZyHUDepJUDGr0n/wuyI8ZTZIYSQLszhapdzP/TQQ9i/f3+LRcqtlSXx9vbmtTf5+fmNHmf3dTpdq3wP0j6FeztDFAB9jRvSJTcEFozBRd89SBODYPQRkBiuuNTh3BWIFTz461gTUP8SGbm887mEo0XpFOgQQkgX5nC1mRNWiPzLL7/A39+/xRVYrYHV/QwePBg7duyw1Qex7BG7/8QTT1zTe9PUVfvmr9Vg6cz++MvaU9DXhqOyqB9QNgoeYjJ69dDhrOthFLuJLLqGpxHwL5EQnivj/jiZT2tJArB8qgKhk+2TXSSEENIBV13Vc3Z25kXCvXv3vuYBsJVSaWlptlVd7777LsaPHw9PT08+BcaWl7OpsuXLl2Po0KF4//33+aouVqPTtHbnelZtE/vINVThh+3pePfIeX7f2VyOIc5JODEkEgGGbYg4dhCPbZZ4cNPSaqxfn34ec+6+hwdOhBBCOo/rsuqqXmRkJC8Ubg1HjhzhgU29+hVRLLhhq6hY0XNhYSFfSZWXl4fo6Ghs2bKlVYIc0v6xAGVaTCDeiz8PWQAqHFxQqHfF9HU/Iy/AyxbkME3zimw1lvm333BrkhLP3XcD7o6h7A4hhHQ1V5XR2blzJ/72t7/hjTfeQP/+/eHo6Njo6x0hM9Jw6iolJYUyOu3ce9+dxIcJmTzYYYXGY+RkRFZn4NatOy/7mvoMjwQBHw2chSWfvUiZHUII6WIZnasKdNheNvzFTWpzWrsYuS3Q1FXHkXahFLt/2Y0z+SfgLJpRWSNg7ro1EBt1Oa8PbxpPZLF7h9/5O6aMn8D36SGEENKxXdepq9jY2GsZGyFXpXuoO0LvGIr/LvoK5yL7oUClxAfRs2w7JrNO574Dynh8U5DQeMsAFvIkxn2M94rewpKRSzCzB+2cTAghXcFVZXQ6E8rodDylP/6I02+/jQ2Dw/C92wPwrjKgb3k6lnu+B7WzBTk1jihZ79NsU8HTtzlhRY9KFDoosXXWVsrsEEJIFzh/X1VTT2bPnj24//77MXLkSGRnZ/PHvvnmG+zduxcdAavPYUXVrI8W6VjcZ83C0A0bsOD2h/BnqFGscccun0F4WfkQJFnERa3INxVkwQ1Tv6lgvo8Wv5zNw23GMqTknLP3YRBCCGkDVxXo/PTTT7zXlUaj4R3FWUdwhkVVrEC5I2C7IiclJSE+Pt7eQyFXwVGng79fBG6FCj/CBR/CCXdZpiO/5ktUibchLkrAwscVeHm2yK9PhANijiv2x0Zj8aFqeBV1nDoyQgghbRzovP766/jss8+wYsWKRiuuRo0axQMfQtqCg5DD11T5QsQgOPBrC7zhXXET7vIwocQNSAoVEZ0hYdkyC278NQV+xnxszJ2E9HMnkVNtsvchEEIIaY+BztmzZzFmzJhmj7O5stLS0tYYFyH/k0NIBDwcP2GTU/y+DIlftDX+GJ55K570UOLuGg88tlmGwNal8194GYOz47H/UA3G7TiF1TlFdj4KQggh7S7QYX2m6nczbojV53Tr1g0dAdXodALaQDjffgt06vk4p1yJ/ytPxCb9x4iVtyM1awr+sf9VHD50B1uM1QhboTWkRo+nf0vHN5vTKLNDCCGd2FUFOvPnz8dTTz2FQ4cO8X1zcnJysGrVKjz33HNYsGABOgKq0ekkBs2Bw9NxEIdNwwGXbvjQfRb2VQfhn0INZAjIcfGG1OQlsiDDc9Ia9LjlBczWb8HB4/GAwVpQTwghpHO5qn10XnjhBd5c88Ybb0RlZSWfxlKpVDzQWbRoUeuPkpDfow1EeNQwjDiwHgcQhkx1LmQzoEMRBjunwD+mFPlHtCzC4Xvt+AwoQ1m2GlWsxcTgb3EhrhDYtgqY/gEPnAghhHQe17SPjslk4lNYrDEnmwZycXFBR0P76HQOGRkZ+Oqrr1AhO6LMtQbakkosdfg3FHXzVrWVIkxGB1QXO6Igkf2cBZ7ZMcy24KDzENxRdRAhZgOw+CQPnAghhHThnZHrKZVKHuAQYm+s2z2bRnVGLUIrJCxw/DcUDVpDODqxCSwzMmO9bK0hWIGy9jsFNPcZcCrKA8cuBGFGcToFOoQQ0olcVaBTXV2Njz76iLeCKCgo4NNYDXWEJeYNm3qSjo9F9dOnT8fGjRsh1pihUDZOVOYpFMiuUcOpSY9zQRKgdU2DUiOh1tsHmbIK1OOcEEK6eKDz8MMPY9u2bZjFdqgdOrRZc8+OUozMLvWpL9LxDRo0CBERETi7cyfkhE9R/2u51sUZr3h7wt0dWLbN0qg1hCQAhSoXuFSVwNnrHDL27Ya/UwjfkJAQQkgXrdFhgcGmTZv4BoEdHdXodD4VBw/B8Oqd8B9iQL6jApODAyDVRT3jEyU8ulmCQq5rDTFFQGy0AqIsY76iAn3OdINfXC6CnnmVt5oghBDSBWt0AgMD4erqei3jI+S6UYaFwnDeFRW5aiT3lCCFXMo4xkaJSAwXoCuRkechoNjN+jUWCK2wOOP1kenInyCi+ru/Imr0aMrsEEJIV9xH51//+hf+7//+DxcuXGj9ERHSGn2wXn0F5hpHeKQ7QpAaJy1ZcMNaQ9QHOfVYsGOotP6rKL3XDGPG8TYeOSGEkHYR6AwZMoQXJLNdkFlmh614aXghxN7YtFP3nTvQZ+ELeGyzBLE+2JH5fG3dbRmeZTL6XpD4NZu+KnKKQBE8IYjAkYxdMBbp7XochBBCrs1VTV3de++9yM7O5p3K/fz8OmQxMukamR23KZMx4Z//RFSGBWfCPbAt8lZkml3gq8rA2Mx4TN1byIuTWVHy1inB2H3DPchQBGKa8idoDl3EyZ8fxKRHF6H/hEn2PhxCCCFtVYzs5OSEAwcOICoqCh1Vw+XlKSkpVIzciZX++CNyX1qCSpUKG2+djgooIZVb8NCv3zVJacoIGFkClbcZf4laDLmwGAHn0iAWCnj0ky/h6uVtt2MghBBydcXIVzV11bt3b1RVsQ30Oy7qddX1prGyZs3B6NrecEEtIipzW/jlF5Cz3xMZP/vgr1s+Rf9eSYiecQbyaODcufN2GTshhJBrc1WBzptvvolnn30WcXFxKCoq4lFVwwsh7XEaq/fgYegtBeGemlFw9egHS5PNAy8RUHDEDRF5WRAFGQP6JCExM4HqdQghpKsEOlOmTOFTV6ypp6+vLzw8PPjF3d2dXxPSHnUPrIUsS3CGGpnePvgwehYsl6svkwWoyqv5TdYvKy3rV3y+8EGc3LmtbQdNCCGk7YuRWesHQjoah5AIeCqfRknt4xhY6YTPw4bhmF8v9C46jxePfNso6mfFyfu9BiEIF+AhlyDHJRwOfhXY9vnHCIsaRPU6hBDSmQOdsWPHtv5ICLnetIFwvv0WqH6eD+8aP8R434Z4fSSKwsKx3EeBR7dYGuyYrEBmWQwynR7C4KoTiAsei6oIJWakxvF6nWgKdAghpPOuumL27NmD5cuXIz09HT/88APfLfmbb75BeHg4Ro8ejY6CWkB0QYZsxMZ+j7iEUpQ6VCHVqRxZXnv4Xjr1OyYz76UVI1JZjX8GzUGxqxt2BYxGgdILr1bn4+Fp0+x9FIQQ0qWVXc9VVz/99BMmT54MjUbDO5XX1NTwx9k3Y3vrENKuaQNR7dMXAgR4mJ0wooTV7lzaMTkqQ8ayZRZotmqRsdEXc459j9kFn+HX+HtxV94W5JYV2vsICCGEXKGrCnRef/11fPbZZ1ixYgUcHR1tj7MmnyzwIaS9c/JVQWbbJANwhi965nXnwQ7L6vCdlG15TgHlh7V43tkXU4P9MTb1U/TafwIXj5y25/AJIYRcz0Dn7NmzGDNmTLPHWQqptLQUHQHbLDAyMhIxMTH2Hgqxg14BvXDc+zgkyChTOGJWUSRmJs7HzSe9GwQ5Vqxuh01pjT0ho8d/XdFv2yaU3X8n9jz/lr2GTwgh5HoGOjqdDmlpac0e37t3L+9/1RHQhoFdm85Zh3mT52FryBYUmY6i52+bcef+b+GoUPMVVw1ZAAToG2d6BMjw2vg1ZXYIIaQzBjrz58/HU089hUOHDvE+Vzk5OVi1ahWee+45LFiwoPVHSch1MLPHTGy4ewMGDLwDp/v1g1hWDt8Kf77iiq28YiQe1ACPbmNNPxu/XoCEY4dOIqfaZJfxE0IIuU7Ly1944QVIksQ3DKysrOTTWCqVigc6ixYtupq3JMRumZ1xI6bi21MZyPPXoZ9ZgQE+92PRgtXonmPG4g3NAxwbQcRmYzIe37MX/+wbhdkBXm08ekIIIa2+vJw1wdy3bx8GDBjAm3uyKazy8nJe7+Li4oKOhpaXE2b5T78h+8ReaFTOuN8wDHrHUlwoO4Ze29a0/AJBhnpUEF4cEohTmuOo8HwI+256HAFqZVsPnRBCuqSyKzx//+GMjkKhwKRJk3DmzBne8oEFOIR0dI/dMRGpw/rjqx1pSMgzIQru8BIGoVz4nv010Khe54MZItICgCdMSYg0KaB3rEVe8X9wrHg6AgIi7HochBBCWqFGp1+/fnyjQEI6kx5Bfpg+qhfOm2RsLzNjl6xE/JAhkOr6YfEdk6eJONhHhF4r4lVvT4yoPYutWTmYaSyDwpxv70MghBDSGjU6bB8dVo/z2muvYfDgwXB2dm70dZoCIh1VmNqA00G7UZE9BmWohCGiG6/dUZmTsC78PN9UsB4LgNItnhhhKcMSfTH2JKWg3HUQXDzUdj0GQggh19gCQhQvJYLYqqt67K3YfVbH01FQjQ5p6NS+jei3/X6cE3vgQMFgpHnp2C85KhWV2BK8mTU1t/EyyHiyRAVNSC1CMg2IE0ZDqhiFG2+dgchRAfY8DEII6fTKrleNDkPdy0ln5RMaCYssIEJKhclcAvf4Xjg6JAaS0hNlng/DteRLFtJjQoKEx7ZYIMgsqJeRN8EXlmo9TJWb8VPsWYREvkWZHUIIaQeoezkhDfgFReDwgJcx6MQr8A0woiQgFTevz8OhfgNRG/wQjKm+6Gk+hT9tXlu3ww4jQBdrxMFbe6KmUIbLqXNIOL4DoyfcbOejIYQQclWBzu7du3/36y21h7heWMuJiRMnwmw28wvbyJBtaEjI1coImYmn4j0x3OsYbhm8ETV9DfBMPA+H06y9iRaDi6oaBDl1ZAFFzt2watLtmLR7AzxSd1GgQwghHTXQGTduXLPHGtbqtGWNjqurKw+82J4+FRUVfEXYzJkz4eVFm7eRPy7XUIUX156EBC/ElQ/BNPkXwEOG0VeAcNH6nASnCMzhDUEbBDuCjOOhfSGLIraNuQ3DEj+y2zEQQgi5xuXlJSUljS4FBQXYsmULb5C5bds2tCW2rw8LcpiamhpeEH0V9dWEcBn6Ckh1vz4lNR74KukeXrNj8imGyBtCAGc04fh5VLCtTQS73jAxHKdDevP7LNg549AXOzf/ZK/DIIQQci2BDqtybnjx9vbGTTfdhLfeegt//vOf/9B7sWzM9Olso7UAnhVav359i53Gw8LCoFarMWzYMBw+fLjZ9FVUVBSCgoLw/PPP8/EQcjXCvZ0hNkjU7M0egRf3vAKNbiiGeXwHERYIDgZ8c0M+Fj6uwMuzRX797ZAciOZi/hpBljC8NBi6Xa54791P7XcwhBBCri7QuRw/Pz+cPXv2D72GTTexIIUFMy1Zs2YNnnnmGSxZsgTHjh3jz508eTLPItVjOzQnJiYiIyMDq1evRn7+5TduY1kftiSt4YWQev5aDZbO7A9F3VQsu/7zzTfA0+9+nNKdQEjYGxjs9C0EQeZ76iSFivyaNfhUVR6CQ20hbsnbhlTpDH5Q7Ue/Ig9s3vARqqtz7X1ohBDSJV3VPjonTpxodJ+9RW5uLt58801eELx3796rG4wgYN26dZgxY4btMZbBYVNiH3/8Mb/PmokGBwfz5qGsuWhTjz/+OCZMmIBZs2a1+D1efvllvPLKK80ep310SNNanfP6SoR5O/HgJ+OsHn86+1fklOxDdMZAHA9PhMDrdBpj4dFcwQTXIyNRovZBtcYJPsoq9BqxFr28/gyPqgFQhoXCUaezy3ERQkhncV330YmOjuZBSdMYafjw4fjyS7bPSOswmUw4evQoXnzxxUabFbJVVgcOHOD3WfaG1eiwomR2sGwqbMGCBZd9T/ZeLEPU8INigRMhDbHghl3qBetcMX37g/i0500oKilGuedguBT/h2dyGhqXKGHKZhGifJCHQfExMSgMCIXhYB+UffMvGNmOg6II/1dfgftlgnFCCCGt56oCHTZF1BALPnx8fHgNTWvS6/V8BRebEmuI3U9OTua3L1y4gEcffdRWhMwyPf3797/se6pUKn5hU2Xs0pF2cSb246BV4cFhYRjxqxmfKQtx3HksTOoB8C7bAbn8Z/4czzIZj22WIMqXsjtDjhzBrlvC8Er0Ekwz78ec1ctYWhK5Ly2B8+jRlNkhhJD2GOiEhoY2e4wVBLd2oHMlhg4dioSEhD/8uoULF/JLfeqLkP/FOUaHqJ4emLJuN9LPnUFSRG+Eyb64IMtwNwIjki8FOfVEWUavSgFf7s/G5z2HIivkNwRnpvBgx3QhkwIdQghpj8XIbHUVKxKud9ddd8HT0xOBgYG8KLi1sNVTbPl40+Jidl9HJwhip8xOzJiJeKHbS3go71P4ZNXiX/vKsWyZBXN3yM2qdli+8L8uP+JZ379iSHYs0vpEWb8gilCGhtjjEAghpEu5qkDns88+s9W1bN++nV/YPjpTp07ly7tbi1Kp5N3Rd+zYYXuMFSOz+yNGjLim92bTVpGRkbzQmZA/IqTbUFRU3I5xvrEYVZ4E/z2aRtNV9cGOVHf/mQ0SPvnUjFMF30Lyz4DFX8trdCibQwgh7TTQycvLswU6v/zyC8/oTJo0ie+hEx8f/4feq7y8nE891U8/sfofdjszM5PfZ4XDK1aswFdffYUzZ87wQmO2JP3BBx/EtWDTVklJSX94vIQwM259G726rUZIntDsHxELbr4fZb1R/zUWCM3fYoHsfxL5f9NjW805O4yaEEK6nqsKdDw8PJCVlcVvs0wOWwXFsGLgP1rce+TIEQwcOJBf6gMbdvull17i9++++2688847/D5b7cWCIPY9mxYoE2KPzE7Q2GGQm/S9YjslX/RmK68aP18hA5o8V94uwtNvBRJOnWrbARNCSBd0VcXIrJfU7Nmz0aNHDxQVFfEpK+b48ePo3r37H+6b9b+28nniiSf4pTXRqivSGlQxNyGn5wF4pB7mOyLLggyXoWV4TMluu0Ngy8nrSAJQqLPAwyzA3UFGzob30Fe5CI49o+16DIQQ0pldVaDz3nvv8ZYMLKvzz3/+Ey4uLvxxtmkg27CvI6BVV6Q1sCL8rweHQRfqhYCiShRGAd79DqLYGIRbz8cj/4iWdzZnAdCKKSJ2wAghV4O73E0IOlOBk3fch27zpsD92X/Z+1AIIaRTuqqdkbvizoqEXA5rTbJx40YYHVX4dvhk/tio0uP46cTTqK0UkVepxJye3tBrG8wUywLujA2Ac5UC/S8WYPzKFZTZIYSQ9rIzcj1WzMuKhtkOxg3deuut1/K2hHQogwYNQkREBN5POgZUW6eq0p2CYIEIRycJuZ5y4yCHZYKMEhSCBHUtcDLYF1FH98CPAh1CCGl1VxXopKen4/bbb8fJkycbtYJgt5mOUPdCNTqkNbG/KsICw4BzBn4/V+WL53o+h7dT3kFIrZlvHCjV/fsYnyjV7aCcxZeinwzywVljAai8nhBC2smqq6eeegrh4eG8gzjrM3X69GneY2rIkCGIi4tDR0DLy0lru8k3sMEuOsB3/jdj6ND/Irb8BizRF8PbIGH4GUuzNhH9svXYUXwGF4obN8slhBBip0CHNdR89dVX+c7FrM8Vu4wePRpLly7Fk08+2QrDIqTjCVAr8W6vENs/KkGS0P/QflQX6TAuUea7Jz+zXm6xTUSy6Qymb5yNL+MvNbAlhBBip0CHTfewbuEMC3ZycnJsPbDOnj3bCsMipGOaHeCFIyMisbCsAPNXvYMByUcgleqRF+9el79pju27k+ch8P14Pjj9C2V2CCHE3oFOv379bD2thg0bxpeY79u3j2d5unXrho6AWkCQ65nZmVBeiiPqgZAgwMvh4mVCHGuQ8/lUEcVugm2vnV8OfodcQ1WbjpkQQjqrq1pevnXrVt6GgW0cmJaWhltuuQUpKSnw8vLizT4nTJiAjoKWl5ProTg5Cc+9/SUOuw/GXUXf4c6DqY2+zkrgP5ghIiVQsAU5jCgL+HOBF76tnIl5N9+Gu2Oo8SchhLT58vLJk617hTBsJ+Tk5GQUFxfz1hD1K68I6co8e0fisd6eCD22Do4qgTf4FJtkcQ72sT7iWSbDv0RGjrsIp4rbcEdlLGYr/oYv4mKR23MV/LUaux4LIYR0ZNe0jw7L5pw7dw5jxozhO8R28b0HCWlk2PN/QY/kJCSu/RbJF1PQ6yKQGuiJD28rte2rc2mpOet2LuODaAHbe7piOoCHKnbgaPoh+A8cZ+9DIYSQrlWjw/pb3XjjjejZsyemTZvGWz8wDz/8MJ599tnWHiMhHTqz4/zgDBh1fjA4A+UaJ/hX9eMrrVgmp+FScxEynkr8ARklWmRXefB/nM4VB+x9CIQQ0vUCnaeffhqOjo58V2S2j0491mmcdRbvCKgYmbSVELcQvDepBB/do0W51gf9kntAk/oYRib3bWGpOfCweQd06lLsKe2LIyaqGyOEkDYPdLZt24a33noLQUFBjR5n3cwvXLiAjoA2DCRtReesw5IRS3DGrwrrYlKhll0xN0+DoRb2R0KTSEeQoXQ1QyHIGOJ4Fjk/nMHBX3fba+iEENI1a3TYiquGmZx6rCBZpVK1xrgI6VRm9piJkQEjkWXMQqlyP45cSEOBhxvGxpQh/4gbb/LJghz/IQbeH6v0nBNy47W4DTsgxe7E8jVT8djX1OGcEELaJKNzww034Ouvv7bdZyutJEni++mMHz/+at6SkC6R2YnRxaDvDH8MnfwTarwkvDZ1IcKmFyJkvB4Rt+SjumcN4i0aHuTUbzDIandGxW+mzA4hhLRVRocFNKwY+ciRI7xz+Z///Gfe74pldNjGgYSQllVX5+JM8l/Z1oAILcnHyxEPIm5CDMKrsqHN24JjmtPokyljCV+QfolClvHL+m0I6BmGkB60tw4hhFz3nZFZqwfW3+q2226zbR54/PhxREREXM1bEtIlVFad50EOY1ZqcUveNuQrvXDQJRTxTmfgbgRcK1mn88avswgCtjj1wbh/J+I/n66zz+AJIaQr7aOjVqtx0003ISoqik9bMfWFvbfeemvrjZCQTsRJE1b394UEtW8xAlMCMTdnA3Lci6FNutTZnP2Lsm0yKMg4MLA/9BrWLwt47bwCN6ZmUmaHEEKuV6DDlpA/8MADfKqq6SaBrF6HNf3sCMvL2aUjjJV0Hmq1P/r0/gefvvL3SEEW+kNVLqKnoQYzGu2pY20TUTi+HN3dq/Cgcju+qLkFefCCJCiQuGcPQnrcZ+/DIYSQzjl1tWjRItx11128aznL5jS8dJTAgZaXE3sJCLgLo0buhrPPm8ir9eMrzD1qa5vtqaNgAbm/G6b20mGT6IRxRQnwrioFayhxMi0VyafYNBghhJBWz+jk5+fjmWeegZ+f39W8nJAuj2V2evaYgG2WnfAy6zDOqQZjBIEXHaNBT6w8DwFjT8iI2OyGHvJmPIAtiJ8WjA9cH8CKb07iT7pj+L+nZ9r1WAghpNNldGbNmoW4uLjWHw0hXQhr1rn0jv4oEpVItfTCu7MfgUUUGzX+ZJq2iRi65QImYjc0ghmf5TlSZocQQn6HIF9FJ87Kykrceeed8PHxQf/+/Xk7iIaefPJJdLY274RcL7mGKmzflIT9eaexL8QfQfnnUGH5BCVuQN8LEpasbrzUnNkzaTiyPUKx3xyGeX0Ccd/9N9ll7IQQ0t7P31c1dfXdd9/xNhBs5RXL7LAC5HrsdkcKdAhpD5mdiaO7Y9wnFUgoKcIhLyesCn8ILiUrkethXWresH6HbaJcovYB+2c3yuE8Csqz8FvqRfTwGoxQzwH2PBRCCOkcGR2dTseDmRdeeAFiXaq9o6KMDmkvYr8/jW7HiiBUlWJ1tyP4uM8NECx6TNu7FYvWHoJCtk5pfX9TP4iefW2vy9Ik4bDuDATIWBw5HQ/FLLXrcRBCSHs6f19VoOPp6clXK3WGzQEp0CHtSU6WAQe//hJ9vvkc+T2CsXNUb6zzj4VnmQxdicyLk0tcBTyQGwNFjQeMsiuqkIMNfvkQlXooHA3YOH01ZXYIIZ1e2RWev68qHTN37lysWbPmWsZHCGlBQLAWQ++fxaer/FKz4JR1lj9e7CYgKVTk12zqyk+1FfeKK3GnRY9sw1AEZv4JqrQXUVMag3NFx+19GIQQ0m5cVY0O2yuH9bvaunUrBgwY0KwY+d1330V7RxsGkvbK288B22f3QMzqNAzNy8V3MqvTuVQH52mQsKncHf9xBxaa1iGtdihyIUGAgH65d0FToAR62PUQCCGk3biqqavf61DOipF37tyJjoKmrkh7U1xyAMeP3w9DiTsMCTq4ao/jNW9PHuyMT7DgsS2ytU2EAKyYIiDL9S4cNcXYlp+/65eHGQ9NBbSB9j4UQgjpmKuuYmNjr2VshJAr6Iel9ShFlRyBkTsdsGV4DuLghAFbXC/tqSMDj2yR8fTtBiiczkEyeUMya5GVkw3TGwOgvPs9YNAcex8OIYTYVcdeMkVIJ+6Hxf55VgZVozjDBeXrvNFrv6p5mwjWPkK1HU6hK+Dc/U04ag9DUa7BkX2DUPz+C4Ah216HQQgh7QIFOoS0435YFt1dePe++aipcUSpowefrmqILTfP97TeFgQZav916HHqO3jos3HceDNStv4AY5HeLsdACCHtwVVNXRFC2iaz09cnDK+MiMThyAHwzs1Bzz2peDLxR94TyyII+HyqwFdi1fM0Ssj194G3oRyq7P34MS4b5k1bcfucp9F/wiS7Hg8hhNgDBTqEtGPRvXtj0ocfYduY26DXuCMjyxPH/HrBv1yPXK0KNQM+sT13fKJU1xcrB6xpxMoJInYOzOLd0bM3LcU7UYPg6uVt1+MhhJC2RlNXhLRjLDB5buwo/Om7dzF99/cwR2pRqHHHSZ/uUCidsERfDG+DhOFnLE2afwLzt0p8o0EIwP5+RYhPPmbvwyGEkDZHGR1C2jk25RQWNQg5KWdQGbcPO8dMgFAlIag2BxN/ldA3nu0F1aR4p65Qme2mzKe2BBnHzEZMsMsREEKI/VCgQ0gHyexUiWoMStiDiPTTKPbSIagmG7nx2haDnPpCZdYywkpAt4spqE1LgGP36DYdOyGE2FOHn7rKysrCuHHjEBkZyXdp/uGHH+w9JEKuixJHLd//WFtWjPCMJPTMMf9ukPP5lLqWEbKACszGwNwv4fDNWFR+/lSbj50QQuylwwc6Dg4OeP/995GUlIRt27Zh8eLFqKiosPewCGl1vSOCEec9lgc7TLXCh9UZN8Imsd6dIWLh4wqcCAeijgyH+sTjsJzpj52Ok2GBFzQXV/LMDiGEdAUdfurK39+fXxidTgdvb28UFxfD2dnZ3kMjpFX5azWYM+8u/OP7ELiaStG3pgaqnn7ok/JfCJCsWZypIg72ERuswNoLCfuwMnoqXD0ccQ7PI0jagYpTO+BLU1iEkC7A7hmd3bt3Y/r06QgICOB9stavX9/sOaz5ZlhYGNRqNYYNG4bDhw+3+F5Hjx7lTTqDg4PbYOSEtL27Y0Kw9W/T8c6Td+CReycjL2AU9g9/FXtH3IlFC0TERol8pVXjFVgyHkr4FZPPrkZ41V9wwb0ae/OAnGqTvQ+HEEI6f6DDppmioqJ4MNOSNWvW4JlnnsGSJUtw7Ngx/tzJkyejoKCg0fNYFmfOnDn4/PPP22jkhNgvszMiwguRA0LANsmpUXugXDMW/lX9Icoy/EusTT8bE5Cz3xPnfvaDf+JRFF1MxdRfY7E6p8g+B0EIIe25e/n1wjI669atw4wZM2yPsQxOTEwMPv74Y35fkiSesVm0aBFeeOEF/lhNTQ1uuukmzJ8/Hw888MDvfg/2XHZp2P2UvR91LycdUdK+HMR9mwz2rzhbY8ZOp1SMleIwb93JyxYqs6XmyXd3R6I8GGlunvjnwgUIUCvbeuiEENIm3cvtntH5PSaTiU9HTZw40faYKIr8/oEDB/h9FqfNmzcPEyZM+J9BDrN06VL+wdRfaJqLdGSRowIw542RGN8jAU8UPY1Xjm9GhCkMfjEGHtC0SBag13uyvyzQvawYuw62PBVMCCGdQbsOdPR6Pa+58fPza/Q4u5+Xl8dv79u3j09vsdqe6Ohofjl5kv0127IXX3yRR3/1F7Y8nZCOzMVDDbdBw+Efno0J/fbBy6TC3m6j0G16AQJGFPPprYZYY1CTSgk3GHmwk3lsF3IKM+02fkIIuZ46/Kqr0aNH8+msK6VSqfiF1QSxCwukCOno3KMHIfbnBRjn9hmUtRehqb0Dn2hCoQkpR5pQggcPnOQ7JbOVWQUxVZhXuQEOCgu2aMZjudvDeP9kIf7llIjZw6fb+1AIIaTrZHTYUnGFQoH8/PxGj7P7bCn5tVi4cCHfeyc+Pv4aR0lI+8jq6GYtwjf65dBoilGWfxJTqychXB6N7WOS+b46L88WsWqcAL94DTJjvZH+sy/GpB+Ag0qGLCjwbGUgZXYIIZ1Ouw50lEolBg8ejB07dtgeY9kbdn/EiBF2HRsh7bFe547Xb4XXgKHo7voT4rL+gyOGTZAFa78r1g7i/riGK7IE5MW74Z593yEiNxWyICL2wnn7HgQhhHS2QKe8vBwJCQn8wmRkZPDbmZnWvyzZ0vIVK1bgq6++wpkzZ7BgwQK+JP3BBx+8pu/Lpq1Y2wi2oouQTlWv02ckEOiE2eE74O+UB7lu9dXllp0PjDuKz19dgoc3fokTBY7INVTZY+iEENI5l5fHxcVh/PjxzR6fO3cuVq5cyW+zpeVvv/02L0BmxcYffvghX3belsvTCOkojEV6rPzwcUDpibPOvvglwhMuxf+BV5kFy5ZZWgh2rCyCgKdnLcY5cyCWzuzPNyckhJD26krP33YPdOyNAh3S2bDf5ffee4/fdnHLxTvRf4JoKYFjURJuO/QZHt1i4YXJLfl12jR8rxmKIskVe18YzzcnJISQ9qhT7KNzPdHUFems2C7h9VRVIu458zMk0QOSxh2x0QIvTH53hsCXmTfN6Diq1HhZdsQt6iyc11e2/eAJIaSVUUaHMjqkk2G/y++//z7fTJMZ67YD7tVV2O4Ujm/ck20bJrPGn49ulnh2hxUsfzZFgdhoEYIs4PaLd2PATYMwqt9A6JyvbYUjIYRcDzR1dYUo0CGdEesLt3HjRmuwI8sYnRqHtL5FWBbItg8UeLAjyDJvAOpXCuS5A8XaSwleQRYx9Pz9OBZ4EH8bdx9m9php1+MhhJCrPX93+A0DCSHNDRo0CBEREXway9PTE4aU8Tiw+Z+QBetO4AONGiS6VKJIK6JI2/z1siAhVlRBOvcg/ll2FiP/lEeZHUJIh0Q1OlSjQzop9pdOeHg4vw6JGYfB3cfwLA7jZXSGJDQu0mHZnb4XJH7NukYIigrAoQz5hb3w6e7TtOycENIh0dQVTV2RLiI34RD2/3Y7XvX2RPdCD6T6lLL+nrZ6ncc2S3zpOStS/nyKgJ3RCsiygJrcmag1xEAUQMvOCSHtBq26IoQ04lYNjNjpgC0XcnBTuRED9YN4g3OWwakPchh2PX+LtX5HEGSo/NdCcDBAkoEX156kzA4hpEOhGh1CughlWCgM513hkKuGdmwIwoVw+FX5wU+fBlE+0+i5bCWWrsTaOsLLKOGGygNIl/vjrCoQ5y6Uwn8A7a9DCOkYumygQ93LSVfjqNPB/9VXkPvSEoRnqHA2WoaTxQlmVXfIwhme3anHupyz3liXprR+A7ADcTHjYUxxhCHUiaeMCSGkvaMaHarRIV1MbV4e8g6ewNnDRdjreBZKVQXGWdbDfbWC76HDNg78fKqIxHA0axnBano2Tp+OamdnTJ8+na/uIoQQe6Dl5YSQy2Z2fPqrIRw8ieAab2x2/y+qoiTUREpwKBRQKgfjz5mnoT+kgii7NHoty/p4VBcix8mJ79PDlrBTZocQ0p5RMTIhXZCDt4ZvGugMNVzyAtmegtBr3HFOG4zR+5NhXOcJ1REXyGydeQNsB2WVl7UYmSWDG7abIISQ9ogyOoR0QQ5aFTxm9kDJ2lREVw3Bu0eUOFAShZuqj2BYfC7L3fDnCRB4qCPU1e38e4qIEI0DwNtgScg/uYtvSEhZHUJIe9VlAx0qRiZdnXOMDqqeHjAcSMP+WBEQBJiM7L+ExhsJsnsrbxRwsLfIV2HNKK6FO8qwyysFIYknsfX4BarXIYS0W1126mrhwoVISkpCfHy8vYdCiF0zO2fy9DzIYU65dIPU5Dksk1Mf5LCdlUfV7sJs8SvcV1WNFJOWT2Gxeh1WEEgIIe1Nlw10CCFW/QYE2ZaWszqdD6Lv5CuvGL4Ca4rCFuQwz/v5YEqIPxzEM/A1WndJpnodQkh71WWnrgghVr0HReBPW5PwWanIl4//FjoMvXUD4FqxCcudJqDIWUTv7L3ICdht64/Frl/19sALhhKUwQvlSjVSHDVQVZsQoFba+5AIIcSGMjqEEPzfi9Ox+e7eeC2oEBMEBe5Q+ULnK2C8nAiY3aA3BzRrAsrux2plnFO5Y0O/Yfhb3H6M234Aq3OK7HYchBDSFGV0CCG2zI6HL+Dw2TO42/wI5jrp8Lbjx7jNcAjbVD2wnk1RNXyBDGwvHckDoRsP70FMRSyqylT4KmsWxj00hzI7hJB2gTI6hBCbczVaHJd74AflYpiRjVOVN+FE1UtwqoxBmcdDl1ZkyQKq86dCVOoBhzLsNA+EeqA3es3Q4+78lUjOybH3oRBCSNfO6NDyckKaC/d2xo/SeOy2DMDo8mTsqpzA/x7Sq8JQ7aqDW3UIQtNPo7BKDzl8C+9uLssCanJnYk/KAkRUAD36fgVtSSqAMHsfDiGEUK8r6nVFSGNr4jPxl7WnMLRaj9FVQfyxMo2AVM/jeGb1v6GQZUgC8O04ARn+AnI9BBS5iih1XAqLhx+mnarChJ7xuCHqNoSER9j7cAghXfz8TYEOBTqENJNrqELurp04sEnD76uqSzDi0N8hNvjvon7HZBb0LJ8qYrPfdNQaB6C2Zwh0GhVyvUQsrTiHudPvsuOREEK6+vmbanQIIc34azWIDOuFaI2CBzOaqsJGQQ5TvwaLdTd/dLOEAKdf4NL9TWiyf4NjUSJcyi7iRecIZGacs8sxEEJIl67RIYT8PofQYISqcuDr6IALKhdIiQLEJk0+6ylkQFcio9hNhtp/LXqcnIABsamIHR6JFIdRNIVFCLEbyugQQi7f+POOntAoBFRqAvFB9CzbjslNFpqDlfS7VQCeZTK8jBKGVp+Fj1KB8QeTUGBItMv4CSGEoRodqtEh5HeZDTVIij2L2w5cgFd1GfzL9ZhliMPQ02f4MnOpwV9NDW/LgoySYTqc8VNj2PjH0H/K7XY8CkJIZ0PFyFeIAh1CrizYWbrkO3yp8oIs8DAGPfyLcJM+Hrf88BuEJh3PbQQZ3afnQ6GRsLVqPKb+k207SAgh146KkQkhrTqN9cx9U/CtJOIh80ncqUpEVEUudFXFlw9yGFmAyegAUQAmaWJxcsu6thw2IYR03UCHbRYYGRmJmJgYew+FkA7BOUaHYX+biLk3BMMJJriYqlEuujer12nIIgAGd+vXFQKw6/CPbThiQgjpwoHOwoULkZSUhPj4eHsPhZAOldkJHTcOg6sOA7KMAidf5McE8Ckq1NXoSA2CnFXjBORVKlFbKfKC5SK3GhRfPGrXYyCEdC1Uo0M1OoT8cce+Rs7aV3C6PAgeu4zQOgJGH2c8M7mUFyGzpebdcmXcHyfzfXZY1idvgiukWcV8Oksn342+E/9h76MghHRgVKNDCLl+Bs1BwPO7ofSLhnNVFcxlVdCc08M3fxiKXUXkeQgNghxGgE9sBRLzBqJI8EAu1uBCyteors6173EQQjo9CnQIIVdHGwhN3wBbjU6Wux/C4Y6tmdl4L624QZBjxXpkbc++BU9hOXaJE5Cwfy0O7rwFOTnf22f8hJAugQIdQshVC4scCL8YA6/RyfP3xhsO/0aAZEZ/VVXzTQUFAVlBAXx5+hd4DMmlIqpqK3B+/38os0MIuW4o0CGEXDVfhRoZkWaET89HVGgSFHVFyY5OEvzrAqD6IGfF+DsQZCiEd0kRUFmMI2X+iNvQBxfzC5GbstvOR0II6ayo1xUh5KqVix4YWG2C3kVEjskR/XGpH9bOKAEfxSjgWwp0ywUejf0J4k4ZkiBg+RQRsdECzoQISEqNhF98OsIH2PtoCCGdEWV0CCFXrdgoY3tuD3hbJDiLzniux7MwQ0SeQoFXvD2h19YXJku27ufs+tEtFt4XSxBkZPRIwp7UYhiL9PY+HEJIJ0SBDiHkqnn4B+B0mT9WpA3F4ZIIrA6YjpjhazCv91M8c8P4lzRcfdW42znDmoAW6Qvx6Z8excmd2+xxGISQTqxTBDq33347PDw8MGvWLHsPhZAuxdXLGzc9uggVkga1pTUQJQm5Kl+ccL8Bcl1riFwPAVKTLhFsM0GW6RmfKGHZMgse3XsIN59Mxv73l6EycSNgyLbPARFCOp1OsWFgXFwcjEYjvvrqK/z44x/bYp42DCTk2rFpp9K8HPxy5jxecw+EpFBAbYyFa/F/eEHyhAQL5m+ReSaHBTmrxwKF7gIWb2iS7alrAuroDGD6B3y/HkIIuZbzd6coRh43bhwPdggh9svssMuCvgNwc1Y2Eo4m4OjP8VBYAmAKrMXGqHwkdEOTHZPlyzYBdXQyARsXAxE38v16CCGkw05d7d69G9OnT0dAQAAEQcD69etbbMAZFhYGtVqNYcOG4fDhw3YZKyHkfwsJDsStM27GtD794FylQE1tIK/XKXYTWtgxuQlBhtLVbL0tW3Dq1HHkGtiePIQQ0kEDnYqKCkRFRfFgpiVr1qzBM888gyVLluDYsWP8uZMnT0ZBQUGbj5UQcuWGPf8XPPjq2wh0cbbtHdhSYbKNIMN/iIHvwcPIsoivf0jD7a/+jDXxmW03cEJIp2L3qaupU6fyy+W8++67mD9/Ph588EF+/7PPPsOvv/6KL7/8Ei+88MIf/n41NTX80nCOjxByfXj2jsTgSZNxOK4aJ/2P2gqTGwc7MgJGlkDjbUKRq4AURxWCa80wW8bihryTCK3Zih0rsuGsugeDQz3gr9XY74AIIR2O3TM6v8dkMuHo0aOYOHGi7TFRFPn9AwcOXNV7Ll26lBcv1V+Cg4NbccSEkKZ6DBiOPlnpeH6zD3obR8B5qNG2YzK7dhpWhrM9ZazSOWNKcAAe9vfD0pIAlK1JRveE/Rh/5jxuTN+AV1fuwag3d1J2hxDSeQIdvV4Pi8UCPz+/Ro+z+3l5ebb7LPC58847sWnTJgQFBf1uEPTiiy/yCu36S1ZW1nU9BkK6Op2zDn2ffgqrR5YhpMqCsHAjX1kVMl6P1HuMuHW8Jw9u3vV057U8bCPBxzZbbFkftjK9/8VC3FZyHGGWUvxl7Smq2yGEdJypq9bw22+/XfFzVSoVv7CaIHZhgRQh5Pqa2WMmRj4yErEfvwupUuB1OEWuFvw92MO2sSDqgpwRyWwX5cavFyCjT2UeHKuCUa0sxHn9MJrCIoR0/IyOt7c3FAoF8vPzGz3O7ut0umt674ULFyIpKQnx8fHXOEpCyJVmdjx7jMBGYSIkCMh0dLgU5AC2zQPn7pCb9D0H2J8jfiWVmLDn3/DJOwyfI7GobZDVJYSQDhnoKJVKDB48GDt27LA9JkkSvz9ixAi7jo0Q8sd17xuBBDkS7+Nh7JJvqZuYQt101aVMDnu0PtiR6u57Zp6EU3U1xh49jtolf0fa+Ako/YMbhBJCuh67Bzrl5eVISEjgFyYjI4Pfzsy0FhyypeUrVqzgux6fOXMGCxYs4EvS61dhXS02bRUZGYmYmJhWOQ5CyP8WoSzFdOE3GOGMipoQ+NdMhAyxxWXnLLj5phdbiMA6ol96zJYDkmXk/P0l7D+bhpxqUxsfCSGko7B7Cwi2o/H48eObPT537lysXLmS3/7444/x9ttv8wLk6OhofPjhh3zjwNZALSAIaUOsh9X7/WCQnVAoh8Bc/TJSnMtxRkzDLd9+BbHBpJVFELB2yFjcGf/7u54vmfsE9g4fhXd6BWN2gFcbHAQhpD240vO33QMde6NAh5A2duxra3sH2QKj+SaU1i5CoQB8fn4Hnkj8EQpZ5rU7zkMNKAyxwOUH94Z5nEZkQcDJif3x7egbcMRnNI6OjESAWtnmh0QIaXsU6PwPDVddpaSkUKBDSFsyZMOcdgQZj/4Z5d5h2BU9FO8Lw+FdVYq+5em4PWQ5loRal5vfmGDBo1skCLLA63UYNpXFmoP+e4oCj8MD3d1O4hu34XC6+T+4s7e/nQ+OENIWKNC5QpTRIcR+WDFx7ktLsG7MICx3v4fnbYYoDyO120+NVmR5GyS8lGHAy91YdsfaHJT1zWL9s57We2FKzUX41RRhac/38NAdsymrQ0gXUHaF52+7FyMTQrou91mz0H3nDuT3u8U2OXXBwbFRkMPotSJM/maUuoIHN0mhIr9mHdDXhc3EkOFrsMZ3EsSKU7hry2aszimyy/EQQtqfLhvo0KorQtoHR50OE7z9bGXIVZKvrUNEPRbQRNWYsERfzG/XP/Y3fQkuOvfG3XlbMK54ByYWf40fTj6Ei+tfo5VYhBCOpq5o6ooQu6uIT8edO87jdGkVenukYEyfT7GmRMWDH5bb+XthMe4sL4cFAgoUClx0VCCgVsKKgIeQI3thUumHeM3bussyC4D+ri/BDu87cde4+zE+bIi9D48Qch1Qjc4VokCHEPszG2qQt/QQ9iklHHHKweSYv8NgEVBoFpDmMBI7TVPhW3UWeZreEMxadCvNRHRJEv5SuhKFDiImBwc0mu5iwc5tWUrs0poQEHADHu9zG0J9eyHEJ9yux0kIafvzd6fodUUI6dgctCp43NETo9amIrrUB7sS+qFb1Cm4q2Xoyw/AXHIM2eyJlQKqcmYi29AN36tWQqoSkF2jhrs7q9259H4s6FHo/fGXbUZsitmNArftqM4DjqmfxYxRC+x4pISQtkYZHcroENKuMjuJ+2Ox8dBBqMRSyMoi/FeXALlBbbIsC+idfjv+nfE5cuO1fHJLEoDlU0XERl3aQ7ko4H3Iojvmrf8GAUNiERls5K/tOWA7ZXYI6QRo1dX/QMXIhLTPzE73kayPnYwayR0X4dooyGEEQUaZqdYW5DCsfcSjmyQMT5LgWQYYPR+C5OAJWRSxcsYDqM4Lsb02bv8KnLt4xh6HRwixgy4b6FD3ckLaJ/YX2q233gZBEOBS63Kpu2cdlpXRFLs02y1ZwXrjbZCw7BMLJsYWw7E6CaK5GIJUinQvFUrNAu8QmppxHg9vfBpvrnsZe0uMtDqLkE6OanQIIe3OoEGDEBERgewzR6D7ZCu+mmCBJAp82XlN7gxka0Ih8WafzWfe2WOLN/+A1HAFitwEnuEpKZHwUZUaUareENQ+eKg0BumGDBzOfBbv6cbhjhsmU58sQjopqtGhGh1C2rXz//4/ZK3YgAIfV/QddAPcsAHHRT/sz1Pj3l25UFzmf7CVNwoQJeD+OGtn9KZ1PEsKizGrvJw1QccuzVRUjH4KkaH+CA8Oa9sDJIRcFVpefoUo0CGk/Su/cAIlsd+h5rtCOEVPwQXhMB7rvRkeRhk9syUs3mANZurV779Tf12P9cda+LjCtqvy1qwc6CwW5IqOOGqcC50cheTBCmjDREQGR0OjckZ6YRa6+QRDUPogQ1+BcG9n+Gs19vgYCCEN0PLyP9DUkxDSvrmEDoDLvAHIyZqJsrX/wvmeLpD7WNtBHHRTYLlJwqObJZ7daRjcNO15zr7O+mSx17El6NucNXwTwvc9WQPRbRCkreiVBiSbBAhnATfTBKT1eBAORy7AMekEZDZdJgBLZ/bH3THWAmdCSPtGGR3K6BDSoZSf+g1HdnyLJ7VHG63I8igTcMuJKEzfc+Syr22Y0eFzVkKD6zqiJCNSsiBLJcKhWEB0we3Ya+wNvcbaUJRRCAL2vjCeMjuE2BFldAghnZJLv4kY128ixn9wF2LdzkBmJTcyMDLUAe5uxcCephNW1vuyIOPfU6zNQFlw42kE/Esk5PIu6JeezYqex/qZ0f8o4L7aAaL8I+ZDwAfRs7AtbBh/jkWWcV5f2SzQKS+pRmlBFdx9NXDxULfVR0II+R0U6BBCOqQPnvoeu4/+isPHViM/LwAO2Y6oFfOQN6EAulgjeLpHkOE9oAxOnrVQuprxgquAQUUaHLnojsc2S7Yi5W/HCcjwF3jQU+ImoNLYDR6rM23NRdlKricTf8Qxv148s8NiK//0kzArw3GovAxHz51GYG0A0rbXoliU4CmJmDbbC4F9q+CkCYNa7W/vj4uQLosCHUJIhzVm8M3wrlXj++w9gAWoUQmQZhXj/DBniOeVkMJMOKf1gULvgMkX0+BlFDH2vAWD91uDHIZdPxDLqm9kHvRsnNYN23rMxlT59UbfSyHL8C/Xo1jjhruFWny7Jxe+u9KQ4lQIg5MrLlRmIEPnhAqVhMJKHxSkf49QUx50yIOf49MoLIhArz7+CAl0RXFxMTw9PXnavaG8ijxklmUixC0EOmddW36UxM6qq3NRWXWeAuPrgAIdQkiHVlWjsNXZZFpCMEAClMEVALswsgD1+Tm4kJaA6iNJfBqr6U6p9RNdLOi5bdM5HFqYwoOeRiu5BCAwrBBOsiP+WxkC2cRORjJqg3rDEuwCQZbwRPEHGFO4D7URwPbkicjMjkJh6Y0oMPhAgBF528uQ45oJpfMFviHipPE3I9gvgk91bdNvwkdbXoZfiQX5HgosmvIyZvaY2ex4LxcMXUmQlGuo6jQrxzrTseTkfI8zyX9lE6c8f9in9z8QEHCX9YuGbKD4HOAZAWgDW36DK3nOFTh3/iJSUjLQs2c4IsKC0Fl+Tl020KFVV4R0DmrW0ZMXE8twrHVEUvJA9O1zrK7QWIRf0ly4ZQxAxZH/trAOqwWyAGXxj1gxRcCjWyQIdVNgfkPKcKj/aBQfZOu06glwSDLA4qPB1KO7MWNVPETZkY9lDuJsi9xL+w3CMe9HIEBAgDEERa4iNFUyjq424BiO86eV1a7Ex/tq66bTJKzIeAmu43PQt+9Y6J1ccTQ7FWWWi/gy+X1IsgRREPH33s+grxiB09I5fHL4X/ArtiDfU4FFky8FSfV1QztyS/DK1jOQZLT9yrHLnIhzsgzIPV8K/zB3BAQ3zm7VO5F3nh/74MAeGKCz7nG0Jj4TL6492fKxXMFJP6VAj+S8fPTW+aGnr/elYRoMl822NezHZtZXwcFbA71DiS249DICpvMXoAwLhaPu8tm4hnVcalFAZc5FpGa8A6hZkMNIPOjJMPZFX/1BuP/2HCBLgCAC0z8ABs1pHNhmxsNr7UswlYlQuknQT/8AGf5TrjiwyEk/idzkYzhythjGgzv4b+xpAJ6T78NDD92La8F+Ti+sPWmr93/TTqsVadUVrboipENj/3bfe+89fltyuIgl5h9QqxRhUHVHZdnf4FjjCXNhMqr2vXuZd2hcvMz+9PngNhEpQda9dr5O0UPnZG0T8aL6ccQZIuGluIg+NUk4o4rEWWU/aP0tWP3Z/zXKADUiyMi44TnkKrqhWgYGup1BmOCPo1UeyDTJUFWXYOTBv/Pps3oso1Tc04Rfg8LxS0wB79PF2l+oqiLR11WH0EIldGcn1XXykRCc9ykEVSK8ckWsj1Jj9twPIRUF4OD6iyiDjOVu1Y1WqbEA4Sm/dAwdFo2gXlpkFR9FsOdgVBV4IuPsRYT3CkKIQkZ18kWoeweh1lODktwcePgHQFNlhHThDMTQPjB7q21TLia9ARWZJ+AcMgBuQb2t3+jY15A3PsUzXrIgomricygM1iHjkD/8DsmorC2Bk6MHUvt5wrunjJCQENS6AsmGbPx68iDiCr+wHftMn7l4KnQApq/KRY7s1ehY3pvphrGVR6GNfYW1eYUMEZk9H8PRQgUihoxF9+DuqDx/Bpv01Th1+hAqHMvhXOuCbqNuwYIJY3Ds2DFs3LgR7JTIsm1jJk6GStedBwzKwmwUnE2BJ4JQu9fAf2VYcfunXt9hr/IQhqXW4sHfLOyECogi/F99BcJNN9mCpopSE3IyCmEqUyBhczY/8YcqBUQ5OdSFwhLyI1fCELTbdkxfHp6Dr6veQ6XZESUmDTyUVRAUQNnYv+CoRsS7x76wBrbuwNyDtRh/0Yzt2sF4I3IOJEHkn8mL0/0RFW7mgVi5Xo2kjFJEhruju3sFDwZ3rF8LbDmM9IhAZFc5wLXS2OhfRdBNc9E3pj/6R/W+FBhdOI+sc+cQHBGBgNCw383kjFi6s9njB16c0GqZHdow8ApRoENIx1d/ktIJKXhM+oU/Zpa9kFfzHx4ISFUlqNj6Qt1/35cCmjdj7sdNVUcw9PQZnsmp/5uahw51Oyk/4FuIHqcVlzqlN3nOLyODcAZj8H/7Vv/uGJ3HT4bgNhOHqyvg67QSEYokFDgOxwa1K4JSNBi5b22z14SM10PtZ8IS3yD84NkXCnMeRHMpap3/hSd2KGxTcKWBX+L74AS+NxALzp6Mr8aF4pvg63YHjE4KJDvL2GWuavb+b+39FP306dg7OQLmG2rhkh2JkjJneCtF6E0SAiwhgIMjQmu0yMw5gYvVeejpkoJpuqPW4AMC9nuNQYE8BC6WFNxo+IUXbrP2HKd7zkG1NgCD499s1KqD3do3zAM56V7I2n2pFqVaF4paDx/+9XydBt6Ws9jgfIQHifXqN3n0MUt403wPTsndkCFZsycDeuTis6yltu9Ves6pUXf77DHVGNLbiG1Q4wOnMLjV+MCgKkRoRT+MCR+DjDOZ/HUGJxdoK8vhXFONtaI7JublQ+dihk+FBTe5zuBB0KXfIQs+dluOed8kNJnmFPDLrdNRqdFAXamDbOwOoygjwCLyrJ5aACa5OTR6LwkWZIx5DmZ1CS7m9cShhMm4rWY9Tuc588+ZfXK6kSVQBwOeJ8vh9pOEKkdHBAWUIGRQCQ9sLLKA18ruw7Gynijwz0ZF9y3Wz08WIOTMhFN5LxgtaswWE9HPYw+OiH3x70HzeAAqSBJuP7wGU4t2oNDggnKLCsPCR8Pb3B+/aU0Im6BDfuJppKfn2bZlGNSzO2697wE+/nOnDiD1/Cn0COsHnZsfPo87iQ+Smk8a/fXmCMy/4VLgdC0o0LlCFOgQ0jmwf8Ppm9ci6sxi/p8+U2G+CSXmJ3jLT9P5PahOWMVDFYsg4MOoS8vFe1dlYKjhGO4+dKDRCYvtu1NwiwH+G90uO+3FnrNiSl/8afOpy0+NCTIq75yOfEsU4qRzkKosEDQKZLvqkeqaDffqQrz/pb5xRkiQ0X16PhydJJghImb4GuQqveFS/CV0+tG4N8EXzqIeaqdjWNrvFx7kNAwI5meNwBmXWVjf1wFiVS4U8ewkC4hKPSSTNwSTK1Zu+wd8qg086HtvyD2YFVGNfjVTeBWTBAmfCQakKPXIMmsw0ZKJyAwtqjRe8PFdjxJVKdSOMzG60hMqMQc1UgBOeBgwoHQFTMG5yOgFeBhqMehEGS7W+uCiyRdBygL41RbhkCoYx88Gw9QwaHBwRE7oIMQ4JuMG82EcknT4IFiCwbms0Uf5VqYTJtRmQSVW8ONh01e87qpBQFRbKSLtZ7/GmToB2PByOA7l9MT0lFvgplAgNsQB64c4W6eF6k+FAuupJmNMSgLEku8xJckb4SdTkRc4EN373wPfJhVel8sWbh0zFHo3dxRUT8Bv2gr4Kopwe2kgXEzu8HYQMMqlcRCQrxLwoVcaig3AyXJv2zjG6+PQtzwZJlcP1AR2swUZ3vlnEGq+gJsDk22/702Du/qWJ2HGMPQqHAajpIGLUI2TSi+UBTvjQnBfHuRc+r2x4MPTKxGmPghDt2L+8e25OAJfJd3Dgy32b2ey12HoKlgLXcBNLsOcqcOx/lwqXvKfas0kyRLeOP0phHwtXjaPqwvS6sl4cLQvltwyFK2B9tEhhHQp7D+86vBhyP3aHQFDSvm5y0mxHSrFMdRIvVES9n8w+nRHkvEC/qUNaLQBYLImHDc4HWk29cR2Ut5a6Y55LTQPbficPI8z/KRiq+mxPd9a37N76lCc9NDA9XQC5uzdBEXdCq/lUxQ4GSgg11XAmhHhuPvAeR6ksNf4DzHwIIfRKwT4GQ8g3/0GlHs+hB75BvTXbEcPj+XY7qKGJHg2GhMLeiwRR/GrSyQ8cv/Dp8TkHtZhWc+TAsJKhvCTtzonES5VJXiO1TAdEVAU44bz/cciuELAI5BgdjIDp06h9sg6PjZ24kqI6o9KzxD4uvyMQKddtqklTdki/IQ/o1uvZ6HMd4XlohpbctwRvOcCtHIJDIIScT0mwkFWI7I4D2U6Xzh49kCGYzFyg/xR4eSKjAwdorY5op+sx2eCgC+m90dBmBk5ygLUqoqR4tgHUy3JyFcokOnogJBaM2/j0ZDJ6NC8u70M7C64Fyei+uE2xxREVibirf5jAcG17kcloG9+CgZmJeF4cCR2h/TDfWnHkVlswsuT/2rNeqAcr6IcU0Q9zFIA8hwUyPcpRwgPAhpOOwpwqDgPlYuMo8FmOPvtQYUgY5UsYNiF6QisDEFPhQ4+FuvPbX2gI97oq4JU0x+qXXnwF4oQLubxbFWs91g4uAHeUjXMikqUKysw3HQR9/vtbhbc1Qc5DPtdZruFWxRKlAvj8JPYy5YZ0vpK8K8yory0BHqPS1OAkqDAE/0ehiA/iEUlHyD6YiJ+SZ8MWWN9TzYduLVoKJ7CWvRQFGKUYwLSfjuEtwa/hZ75RRiQlQudOh0PFP8AhYMMd5zE0+aFkMCyjxLuj1yDwUFPoq1RRocyOoR0Gqwu4JU/LcXis2ugcamF0qMWvtFGKAQZRvMklJgXQg8Bs+RyHmjUY/8Jrwz/M3zea1KvIwB/nSPija8vLUdvqqWaniM+jnjfwx26Uhl57iKyK+6Ae14PrNz6Dx7ktLRTMwsUFIq/oW9pIb7MeglqFmAAWOvijI+UHvArBXI8RGQGPoj/Ox0KX82TeNXbw5rJabq7syxjgmMvbDenwqtMgn+JzPcIYupvs4Jo9YnH8dWmDxtNLVkEEQ+8tAiFXj3wf/rluCHlMJRrNA1nkBpUNcnwjzHAPaLSek8W8YHrc4gq2A6/jXk86Gt5+0b2fQQkT7gHPUI88U9PB+yMGAav0mL896+L+FL+S+MR4HDLXMiBRcgN+gmeGRZkVtbi76HWY2fHukRfjJnlFf8joyNgztMLMMw5Dx+nLoOCTxaJeK7nc/jO/2a8vOkDjN14wFZAvnfQAPwjZG6jz/YuRSyWOvyb/z795OKCV709+e/RhAQZj/EglwWCIvaPCMaHY7OtNVGX+QDYZ7Mw7Ub0LFTijZHRyHX1RUhaFobmxuNRj//iolKBIJMF79c8iG8H3Qml4wGEnv8C/qUSr8uZYzagr8lkC/Qq8pXIjL1UWF2vMFSDudGv2DI3k84fwlMJP1qnGAUB/7pvPjaNGt/oNdP2xeKZVSv4z0FqslkmMzf9e7i5SlCGO0OnyodwWkbkwRRbsOcTZYDGsxaOLmYUq72xJmAMfH0z4OtxAcXiO7hz3O1oDZTRIYR0OazIcfwzj2DOqt7wMxYi39UHf7uxO24NrkFslgpLt2Wgt1iE4coKHCyPrFvMK+OBPmsg+lZBF1ODvCNaXtPAgpDPp4pIDxCxfKr1r2OWFWhUo1N3Dntmg2SbKpgTNhF675M8K1OstZ7h1G4/IThnQqMgh2HvNzxZwsHebMdmQFTkoSbQBW9pH8EjF77ASZUDdmW74+Mt9ZsbSlg+5Uuc9RiIz+qDHKZBsMNO/H3z+8K1Vw4m7LZc2hix4bj5WGWINQcaBTnWMUmYtPdD3vn9xjh28m5eONpw1VnuES1Sw2QEK038hHv6Yi1u2lLAcxyNn9v4tewk2nvnfxH/ug47Pd7hdS1BBXmNgpz65wWXvwPTUQfIy7UQZCUiBA3GTpURG2XtWfaKtydGVlXz758tOmCl71CUDg7H3GNx/PUsyPl8ioha1efYXyvjV8EJN+aZ+CaSb6e8g+xa7wZBjnWUo4+fQB+fDJzRhPNHdCiyBTl5CkVdkGl99s5oASfCHTD34C0odQrAF6M/v3zDtbr7405YMHrzFv6z+XDXhrqpIWuR8z+n+GFHtIL/LP+m/w7bhCEYE/dvPLbZcmmTy7Gu2Bog8qBnkakE0yurmkVVsigj5S5PyKkivKtK0afoPBYn/NBgOwUZz65aATlQRIJ/H+SqfOFdUmQLclraLJNNXzmHeKNfwBFMKkuAuUxE6iE/28+bKUh0qz8aeEeVYUCGGrnKe1A6cj/ys5OAVgp0rhQFOoSQToUtXx3T83beoiHM28m2wuPWcCAmqj9SMkrxw9ovERi6DG5VofCodoF/wgykuoxCbUAyRkz/FoWVDpjT0xt6rfWvYFbnkBgu8IageXWZkcH5ffHwTycabTzIgqGFjyc2yq4w7G5xzx2QfmuyNw+AeTtkzNlp4Sfih3xeR40InFKqMCXYH55GGcu2WJp8DwsybtyN4x6ujVpXsG8Snt8PuWWjsavnAETWvIvHNl+q+2lYWVI/VvfJm2GEZ+OTY92YrKfMK1uO/2OxJw73EvC4qRS1WWya4somCtjJNDXLCYJbKXQWM/xVeluWpuGnVFOmQP5RrW089eNnPxOWDXM3Ajl6NQ54ingpxAMQLkK46SJG9SzD4MLaup+l9bVjT8iI2OyGTPlSRmqMgvVHa3KssoBbq/ajRGP9kG9WHORBDsOmzBrWRDF6rYxsn/MoViY1KqBmPMtkWyaNjZfdrw9ArS590izT88gWGce7WZvPvu7tgZ4X99qCnPrjfyDOWhrPgp7Pp7jjZGAkxt55Hr4/OlgzaYKMijtr0d05G3ed/w1zE7a2+HNhn/XHh1+H2s+M58Kfwdn84BaDzTEFO7HHfzD0yhCsdYjCswa2Go4tc1fWTdde0uBooE90gw47ocMOlJYNRKW2Gm2NAh1CSKfDgpuWlrDyx6M18Kl4EL/80AelykJk6brh3Ru94FERihKnGLgopiGsJgcVReshy+n1W/SgxJVlXaynf6PnQwiCI0T5xGW7ozfFHuN1PLYu63LjE/cWC55Y4GMNrnh2xjrN1KxuCED3HU5YttPSqHUFz0LJI1DVtwdk71ocPDkYd8jJl/2M2BjyZQfkjqlB2B71/+z8Xq+lmRhrsCbj27FaWMzVfLqj8Um1rt9Yk9eyrNk+xXl45TyFZy+wjIMFmmgRVQludcGO9T3yj3q0OH6WDWOZp/vj2OekRU8BGD9V4oEpO/cuCXXHWxq9LWBtKcBgGSkpgE1ANhmdIOMR9814TPUr8hUOyFIqkGtSwF+y8OkiNr6GwQ6LbUYHOuMs/PCbnMaDL/bzC8+V68Z3qd0I68922a0ImmX6BKhTa5o9v+Eml/O3yFj4eB5+6q7Ga/eUYGKeCY6uZqAKqNqqhG/C5ssGrezIi2od4F9pxnMX3serVdObb5YJYP7x/Xg4YT/+O6g3Ap3UkDwEFLqK2OvniAFNnt/ySAW4nz4O57GXaoLaCgU6hJAuJ3JUAEIipyEl14hb8rP5tE6Zs/VkWC55Y/43q+EsafBb9BjkqIvRR+OGCf7HcKFGh7fdF8Pi6AWly67me/Cwv3DrMj4t/UXPMhCsJoedxObtaPwcURbgW8oyA3UpIFZz5GFdPdPSSaRR64r6x/ApP/mykynLMFzutXysAD5TeyAlAkB/oW5Mlz/78lqkGSK8DTLui5ObBUbWLAMbz1o+nvpgh43HZ0AZanzM+MzshXt3WV/LPqtV4wT+uYxMkjAwzoW/R5UA5MdU4jdpOu4/sv2yJ+jGmSe0mOlh3/uckjVmtY6jpcCRRUTuaR5IGeGOiIMG29gKY6oRYnTADmcl/h5yqR7oJX0x7iiv4NfWGh3r408Vl0IjbcD0WjMi9rlCt9eJf69mnxH/mTUPGFs6NpbpWzVWgGO1uW6atWWXAmyR1y6pNHr0Oe2IykPW1YKX+z71U68Ve92RyoqlxwowBMTj27EC7qv7OTUd/71Hk/n9VMGPP/9cgIgTY+UWn9/8wAS4SVloa1020KGdkQnp2lh38UrUQspv/LgkKiBMKUWwyyncrXGCoaAHig/ehYKzN0HrUojJfiXYHOnJaxr8YsqQf8StUU1PfTaHJSSUeRMxJn8r/4u7/i96ltVhf6mzk1jTpexNg6SmWaCmbCegBo+xk279ydQacNR//dJKsJZqi1oa06XCYTY9IuBgH2u2aX8kWgyMGo7HAhmv33kbzlaEwUHphGmKQxjssQ6LIj14QNfNluloHqz4xmsgjij+3SDncpmnRlk1WcZnHh68SJhdWgoc2c2Y05ts2ZZ0f6FubBpkyhpECGhWD3TU3BdPVh3le/pkOTrglFKJ9z3d+de9DRI+2cs2D2x5fI3HXZ/psub32OfW9LO4n9VJ4WCjn1/DbCDDzmJuFdaAmh33Uo03lh1mpdYtY8//YrKAR7ZdCvzY9NN9DabD2GchidaAq8XxN33+WPB6NvbZtRQI170Ime7WzTfb0uU+h05v4cKFSEpKQnx8vL2HQgixk24aVbP/BNleIp7BOZA8RPh73A0YRvOTirnKE5WFvTD4lCcW/lqAYSczcWhwJCKm5/ON/dLuMSJugHV/EVEW8XDubHyc58OXnDet42FYcMECCE6QsWLKpSCJ8TTI6HtBQkKYiKfvmIDvhg9vtFLs9zQMONi3/mZ0FDZPHYGwWwtRNbaMP6H+uC83Jnb9zXgBL88WeRYqNlqBuw3stdZsCQuMfm887JMwO25E9YBlKNKmY5NlGG4zVuI7Qy7mW4pt0zkNx2t7LTtJKouavT87Qf8w6vcrh2wBIz/L1oUTgrUu5pX0UjhHG201NE2DCnaCrnasnwpr/Pmw19e/10b/PEwODsBhSQNdloCvHbS2aSy2Oq5pzcrlCTg0xgULHnfA4wsVWHlj82NrWO/CBIwshl8U+zlYx9MwaF22zILxidZVdpfN5AnWgDzXi2Wimn6vxp9FcpA1MLz86Bs8fxcwSSzDpmHW3xf2e8N+fxr+jss3VyMzUIm21mUzOoQQEqBW4p1ewXj+bBY/ibKT8xsRHrjJ7SNoNKG8i7R7SBZ+fe0sxAYhkbbCAfsKHFFhGIFc3b0Q3VPgVxqJ+466oMpJj9scrHukSMZDqGhy0qvPOLA6khPhAhZVOUMTXI1SUwAgZ/MTwni+XLluhQ0k+MesRVpfC5Z7+jSo8bmizl38mBaoYxGgNeG18MdQWiDjsV0/tzimXQMETNSWYWChuVExNicLOFxyN+Bm3W23ec1R8/obFnCwPXZU/muRX/EC/mJ+GP/AlxhRYK4rBm4Ze+0g/5NYMUXLC3Prp5NYVimxm4g79l8+88Smw7wv9AZCk22BIzv5W2tzXFEFGepoI1a7xmDmnrPNPofeF1uoi2qQJaqfhmS1NxFxbiiXgY93SnxlHvuZXi5r1NJ0FRvvf/pX2cbZUlatMQEOKgnakGq4hVbhNflB3L1xc7OglW2J0HQMlrqpx7QA4H6zAd+Vsg3+9l72e7FjVtdaP3OWkfxfv3Ps65PyTHBTl/ApPXZMp0OA/X1k6zYLHiJCQnvB71TrNAv9IyjQIYR0abMDvDDO0xUZVTUI16h48AN0s329W2AwPCYlomSbmgc77ASyP1xGn/wqDPOYCMEkAqaeCBaBGWoLlolbsMHFBQ8aZkBw6dns+9kCAMiYGGqCu0sV79n4/JlRyMvvhxT5FMZuWdVotVT+ES2CgvQ8EEkMV/CTbsMpAja5wbM0fBqo8bQGW33DenWxfWP+lrEck3svhyRsbLSyiT3n+doiBGWZoJMtgLd1yfIrsrUGhe3xU5M7E9HSEPRz3YZfys38u8RGKXDI6Wb4Fbijr7gK9+2yBj1Np/FYsHNv/88R7WLElrNzUWAsxHAcu8z+OmynaQE7wzz5dFNCuMyzJAV1e8c8UGGCy1AHVB6+NGW4qtGUEwtUTtum5Fi9TtMC5IpENxyek4oZe5sEAwLqshiNg536n9mlgAm/WxvEVtA9yqcrrbVBX/aZhhSPYPQszcKDSZvqlrw3/oz+V8F6/c+JLYnnR+EEuInGZhnJ+gCl4ftY6j7TWZ5FiDJYtwFQdEvk33/+ZQJV2++EpwnSDBEp1Wpsr3Kz1Vg1D9oEvOqwACf13WAsdcCIXutwUjqLYi1s2ywUlZzHeHPbN/WkQIcQ0uWx4MYa4LTs/pm3IH1YFn5LycbblUoYnUTclO4AIbXxacZZoUC3MgkJUjzmRRyBv9kH4bIz7t1eYTvh/DhJg5sMOoSf745o9VCUq87DtSYcbpYQsL2aXcxsRU+TAcgCtKUC3xiP1YiwotPToSK2j7wTXpXdkO3jx6fcPs1YjN7xBhScsAYBLPMS0GCHZQdI0Koq+CZxz6z6N98zh52gvph5F8rDnPFZ1hu2b8k24BtWacIMLIbe1A2SWYtuWi2G5MzC4J5fIb3KBZ8eeRZGswfyPYEzWhP2LfiJb2jHsholDVeeyYCx0AsnMvrD2eKIHl4K6GJKeQBXP051VAU+9Y3Bke5nbZkkNk3EltA7+N2CPrUC5qR9Zt3oL7wWLw+fi8NifxRp0mCSf4BHmYyXvms+TfjBrawtwZUHA5YAC9+xmk05XgraBNzsZsLNm9neNv+jNshVxK++d0I5Q0BYaT7KXV2gULmhmykNP/lMwa6ggQgyn0BJ719bXJ3HgtkJWiOOVLlDMkiYXRfMsnH8e4qIF1wFeFtEPN/zOTjnGZstx68Pyk6HCHza079U4kEiC1wnl1v7nbFnd/crQPY4JZ4Id4RfCdA9R8bsXXUBXt3vjbuiypoKUlkQoKpFcaDUoMbKOr1Vv08Ra6myXR3D39vcyx1VFl8IQuNVf6yex9HfCW2NAh1CCLkCLLNzi5cfXj6QxO8nBrhBSi2HtYOUlSxLGHo8HTcYS1GptuDrccPhEliCJxbUwI/taKsV0CvTFVFJWowJvgOCRYS2MrTR98nT9oaLIDTey6TuL/mZ5SYMqzJhWtSrKNT0hqTwwEW+WaCEh+XPIPethGd5BZ/WYG0Q2GvqgxyG9czK0AQib0Q0HOVQjMtfhe+Di5HptRveFQOwpeIRTHX6AqJg7a/1Qc08FFoG8pOXJVKL/ucAt9IbMFDfDxbHUkjmS8u+aw0xyKroCWevFChqcyHLB+paQ1iDgjjXFAguKbjLswbelQp41lbC1b+60TizFb7Qa1MbfR4s2OmRLsI/fxB2nZsGuJ3D8R4jUVWiRYimGBMU2YgIroK5lAU01hqpeixAuE8/DTJ+bdSioT4YSAoVbPsj1QcDipLbUeSYhif+lA0/g4x8dxERUj/4nZSabSfQEDvZZ1Teh/K0MMhmLdI9cuCsYqkPGQEVx+A0wYANuyfzTfeKHKLg7Lq50ZhY9urtAj0G1NTisDwesd1yUaYqw75I2bZ/EwuMkp0WI991OPKVXpibswFHhwzG4CNHbdmjjwdNw8WSEMj5XghW5qNSyMLsrATMcLrIfxDsO57p4YIalQLDVRb06inhi+x7sCFyIDZMckdgYT5i5FN4Oe/TZsfIgt+RimrM67MYXw8bCX3vdRham4EPw59GoZMnxEozJCcHQAWkFzhArmncGoPtGj1B4YK2RoEOIYRcRU1PgVrEG33V+GtSjbVBtCyhJuEbuBfn8ee66IZDdAjEi1Wf4+4qb5wS+sOUPhwX8vbBVe0BoUEzxXrsPYLNQXhv9iN4+rsvoJDYihYBurqsDAs+3ol4GvmuI22vUZwphUN+FTbJY5Dt4A9zZSnGaL6Gs5MJEts4jnWu5gGHiK1VCzBxnxru5SUo9N2CC/1SUekI1DjIMKiPIt34Mr6uGAqtQx72B4Tg25ggCNUWfvLyNtfgK59iPHfRDcoaL3Sv8YCIctvSdkYwa/FA/iD8DQp4Fw+Al9NpXAzYe6n4VwC+L1EiyquCv44dk6OTdRWOWRaRVtMfkPc1SpeIkoxbfktAgH4nasKC+VSZERa4mKr5pcrgj5SC2xFQxrp8f9/oxMoannVzuQG10R6oSfyWBxNNp4xKXIG/VFmndLzNMv5ZMwz5whSMSt4KH/UFhAp94GRxQp5YCRknmmRyrBM49RmNAkSxaJI/GpZ+BBpTGURTNSwWE6rMzqjt6wHH06U8EKrOnQl1wDqe5WABgMLtDqRfzMVpixMMcEFMmQKx3qf5OG0r+SDihPtoQKHFE9kJCKvJxZlgV3zp/hcMMV6Ej28xXDVaTKythZviPJylWmgu5KGs0hkrHIZicHgy3AJMyNWp6n/hMCyjHP8IGwO9ypc/xHpfJSISv4aNw7++ewXjw0412v/S1yxh6IHzGF6aDOcKAz4ImwmDUgGhrwhJreJBN1Pg9yDUxjC4lKy0HeMw1XCMCLn0u9tWKNAhhJCrrekZoYJvjQyzvgq1F40oMoyB4BoI0TsC77r7I0HOhUUW0E3QI0Q6gTzN0xgQ3B+VtUawNoNCwzOILKFy11JY3H2wZ/FiHIocgEB9AXK9vfGA09cYUnUcz2reRY7ar8FrZB7kCDUWlMAdcaahKK4VkVE+Eu4O+Sgx++FU0HZ4OJ3DCXUlssTduC/HBzHq7lBV3IILlQUQDHNQ4WhAnms6jMoSiCZvVJi8EXpewgBDEZJ8HSD9f3t3Ah1VeegB/D93JjOTTEL2bUJCBAMxrEIWKaBsLUUfFIXqwwXE7dVDUR8Wq7bWZxfxabE80epT+p6Fh08Klp4DlXcQmhwoAdkEpcgSlgBZCSHbMJPJzNx3vi9kSCCEQDJLbv6/c+aYmbkz97szn3P/fMv9hsegyhyG40lGKGebuz/EKt4vwIw3IS4Q2NwisUg1IVwxYJb+r1isX469ihGP61qVV56sdXKZhsMZ4ciULWJiBXIFH4Tkoj5xEwxuM3R6u2zJkauwn0qEOz0O3/a7FxeMA3AiqhaR6gHvit2Cs9GCuro8VGYZkPjt/zafbHUKtt35MBzxLkwwZyMkOhXrbX+FMmkfCuQQ7eblDcT1cKZctMugJQZLlyNWBq3tfaZgTtmn0PUJlfftYWHYnZOD7D17vAuvxg6rx08i5+DbWw2orM7zDjgeZDgBa01Jq6PWIbquCp6UUDjizLBUO5F3eiIKksZB8VTCoyRg7InTqHB5vONy+umj8aTeho/clkvdU8DDNdORZqtAv+p6hDm340TGbsRuugd3x5phS4mB3eCARdcEi77JWz8UZ/OViG0uM5KbZiClcgXSapywh+oRanfD7PRg0f738PwPX4WqXA7fFSGx+NqRiMij1RiZUSoXyRUrxX9RdisiaysvHxfOoqE0GfqqRoyxAFtyEptXgwfgiJgAp3kIZtZ9ipGmU8g9pUPsP0+CvzHoEBF1ZUyPGTBEmmAeEIXQEQ/I0GOIC8XL8MhlKOrLm6Df+DNcaHTBpF+GsJBnECaWo25NB0Rnn0ci9mC9ZSzqTHrAFIeqmDjcoW7DcHwJj8mDu9XP8Af1R80raase5B05iGKnGRdgkW/zwMDPMCrhazgOzMTxssH4bPibaDDXencjpr2PdQ1AvBoFuNy4xXAGJY19EO6MQqKtpQvNA2NuBTIzKpBY/wkqL8aiyJmJT41zccaieGenCf8EI0ZBj4WN5/Dr/LeRYm6CK82Ce247IJdLaPcKwlARb1BRlmxGdbQJ+l13443E3ThhKb18QlKBRcVDkWkfA6s6DF/GF+NCTZJ8yu2MwA59OkYbTsmwIzJHeF0GLKoJAzLuhJo6DJ6GSijhCZgSGo1DrouIUo2oO38C6bYoxO+ORdq0cyirSURKdAUSE4xYV9EP/3746eaQ01IEnYI6nQUJZcVwWNNliDkx4BYMTT6GQfVFMES4cNEciqfVfBzSncdvB+6Dy90fFlcxvlfQup2rWXS5DbPrTuHTzFsQpzfgO8V2DKlUUB2egpgGNyyNSSiLrIXJVCO3t9sjMNSq4Nd2G2ovApFi8HHc/+Hi2gqcjTuNqO8XQX8+FoawyQhxKLA4YmAPtaChzzHvFC9TWTEUV5OMTqPipkDRpUBVV8pwI27y21aBofuO4Pmm5Xj7oSfldyW+31+lxWHCj5/B/jfewq76MYhznML5uubA1ELEsgu4NItKvF+T2Hdym+P2hMQj52Ie7rE+iNhp/g85AoMOEVE3EYFH3ITkS0tOfFOcii+Kci614DRi4iP1yMwcI8OQ0BKM5Ou+m4c7Kk+KpZq8HTA7deNwTM3CSyHVCPv7bjykbkJtaDgi7Q0Ia3TgqDpcbqeoHszuNx560zPYVlKNUA+QXToVW/v/SU5RFzPGnimfjXgxrkYEq6mJsKQuxYSiGBT8ucK7SPf4h7OQNWayfE+HYzbs9mIcP14PwxdfoMZsQX6oBRPtA+TYJHFRwI/hRHRdKTKsJXLdqNaNVGJ2T8sAanECFT1YD8S4EGUQfX0Koo7PQbGSjBMWcZXpy0RrThwmwaoOhEdV0eAMQ2L2SlTsfRh97Qo2GONR4o5EH8WBOo8ZSogR/1onxgTdCV1oNJTQy2OHRiaYYBmdhqTkf0F68WkY+6WhTG/HiYK1cOn/E40GPVwJTlQcbrvMhFjRfvKwJGSU5aHKdhGVjSVIMKUg2TAC5vmR2OQ+gfe3v4OMhjocDQuFu2owPI6+8DSORojlHFy2zd6uLRFGGs4o6BP1NZ48XwK3kgQVMehjB/rYm2dRqTDCWnsW5+Mt8otwOi04duwOZGR8ibCw5s9LORcP9Yl7MeW2HCi1p7D/wrc43aoLNNSeDGNjDNwGOwzuUAyZfi/scQ4MTEtFqD4ClSdOwb0uCdbQMhkSRcg5XRMF67ynMX/MRDw4cFDb2YcZ/aA7shFVv98EW3gEDvcHzC5x7anmzqitqelouBRsRIvTA7kj8Tcx8++KpTEm3/8oYjsY7O9rOlX839fDbdiwAc8//zw8Hg9++tOf4oknnuj2Zd6JiG5U/fkqfDR/ngw5LXSKgiff/S9ExMZd83WflJ7HT46c8V7VWIwLEl1m+/btw/r16+X7iVthUzqOeRJk684jxzbgld+/hpCkJDRccKC20o7IhFA0GGtwpv4MUiNSEeeKbhusLmm9vbhidHvEb2R1dTViYmLgqXOi9nQVChtU/LzgJDLtJ/HXyJ9duZapV5negLdDpkPXFI9kxYi+riTYapPgdkQifvT7+LnnWJuVsUTL08dFv0KcOxoHLrpQ3Kgiqv82xGZtgLMhDrsbUrHq+HQ5Bkns0+RuREZjDd4z3wqldSF0QNKLuc3HWlsCVB8HYgYAkSloKi/H1jcfg3r3MegUD7aeGY0V3z4gx5KIkDMnazVevP8t1C77HNV/WOINLTGPP4/ERY/Lty+3lXs/WzHuRrTgWWqbsO3DQ1A99fC4a6Doo6BTIjDq+7Eo2Pg7OJL6ySBjvpiI8NqMS2O1VGQe/QTW0kIc798fe3JyvOOUbuu/B9Y+DXAa67HcPBtLvvOMtzXxb6fO4x9vHGgzxVzUmVtmD8D4YYntf5f7VqDhz4twsUkPd4UeNV9GNDeLKQqSf/kaombN8m7qcJRhe+GdUC54YDingyteRUljKPRND6HkUAp+r4v11lHRjfnES2PxJ1tDu3XXFzp7/u7xQcflciErKwv5+fnygEeNGoXCwkLExnbug2XQISJfOX3wa6z51ctXPX7/L15H6uBhHb621OG84to+zcRvVcmpk/j8zV/CpoagJiQSUU21iPBcxJPv/XeHAcoXymrtqD64BYO/eKjd58UYpfWYjP26ITIriG4m0fLQInX8WzgQdgJ/qjY1Xz1X1cFUNhPr7/kREvpFweFRvSHMEHpBtjCJizleaIzyrlAviL/TSmxQNxZ7L/ISfV8GLDlJ8uSO9c96x+5g2n8AI+egZu1aHF/2W1y0WqCLrUXZVBWV9jgkhJ3HmBEvIF65E0UTJwGeVl1RioJb/7ZFBsr2iNC44uVCmR1aiF1OmtMHG373b/AYQuAxmuXYGcVtwviZT0H5zSswO6q929tCLdiZtwAefQL+nqPiXFo1ziEZL2eOaBMaRB15fNVXuHuPzbvEyMZsC5Y/dHuHl0tAbQmajuxF0aMvdXhs1Rd24KuvHr7q5SNvXwVjUTqOfHYEZ+FBXygYNHNQ82fdQd3tbp09f/f4rqtdu3Zh8ODBSElJkfenTp2KTZs2Yfbs2YEuGhH1ctHJVjng+MoWnagk601f20f+sOsV6FxOhMOJcLdNPi72UFNe6vegI1eEH3I7sFmsg9VqKruqwzNNC7DfMwDfG5iPe27Lxs7/0cuTewvR+DLqjlfQWGGCffcRqCFV0DXF4ZXpY2Ed1jyIWUxGvtwykSyvVi3/Mjfvu3U5MCAWruGJbVutREtOS8gRxH/XPwcMmCRbL4aNHQvnpS4td5TqDVJiP7adX7YNAoLHI7e/VtARZR3/cCYKVh325qrxD2XCmmGUdUGMmRE3efyKG2mRLlS1CjmCxW7DtMl9ETtpDGaFKtcMDeL+I1NvxS+TihHZ4EZtuB6/uL3f9cNFZAqcnrPXPbaw0PRL7TKtt1OaP5+cJAwbGI2sdloIr3ddKn8LeNDZunUr3nrrLezduxdlZWVYt24dZsyY0WYbsfim2Ka8vBzDhw/HsmXLkJubK58rLS31hhxB/F1S0nq0OxFRYIjQ8d2nFuCLj96F6vHIkPPdJ3/c5TDSlQDlE5Epza0kIkCoYuQO8FX/eAy27MKEsM8RY67D0NvfgMWjXhUAUtKt+GE6MDYzy9tC0zrAdGWclCS6q1oFMElc/bn6hCy3OKm3nNhDxNjyS0FKMKb3k60cV7Z6iFDUkawxVqRlxVzVHdheXYjKGoaqdvZhHTsYIdFmGfQ6Cg3tX9n7+oydODbxWdyW+Rt8e/hn3uVhxf2Wz+iqzzpIBTzo2Gw2GV4ee+wx3HfffVc9v3r1aixcuBAffPAB8vLysHTpUkyZMgVHjhxBQkLzvH8iomA1dOL3kD58pGxtEUGkO1pcfBWgumTkHNlKIgJERdM/UHd2CTJR1ObkmDUG7QYAb8tQFwLONYkxOSJVtQ47Oj0Qc3mZj2sRAUiMWyn7xavNgeDSOJZrtea0Jo7tyjEy16oLN7uPrrSghHTy2KzW+xETM65NS1dPE1RjdMS/UK5s0RHhJicnB++++668LwYcp6amYsGCBXjxxRfleBzR2iNeJzz33HOytefBBx9sdx+NjY3y1rqPT7wfx+gQUU8c7NydAao7iYGsQXNylGN0mlubZMiZtrQ5mHWSGLjc0r11IwHkRvhjH8G03+6giTE6TqdTdmm99NJL3scURcHkyZOxY8cOeV+EmoMHD8ruKnHAGzduxCuvvHLN91y8eDFee+01v5SfiMiXRLgJtoDTQoSbgAecdlqbZEuO6Gq7Aa27t3zFH/sIpv3609XXIA8iVVVVcLvdSExse2VNcV+M1xEMBgOWLFmCCRMmYMSIEXKaeUczrkRoEumv5XbmzBmfHwcREQWYCDe3jLvhkEM9X1C36HTW9OnT5a0zTCaTvIkBzuImghQRERFpU1C36MTFxUGv16OioqLN4+J+Uheb2ubPn49Dhw5h9+7dXSwlERERBaugDjpGo1FeAHDLli3ex8RgZHF/9OjRAS0bERERBb+Ad101NDSgqEhMQWx28uRJ7N+/X15mPC0tTU4tnzt3LrKzs+XAYzG9XExJnzdvXpf2y64rIiIi7Qv49PKCggI5kPhKItx8/PHH8m8xtbzlgoFiwPE777wjp513By4BQURE1PP0mrWuuopBh4iISLvn76Aeo+NLottKLAYqLkZIRERE2sQWHbboEBER9Ths0SEiIqJer9cGHXZdERERaR+7rth1RURE1ONoYlFPf2jJeeIDIyIiop6h5bx9vfaaXh906uvr5X9TU1MDXRQiIiK6ifO4aNm5ll7fdSWWlCgtLUVERAR0Ol2724hxPNdaE+taz4mkKcKTWB29J3WJdXSswbyvm32vG31dZ7fvzHbX26a953tqvfJn3QqGenWjr+3ObW/2+Z5at1ivguM3KycA9UrEFxFyrFYrFOXaQ457fYuO+HD69u3b4TZiYdFrfUEdPSeI53rSj8b1jidY93Wz73Wjr+vs9p3Z7nrbdPR8T6tX/qxbwVCvbvS13bltV5/vaXWL9So4frP0AapXHbXkoLfPurrRlc5v5rmeyJ/H0537utn3utHXdXb7zmx3vW1YtwK/n6681428tju3Zb0K/v34q1758zdrfhDXq17fdeUrnM1FvsB6Rb7CukVarVds0fERk8mEV199Vf6XqLuwXpGvsG6RVusVW3SIiIhIs9iiQ0RERJrFoENERESaxaBDREREmsWgQ0RERJrFoENERESaxaATBGpqapCdnY0RI0ZgyJAh+OijjwJdJNIAccn18ePHIysrC8OGDcOaNWsCXSTSiHvvvRfR0dGYNWtWoItCPdiGDRswaNAgZGRkYPny5T7bD6eXBwG3243GxkaEhYXBZrPJsLNnzx7ExsYGumjUg5WVlaGiokIG6PLycowaNQpHjx6FxWIJdNGohysoKJBrDP3xj3/E2rVrA10c6oFcLpf8R1h+fr68oKD4fSosLPTJeY8tOkFArBEiQo4gAo/Insyf1FXJycky5AhJSUmIi4tDdXV1oItFGiBaCsVCyEQ3a9euXRg8eDBSUlIQHh6OqVOnYtOmTfAFBp1O2Lp1K6ZNmyZXSBUrnP/lL3+5apv33nsP6enpMJvNyMvLk1/ijXZfDR8+XC4wumjRInlSIm3zR71qsXfvXtlyKFYRJm3zZ72i3mtrF+tZaWmpDDktxN8lJSU+KSuDTieI7iQRQsSX1p7Vq1dj4cKF8jLX+/btk9tOmTIFlZWV3m1axt9ceRNfthAVFYUDBw7g5MmT+OSTT2SXA2mbP+qVIFpx5syZgw8//NAvx0W9o15R72brhnrmN2KMDnWe+MjWrVvX5rHc3Fx1/vz53vtut1u1Wq3q4sWLb2ofTz/9tLpmzZoul5V6Dl/VK4fDoY4bN05dsWJFt5aXegZf/l7l5+erM2fO7LayUu+qZ9u3b1dnzJjhff7ZZ59VV61a5ZPysUWni5xOp+wWmDx5svcxRVHk/R07dnTqPUTrjRjYJ4gVXkWToBiJTr1Xd9Qr8fvz6KOPYuLEiXjkkUd8WFrqTfWKqDvqWW5uLg4ePCi7qxoaGrBx40bZ4uMLBp+8ay9SVVUlxz4kJia2eVzcP3z4cKfeo7i4GE899ZR3EPKCBQswdOhQH5WYeku92r59u2w+FlPLW/rPV65cybrVi3VHvRLECUt0tYvuCzGuUFy6YPTo0T4oMWm1nhkMBixZsgQTJkyAx+PBCy+84LOZxgw6QUAk2/379we6GKQxY8eOlT8gRN1t8+bNgS4CacD06dPlzdfYddVFYnaUmB5+5eBhcV9M6SW6GaxX5AusV9Qb6xmDThcZjUZ5oaMtW7Z4HxP/ihb32ZRLN4v1inyB9Yp6Yz1j11UniIFSRUVF3vtiCrjoaoqJiUFaWpqcQjd37ly5jIPohlq6dKnsu543b15Ay03BjfWKfIH1ivyhoSfVM5/M5dIYMY1SfFRX3ubOnevdZtmyZWpaWppqNBrltLqdO3cGtMwU/FivyBdYr8gf8ntQPeNaV0RERKRZHKNDREREmsWgQ0RERJrFoENERESaxaBDREREmsWgQ0RERJrFoENERESaxaBDREREmsWgQ0RERJrFoENERESaxaBDREREmsWgQ0RERJrFoENERESaxaBDRJpy7tw5JCUl4fXXX/c+VlhYCKPRiC1btgS0bETkf1y9nIg05/PPP8eMGTNkwBk0aBBGjBiBH/zgB3j77bcDXTQi8jMGHSLSpPnz52Pz5s3Izs7GN998g927d8NkMgW6WETkZww6RKRJdrsdQ4YMwZkzZ7B3714MHTo00EUiogDgGB0i0qTjx4+jtLQUHo8Hp06dCnRxiChA2KJDRJrjdDqRm5srx+aIMTpLly6V3VcJCQmBLhoR+RmDDhFpzqJFi7B27VocOHAA4eHhuOuuuxAZGYkNGzYEumhE5GfsuiIiTSkoKJAtOCtXrkSfPn2gKIr8e9u2bXj//fcDXTwi8jO26BAREZFmsUWHiIiINItBh4iIiDSLQYeIiIg0i0GHiIiINItBh4iIiDSLQYeIiIg0i0GHiIiINItBh4iIiDSLQYeIiIg0i0GHiIiINItBh4iIiKBV/w8LRZEHCC+ECAAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for label, sub_ds in ds.groupby('ground_truth_labels'):\n", " plt.figure()\n", " sub_ds.measurement.plot.line(x='x',marker='.',ls='None',xscale='log',yscale='log',add_legend=False)\n", " plt.title(f'Group {label}')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Composition Grid" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, the final piece of data that you need to start is the composition grid. This grid defines the space that the agent will evaluate when choosing the next composition" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=\"dark\"],\n", "html[data-theme=\"dark\"],\n", "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1f1f1f;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 0 20px 0 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: inline-block;\n", " opacity: 0;\n", " height: 0;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:focus + label {\n", " border: 2px solid var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: \"â–º\";\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: \"â–¼\";\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: \"(\";\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: \")\";\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: \",\";\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset> Size: 164kB\n", "Dimensions: (sample: 100, component: 2, x: 150, grid: 2500)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", " * x (x) float64 1kB 0.001 0.001047 0.001097 ... 0.9547 1.0\n", "Dimensions without coordinates: sample, grid\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 ... 14.33\n", " ground_truth_labels (sample) int64 800B 1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1\n", " measurement (sample, x) float64 120kB 2.047e+06 1.318e+06 ... 2.065\n", " composition_grid (grid, component) float64 40kB 0.0 0.0 ... 10.0 25.0</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-466a083e-a1c5-4383-874b-43cf3499d13b' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-466a083e-a1c5-4383-874b-43cf3499d13b' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>sample</span>: 100</li><li><span class='xr-has-index'>component</span>: 2</li><li><span class='xr-has-index'>x</span>: 150</li><li><span>grid</span>: 2500</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-275d3bd8-ffca-4a3b-8ba3-fa70837a3530' class='xr-section-summary-in' type='checkbox' checked><label for='section-275d3bd8-ffca-4a3b-8ba3-fa70837a3530' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>component</span></div><div class='xr-var-dims'>(component)</div><div class='xr-var-dtype'><U1</div><div class='xr-var-preview xr-preview'>'A' 'B'</div><input id='attrs-5997d27a-d61c-4bdb-a904-0bdad6e59e61' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5997d27a-d61c-4bdb-a904-0bdad6e59e61' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4401593f-cd00-4766-9efd-11fc35195887' class='xr-var-data-in' type='checkbox'><label for='data-4401593f-cd00-4766-9efd-11fc35195887' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['A', 'B'], dtype='<U1')</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>x</span></div><div class='xr-var-dims'>(x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.001 0.001047 ... 0.9547 1.0</div><input id='attrs-bd228828-57c2-4889-bd2b-cc682e18fb82' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-bd228828-57c2-4889-bd2b-cc682e18fb82' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fd7d4ea7-161f-4007-812e-b080d6b4cada' class='xr-var-data-in' type='checkbox'><label for='data-fd7d4ea7-161f-4007-812e-b080d6b4cada' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0.001 , 0.001047, 0.001097, 0.001149, 0.001204, 0.001261, 0.001321,\n", " 0.001383, 0.001449, 0.001518, 0.00159 , 0.001665, 0.001744, 0.001827,\n", " 0.001914, 0.002005, 0.0021 , 0.002199, 0.002304, 0.002413, 0.002527,\n", " 0.002647, 0.002773, 0.002905, 0.003042, 0.003187, 0.003338, 0.003496,\n", " 0.003662, 0.003836, 0.004018, 0.004209, 0.004409, 0.004618, 0.004837,\n", " 0.005066, 0.005307, 0.005559, 0.005822, 0.006099, 0.006388, 0.006691,\n", " 0.007009, 0.007341, 0.00769 , 0.008055, 0.008437, 0.008837, 0.009256,\n", " 0.009696, 0.010156, 0.010638, 0.011142, 0.011671, 0.012225, 0.012805,\n", " 0.013413, 0.014049, 0.014716, 0.015414, 0.016146, 0.016912, 0.017714,\n", " 0.018555, 0.019435, 0.020358, 0.021324, 0.022335, 0.023395, 0.024505,\n", " 0.025668, 0.026886, 0.028162, 0.029498, 0.030898, 0.032364, 0.0339 ,\n", " 0.035509, 0.037194, 0.038959, 0.040807, 0.042744, 0.044772, 0.046897,\n", " 0.049122, 0.051453, 0.053894, 0.056452, 0.059131, 0.061936, 0.064875,\n", " 0.067954, 0.071179, 0.074556, 0.078094, 0.0818 , 0.085681, 0.089747,\n", " 0.094006, 0.098467, 0.103139, 0.108033, 0.11316 , 0.118529, 0.124154,\n", " 0.130045, 0.136216, 0.14268 , 0.14945 , 0.156542, 0.16397 , 0.171751,\n", " 0.179901, 0.188438, 0.197379, 0.206746, 0.216556, 0.226832, 0.237596,\n", " 0.24887 , 0.26068 , 0.27305 , 0.286006, 0.299578, 0.313794, 0.328684,\n", " 0.344281, 0.360618, 0.37773 , 0.395654, 0.414429, 0.434094, 0.454693,\n", " 0.476269, 0.498869, 0.522542, 0.547337, 0.57331 , 0.600514, 0.62901 ,\n", " 0.658858, 0.690122, 0.72287 , 0.757172, 0.793102, 0.830736, 0.870156,\n", " 0.911447, 0.954697, 1. ])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-06272ec8-9a23-4bc1-bf36-5261e16b0c50' class='xr-section-summary-in' type='checkbox' checked><label for='section-06272ec8-9a23-4bc1-bf36-5261e16b0c50' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>composition</span></div><div class='xr-var-dims'>(sample, component)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.935 4.339 4.0 ... 7.878 14.33</div><input id='attrs-e62e9704-f694-4a53-81fb-d887451d8baa' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e62e9704-f694-4a53-81fb-d887451d8baa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1229855e-fb1b-4f49-b092-1409b35c2cde' class='xr-var-data-in' type='checkbox'><label for='data-1229855e-fb1b-4f49-b092-1409b35c2cde' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 1.93506959, 4.33877746],\n", " [ 3.99993228, 15.11981127],\n", " [ 5.14403166, 1.65850983],\n", " [ 4.57883235, 12.34183192],\n", " [ 8.05567528, 10.47358865],\n", " [ 1.04161007, 22.83361697],\n", " [ 5.85757901, 18.81270953],\n", " [ 4.29558185, 16.91442648],\n", " [ 3.14950211, 2.08947439],\n", " [ 7.65251749, 13.05015789],\n", " [ 5.58833051, 7.55301393],\n", " [ 8.75864958, 13.90004698],\n", " [ 9.03579843, 1.04110731],\n", " [ 6.94709288, 22.03909555],\n", " [ 6.30872735, 23.08178649],\n", " [ 8.38214203, 24.28281802],\n", " [ 6.09861924, 5.67560421],\n", " [ 0.12177663, 1.50263558],\n", " [ 5.4271795 , 24.05339109],\n", " [ 3.32773495, 12.91733508],\n", "...\n", " [ 7.76378269, 21.99343589],\n", " [ 7.45991402, 8.11174006],\n", " [ 7.63854343, 13.54025074],\n", " [ 0.81733253, 9.43775453],\n", " [ 7.20059135, 5.85811728],\n", " [ 2.20804772, 6.7721729 ],\n", " [ 3.65472461, 4.43961665],\n", " [ 8.21345636, 10.74735116],\n", " [ 9.92147334, 15.55468087],\n", " [ 9.52663079, 6.77762994],\n", " [ 7.01379838, 22.20232276],\n", " [ 0.23914684, 3.4963898 ],\n", " [ 3.46456904, 12.84968187],\n", " [ 0.26618359, 8.12557401],\n", " [ 1.1156883 , 0.45431966],\n", " [ 6.91416382, 21.4816626 ],\n", " [ 0.59623227, 7.69198605],\n", " [ 2.02031934, 4.93580074],\n", " [ 5.21402634, 4.84272796],\n", " [ 7.87824238, 14.33035062]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ground_truth_labels</span></div><div class='xr-var-dims'>(sample)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1</div><input id='attrs-44fee13d-1fb7-4ae2-8982-6969117afa08' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-44fee13d-1fb7-4ae2-8982-6969117afa08' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f1a89290-971f-4732-8aff-202cb0093ce5' class='xr-var-data-in' type='checkbox'><label for='data-f1a89290-971f-4732-8aff-202cb0093ce5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>measurement</span></div><div class='xr-var-dims'>(sample, x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.047e+06 1.318e+06 ... 2.12 2.065</div><input id='attrs-ca0099e9-bbcf-4c1d-8419-3c85350bf699' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ca0099e9-bbcf-4c1d-8419-3c85350bf699' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-41c9ab87-0629-4e86-87c2-7558f2dfe729' class='xr-var-data-in' type='checkbox'><label for='data-41c9ab87-0629-4e86-87c2-7558f2dfe729' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[2.04747510e+06, 1.31787805e+06, 1.66353926e+06, ...,\n", " 1.83722728e+00, 1.67819206e+00, 1.80172430e+00],\n", " [1.50599443e+06, 1.89610589e+06, 1.12165544e+06, ...,\n", " 2.34843582e+00, 1.99188297e+00, 1.86768381e+00],\n", " [2.40521543e+06, 1.65651582e+06, 1.28591956e+06, ...,\n", " 1.94777344e+00, 2.32372734e+00, 2.13555353e+00],\n", " ...,\n", " [1.98128536e+06, 1.66812833e+06, 1.50017820e+06, ...,\n", " 2.01786432e+00, 2.26314347e+00, 2.05432275e+00],\n", " [1.94306337e+06, 1.94648513e+06, 1.16565727e+06, ...,\n", " 2.14827245e+00, 1.94185540e+00, 1.69232987e+00],\n", " [2.02892678e+06, 1.57481288e+06, 1.35646331e+06, ...,\n", " 2.23068376e+00, 2.12047399e+00, 2.06485436e+00]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>composition_grid</span></div><div class='xr-var-dims'>(grid, component)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 0.0 0.2041 ... 25.0 10.0 25.0</div><input id='attrs-a31b1ca4-9fc9-47e0-a1f6-9d1df334e6ab' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a31b1ca4-9fc9-47e0-a1f6-9d1df334e6ab' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-00411606-56e5-4209-ac4a-3952b97a8525' class='xr-var-data-in' type='checkbox'><label for='data-00411606-56e5-4209-ac4a-3952b97a8525' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 0. , 0. ],\n", " [ 0.20408163, 0. ],\n", " [ 0.40816327, 0. ],\n", " ...,\n", " [ 9.59183673, 25. ],\n", " [ 9.79591837, 25. ],\n", " [10. , 25. ]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-3cee466f-3b4f-4549-87ed-a7dba88af058' class='xr-section-summary-in' type='checkbox' ><label for='section-3cee466f-3b4f-4549-87ed-a7dba88af058' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>component</div></div><div class='xr-index-preview'>PandasIndex</div><input type='checkbox' disabled/><label></label><input id='index-c8240de4-5df7-4d8c-88a3-c096066572df' class='xr-index-data-in' type='checkbox'/><label for='index-c8240de4-5df7-4d8c-88a3-c096066572df' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index(['A', 'B'], dtype='object', name='component'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>x</div></div><div class='xr-index-preview'>PandasIndex</div><input type='checkbox' disabled/><label></label><input id='index-84b4d45d-9cc6-478b-b2dc-a45666c15b6e' class='xr-index-data-in' type='checkbox'/><label for='index-84b4d45d-9cc6-478b-b2dc-a45666c15b6e' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 0.001, 0.0010474522360006332, 0.0010971561867027272,\n", " 0.0011492187010036998, 0.0012037516980200685, 0.0012608724076806808,\n", " 0.001320703622736631, 0.0013833739627296209, 0.001449018150486198,\n", " 0.0015177773017322714,\n", " ...\n", " 0.6588581861506815, 0.6901224802908528, 0.7228703350949566,\n", " 0.75717214883374, 0.7931016603333051, 0.8307361074919352,\n", " 0.8701563933188907, 0.9114472598521185, 0.9546974703287516,\n", " 1.0],\n", " dtype='float64', name='x', length=150))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a9ee391b-8ad2-411c-99a8-33c684394c2c' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-a9ee391b-8ad2-411c-99a8-33c684394c2c' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset> Size: 164kB\n", "Dimensions: (sample: 100, component: 2, x: 150, grid: 2500)\n", "Coordinates:\n", " * component (component) <U1 8B 'A' 'B'\n", " * x (x) float64 1kB 0.001 0.001047 0.001097 ... 0.9547 1.0\n", "Dimensions without coordinates: sample, grid\n", "Data variables:\n", " composition (sample, component) float64 2kB 1.935 4.339 ... 14.33\n", " ground_truth_labels (sample) int64 800B 1 1 1 1 1 0 1 1 ... 1 0 1 1 0 1 1 1\n", " measurement (sample, x) float64 120kB 2.047e+06 1.318e+06 ... 2.065\n", " composition_grid (grid, component) float64 40kB 0.0 0.0 ... 10.0 25.0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "num_grid_points = 50\n", "A_grid = np.linspace(0,10,num_grid_points)\n", "B_grid = np.linspace(0,25,num_grid_points)\n", "composition_grid = np.meshgrid(A_grid,B_grid)\n", "composition_grid = np.array([composition_grid[0].ravel(),composition_grid[1].ravel()]).T\n", "\n", "ds['composition_grid'] = (['grid','component'],composition_grid)\n", "ds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's inspect the grid in a plot" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWUHlXy9m8mE3d3gbg7FmCDywIhOIsvtrjtYssuiy/u7hAcggV3CxAycfdk4u4u3/lV9+3puX3v7Z4/Q/Zj961zOCSZnn6fvl23qrrfeuops3379u0qZznLWc5ylrOc5ex3aHn/aQA5y1nOcpaznOUsZ/9XyxUyOctZznKWs5zl7HdruUImZznLWc5ylrOc/W4tV8jkLGc5y1nOcpaz363lCpmc5SxnOctZznL2u7VcIZOznOUsZznLWc5+t5YrZHKWs5zlLGc5y9nv1vLVf7lt27ZNzZs3T1WrVk2VKVPmPw0nZznLWc5ylrOcZTDG3K1evVo1btxY5eXl/e8WMhQxzZo1+0/DyFnOcpaznOUsZ/8HKywsVE2bNv3fLWR4E6MXonr16v9pODnLWc5ylrOc5SyDrVq1Sl5E6Dz+P1vI6K+TKGJyhUzOcpaznOUsZ78vS2sLyTX75ixnOctZznKWs9+t5QqZnOUsZznLWc5y9ru1XCGTs5zlLGc5y1nOfreWK2RylrOc5SxnOcvZ79ZyhUzOcpaznOUsZzn73VqukMlZznKWs5zlLGe/W8sVMjnLWc5ylrOc5ex3a7lCJmc5y1nOcpaznP1uLVfI5CxnOctZznKWs9+t/ddP9v2tbO6K9WrByvWqWa3Kqn71itZjlq/dpKYvWaPqVKmgWtatYj1mw+atavz8VapiflnVsbF98vC2bdvVuHmr1Nbt21XHRtVV+Xx7/Tl10Wq1cv1m1aZBNVW9Yrlfjbt2lQpqpwy4OzSyC3KCm2M2b92mOjWu8atwz1uxXs1fuV41rVVZNXDgXrFuk5q2OBvuCvl5spa/DvcatXL9JtW6fjVVo5IdN5jnLg9wN6zhx12rcnm1c72qXtzly+apTo3TceNLFfLLWs/FZ/GZvxb3ynWb1dTFq1NxT5i/SpXz4EYYDv/OjLteNVWjsh33gpUb1Jzl61STWpVUoxqVvLhrVi6vWjlwb9yyVY2flw33JnA3qq4qlrPjnr54jVq+bpN8Fp/5f8a9frPslRqVyqvW9dNxgykvz44bP9m45dfjXrhqgypctk41rllJ/rPZqg2b1ZSFftybtmxT4+atLBXcM5asVcvWblQ7162qalWx414E7uXrVMMalVSTVNzlZK+4cIOpbJky4icu3BPmr1Ybtmz14p65ZK1aWoq4q1csJzHVZuw1fBfc7LmyFtwYvgTuDg2rq0rl7bhnLV2rlqzZqHaqW1XVduD+ry5kbrvtNjVo0CA1ceJEValSJbXHHnuo22+/XbVr1y46pl+/fuqbb74p9nvnnnuueuyxx/4DiINC4JpBY9R3Uxar7duVOMBBnRqoW47sEjnfuk1b1L/eG6feGTlPHB3r07KWumVAF9U2dCyc+8Evp6qnv58hAQrbuV4V9Y8/dlT7tK8ffd67I+eqOz6eJJ+L1a1aQV24Tyt1et+domOGz16u/vnuWDV27ir5e+XyZdUJfZqraw5tL4FBFwLg/jaG+8CODQSTdr71m7aqG94fpwaNmBvh7t2ilrp5QGfVvmH1CPdDX05VT8Vx162i/v7HDmq/Dg0iTO+Pmqdu/3iimrNc4y6vzu/XWv15zyLcIwT3ODVm7kr5e6VyZdXxfZqpaw/tEBUPJFRwfzO5CPf+HeoLbtZC475x8Dj11vAi3D2b15RjOjQqwv3I19PUk99NVyvWBbgpdvisAzoW4R48OsBduCzAXadKeXVev1bqrL12jo4ZVbhC/ePdsWr0nCLcx/Vuqq79Y4coCZOYrn17jPp60iK1bbtSxIn9OwTrXa9ahSjJ3zh4vHqrYI4EZ6xH85rq5iM7SwGl7ZGvp6onv52uloe4W9apLLgP7NQwOubDMfPVvz+aqGYvWxfh/ssfWqmz9y7CPXrOCvWPd8aqUSHuiuXy1LG9mqnrDivCTaAE95cTi3BzX28Z0FnVr1Yxwn3zB+PVG8OKcHdrVlPdcmRn1blJEe7HvpmmHv9mWoS7RZ3K6ppDOqiDOxfh/njsfHXbRxPVrKUBbnzxnL13Fuzaxs5dqf4O7sIVEe5jejVV1/2xY5QUFq3eoK4dNFZ9OXFhhHvf9vXVrQO6RAU7Sf7mwRPUGwWFasPmEHfTGurmI7uoLk2LcD/x7TT12DfT1bK1m+TvzWuDu706pEuj6JhPxi1Qt304Qc0McdeqXE7WGh/XRmL++9tj1cgQN8UzuP9xWBHuxas3ynp/MaEI9z7t6qtbj+oSFezgvvWDCeq1YUW4uzatoW7q31nWXdtT301Xj349TS0NcTerXUldfXAH9ceuRbg/G79Q3frhBEn2WE1w77WzumCfItwUnn9/e4waPrsI91E9m6rrDy/CTeK6dtAY9cXERWrrtu2KOq9f23rqtqO6RoUve5HPeu2XQrV+89YI9w1HdFI9mteKPo8Y+OjXU9WSNQHuprUqqasObq8O79Y4Oob1ueWDCWp6DPdZe+4kuHWROXEBuMeqglnL5e/EkKN6NFHXH94pSsJL12yUYz6bsDDC/Ye29cRPdCEG7ts+mqBeHVqEu3OT6urG/p1VzxjuZ3+YoR7+qgg3hcWVB7dT/bs3iY75auIiddMH49X0xQFuiqIz99xJXbRvEe5JC1bLeg+L4T6ye2P1ryM6qcrlgxSNL173zhj1ybgi3Hu1Yb27RAUNxQkx4JWhs9W6TQFuiqsb+3dSvVrUjjA9P2Sm5B7uocb9t4PaqSN7xHBPWqRuHjxeTQtxV6+YL7H7kv3aRLgplvDdX2aGuMvmqf4h7ioVdmxpUWY7Ef4/ZAcffLA64YQTVJ8+fdSWLVvUtddeq8aOHavGjx+vqlSpEhUybdu2VTfeeGP0e5UrV86sm4ToVI0aNdTKlSt/tdbSmo1b1CH3fxslubjh6O9esKck2tOeGSqJ1zSSy0eX7CWB9e5PJ4kzmZafV0a9fPZuapedaquPxy5Q571UIAncNJzz1N1byluB/g99r9aGjhs3guZdx3ZTawX3d1GSixtPCO9d2Ffll81Tf37uF0lgppFcPrx4LwlQ9342Wd3/xRQr7pfO2lXtunMdCZbnvDjMiptgeEbfneRp7/AH7bgJPvcc310KFNZbJ4u4tW9YTQ2+aE/Bfdbzw9TnExYmjiG5fHDxXhKgHvhiirrns8mJY7hfL565i9qjVV0Jlme9YMd93R87SDFDAgA3vmAam/j+E3pIoj/0/u+ioBu3dg2qqcEX7ykF5rkvDpPAZBrB7sNL9pIAQ6C885NJVtwv/HkX1bd1XQmWf37+Fyvuaw9tr87Zu5U8NR324Pdq9YYk7sO6NlIP/amn4P7jA99FwStubRtUVYMv2kuC7PkvFagPxyxIHEOwY72b1a4sxRcFuGkk6ufO2EXt3bae7JEznh0qCdw0EhkFJE/7YFplwX1ol4bqkZN6SaI/7IHv1ZRFaxLH8Abgg4v3lELtgpeHqw9Gz08cUw3cF+2lmtepLIUXhZUN9zOn91H92tVX309Zok595mcrbhICyZW3K3984Puo2I/bwZ0aqsdO6SUJE1+atHB14hgeathzFA4XvzJCvTdqXhJ3hXz1/kV7ytteipibP5iQOIac8/RpvdW+7RuoIVOXqFOeGSqJ0LQrDmirLtqvjTzwHPrAd1GxHzcK/idP7S0JE9wTFyRx83AAbgqHy14bqd4eMTdxTNUQN8c+8/0MKeZtuJ88pbfav2MD9dP0peqkp3624r50/zbq0v3bygMPe04XzXHbr3199fTpfdQWcD/0gxRqplFkE5spHK54fZR6a/icxDFVypdV7164p/gUxcD1742z4n785F7ykDF0xjL1pyd/UlssuC/et7W6/MB28kaL2KyL5rj1a1dP9grXfcRD38sbFNMosj+6ZC8pHK58c5R6fVgSNw+2xHjeKr340yx5mLHZYyf3VAd3bqSGzVymTnjCjvuCfVqpvx3UXh4cDrnvu6hojttebeqqF8/cVZWGZc3f/9EemY8//lidfvrpqlOnTqpbt27queeeU7Nnz1YFBQXFjqNwadiwYfTff0r8cdDwOdYiBuNtCImQtwy2IgbjpuNIqzdslqcQm+E8JC+M5OsqMzmGjUkAsxUDRXjXSTCxFTEYr0UpAnhatxUxGJvshR9nSvL24X4oA27eihAIn/xuhhP32yPnqtlL16l3Rs61FjEYQZQigKd1WxGDEdSe/3GmFHK80bDZ1ozrzdsFEs/T30+3FjEYyYZC572R86xFDEbS+mjsAgmmtiIGI/kRKCnkSKwu3A9+GRSUD3zpwz1dEj0Jw1bEYINHz5eCmP/bihhs8sI16qOx8+Xp0VbEYBQbzw2ZKQXR49/Y15vYyBs97MEvpliLAezxb6fJeZ75YYa1iMHAwVMhb6NsRQzGdVG88JWMrYjBWBc+h8/jPrtw6wcP1tuJ+5tpct+e+2GmtYjBPh63QNZR1tNSxGA8wfNWk6/T3h89z457Y4Cb+8ubGJvhFw98Ea73l1OtxQD2xHfT5U0yfmcrYjAeUPiqgQcsWxGDif+Pmitfk7B/bcb+IW6xnx7x4Q79+yEP7qeJIxvBPctaxGC8NSJOfDp+obWIwXgj+M6IeRJ33h6RLAYw4hX7n/ilY50XNzHahfv7GbIOxFVbEYN9PWmxvIVk3W1FDEZcHzRirhTObxbYcfN25slvZ0i+eCjEZrP7Qz/x4X72h5ny1dXAH2dZixjsuylL5FuC/9keGaourHbtotdg2EsvvaQGDhwoRczhhx+u/vGPf0hxY7ONGzfKf/GKrrSMG5T28/rh1wYu+3bKEtWrRa3o1Z/Nvp+6RC1ZvUGKDJctXLVRgokPE774w9Ql8gSZhsn1fas2Pmf3VnWcSRzjs5at2Rh9VWQzXqUTTL6fai/2dDD4bupiNWTq0hRMi1Xh8ir+YyYvUXu3qSdB32VDpi1Vy9dujL5ysRmvj7kfvrUE9/dTFquh4atWN6bF0qfks28nL5avGFxJHPtp+jLpZxoRfgVgM4IkRfZ3U/0+AG79FYjLKNC5f2m4D+rU0JnEsaEzl0mvi36VbjOSKX6UxXfHefxNY/Lh0b50eLdGzmSI8ZUFuHnSdhn3a9ScFamxAkyuIqYI0xL5asP3zpxjKC5cSQXjvuLfP81w7yeKuZGzV8h6enFPWaxmOIrdomOWqM1bt6fi5qsg/fWGzfjqdtmaTeqHaW5M7GuSpi+eaNyuh9AiTIvljYqrSJXzTF4iRahvH7Df+AqLeOgyiiL8Kc2/wbRg1Qb/MZMXqwpl8/y4pyyWhxHyhsuIy1yXDzd5q2Dm8tR4QtyNfw33P1PIbNu2TV166aWqb9++qnPnztG//+lPf1ItWrRQjRs3VqNHj1ZXXXWVmjRpkvTWuPpubrjhht8EY7myfinx/LJl5KsO7znyykR9K87zyDH2xqq48Zo/PxVT+jEBpgzXlpeGO/gsgoEviHH95VLOxc/zM2FKubYMx9DwBqY03Jwn7f7yc9Yz7Zi0tZQ1Srl+vl4ql2m9y6Sud+An/mP4DjzNd/l52n1jeTiG/2/7lest9zfNvzNcmxyTskaCO6+MrLvrDUF2TKW159LjCf5BPMHPt3gcpVx+us+V24HxRHDnB/uXwsiLKUM8SceUly2epJxHjsvPS/eTjPEkS6zIz3Df0q4/OC7wb99652eKJ+mf9V9Jv77gggukP+bVV18t9u/nnHOOOuigg1SXLl3USSedpF544QX19ttvq2nT7K8kr7nmGnmzo/8rLCwsNYwHdixqUrQZT6IHdmqQekzvlrW83d18vworY7edi7+ZMr9Db1O/qpzPV+js065esaZQF6YDOjaUwOE7hjdJNO267IBODVT1SuXVHq3qOI+hUZX+Fo514i6bJw3PmdY7BTfX3rNFrajB1oq7YwNVtWI5tWfrus5j+C6afiIapH1BgO/j032ggXymL2ZyTPdmNVWD6m7cfBa4eePkMt60dW5cw4uJ4E0jsu/aAkwNpWfBxXDQx3RrWlM1dDDLMJpwq1YoJ/0mLmtco6Lq2rSmF1PQ+N3Auwci3B3qe3HjJzQq+95M0hTKevOmzGVcN9fvwwSMAyRWpOPer0N9b3LlGPySBlmX0RRatWK+nMtlvEnu0SwdN/cjC272ry9xcgxsR/aVy/q2qquqVSxXrBnfNBr+iUs+/yY+8PP0eNJAcBN/fLjpc3OxIjHiH4whn+/SL9m7ZW3vMWWi9fbvywM7NZC95GJXBrgbCIOpVT037l13qi3sNN860XdI/2aWPPc/V8hceOGFavDgweqrr75STZs29R67665BE9HUqfbvKCtUqCA9NPH/SssO7dJIWCU2I1DutnMdoSqeuEsz6zE40Qm7NJPGw78eWMTMMhsPaQTDaKqCMWALKDRD0j1O574racD8qFO1gjqkc1CE2IxCZ4/WdWVj/mmX5tZjYCWduEtz2Sg0M1pxV8iXjnaMa0vDTed+IwetF9YKhQebD7aXK6lQeNCgecpuLazHcE0n79pCnkaudOCm8fCS/QPcVxzYThgxtoACbqiVNCq7kh3NwDRyUxSy2W1GIxzYaYilWdtmNB6evFsLeRq78qD21mNoPKTJMcDdVphTVtyHBLhP36OlEzf3gkZu2Emu4pm1Bjfn4Fw2gyVz6u4tpGC46pB21gKzcgz35Qe0lb/bcF95cPugcX6PlnJem52xR0tp5Kaw6NvaXjzvvnMdKZygNHOdNqMIOC3EDevEhpv1vfyAwIcuO6CNrL/N+H3uG+vgStKn7xH4ECwf/MGVVCjSYC6duZcdt9yLvi3l/l59CPsqeQz+TCMvxrrj73bc7QU3+4WHDZvhr/jt3m3qSrO2zXZpWVsKDxhusKFcReqf++4kcQDceS7cBwa4L9mvrcQXK+6D2sn+PmnXFhKnbMY1tahTRXyEBlqbwc4k+VIYnfsHO27iLD4EbokHFtzEPeJIgLuNxHOb/fWgdhJPT9y1uTyU2oyYy1gDiAg8tNgMduahXRrJg/F5MaZf3HgY0qzLqw/pYMUdj+0Xe3BzbeQv2KUuKv0Jnp/9VxYyEKYoYnjD8uWXX6qddrJv2LiNHDlS/t+oURGlcEcZN/uqg9slbjJvKQgE2nDgZsYTkg6EPGFgR/VsonYxkjRPXgRAzf2n+BjQo0kxx+OP+7VvIEEOI3Ge369V4imCpwYduNnoVx3UXlglcatj4L5ov9aquZE0CCiXHtA2mjcCRY8gGzcSAIlXU8uhVh7TszhujISjn+YIdBdYcPOWSQdAAisBo4aJu0r5qCDCLtyntWphJA1wcx/0vBEokSS1YrjLKPWnXZtH1HLegBzTs2kCNwmcogqjwIKVYhZqbNxzQ6oz63E1uI0ZLbUrl5d/17hhAJhJo2J+nrp0vzbR3A4oqH1bJXET5PTcId5cHNs7iZs3NYeGVGcKWgpkEzfFtaY6C+5D2gu11XwKk4QTfgD+ZiYNzst66xEEh3UFd90EboKcpmjz/+N6N0vgpmjSlGEC9MX7tkng5vPPDynD4MIfwBk3ruPqQ9tFuAn0ZtLgvARu1gcjKexlvJnj14/r0zSiaEONZ/3NFw7cJ647+Ozy6pL9k+u9U93K6vx+gZ9IIrfgxm9Yb/0G6S97t0okBs574b6toxEEMKHMN3P8On6hKdqMIrDh3mPnOuqIkOrMfqHgwQ/jxv7CX4twtxN/Lo47XwpY/XXJuXu3kv1s4mb/6DekFA/92tZP4D66Z5OIot2uYTV10m7NE2/UdtupturfI8RdqZzEKfNBhHh24b5FuPET4kcx3BXz5d/1V3QkfVh6cSNOnb9Pq4jKT7G2b7v6Eo/juInX+qGROK4Le7PYI/5jvLmhoDcfRCje9QOtLpCJ13EjnvPv5ULcFLy87U7g7tcqovJTEJE/TNzQvXlDhOFrPECYbwIp9mDCYuSxKyy4eSjQD4b/M4UMXyfRxPvyyy+ratWqqQULFsh/69cHTVl8fXTTTTcJi2nmzJnqvffeU6eeeqrae++9VdeuXXc4XhrT/jJweIL9QSPoGc/+IqwHirMznx+mCsP5Kdpo2rvijZFCO8aYM2M2hQaMpWnCCsAG/jRLvfpLYbE+Av7IDIT7Pg+oxDS63TB4vAzlihuNhNA2dcPnuQOHJRpHl67ZpM58LsCNnf18gZptNMQxt+Jvb4wS9gd2w/vj1c9GsyPfAz/6zTT10ZiAFcIcg5eGFset2QPQznUD4r/eT+KGfXLhK8PlzzRWnvNigVpp4l67SZ35/C/CDhHcLxaoWQYrC9xXvTVaWC0Yc2Z+nF682ZGvgZ/4dnrEZnn9l0I18OfZCdywB+4MccPuYmaPnp+ijfU5/6UAN42lZ78wLNFgumzdJqFJw7LAzn2xIMHK2rBlm7pq0BhpKMRu+WC8+mFaEjdzfDQlF7bCCz/OSuCmOZeZOBisjessuGEp/WVgwBKEjXDW8wUJ1goNsFDz18Rwm6wszsscF80KYX4ITesm7md+mKneCSm5sOpgOZm4aQS97cMAN42szP0wcfP50NcxWIDsObNRl+vgevi54B5YEM3ziONmhgczX7DbP5qYaHgFH6wY5v3o2U6sv9lGwH3iujEaWa95K4l7xpJ16tyBgZ/gB/iDidv0H/xK77847mB2VIAbir7JlgT3iz/OVq8PC75ehwXFHCUT95DpS2UuEDZ54Wp15VujxQ/jxv46+4XAT2A3/fm5YeLPxXFvUee8UCADBzHo7lMsuKEt65lAd306SX05aVEC90s/F6pXh86Wv8NKg31n9pv8NGOZuvH9ADesNOKUnrOjjXgGJox4gR+bjdHEF3yDxnnsoldGSGNs3IhTfBasVOyezyapzycukngcx028fvnnADdxnHhu4qbZnfiPwUr76xujonk12mhMDkZBbJf4zHoTr+NGPCcfLQ0bpi95ZUSCTSa4B0+IZuuQN8gfJm5o2zBqsU/HLRCmmMlcojkfn9PstMteH5nAzdywM58LcP/PFDKPPvqo9LEwK4Y3LPq/1157TX5evnx59fnnn6sDDzxQtW/fXl1xxRXq6KOPVu+///5/BC+DnVzURAbWkRAJ3i6qHJuMhENnuG1OQXwgF45AknWZpudCP3Q1lBHYCKgEMhcbY97KDZIQmTHhYhsRfPg8NsybljkF2h77dnoq7hd/nCWBEPqhi+JHIiOxMHDNRU2cv3KDJBRmTOigaMP97JCA3vi6D3dIuYXy67KXfpotiecZD27YT2PmrJTCwsUigTUALRXmix44Zhq0VIZtUcgRGF2mqdkuijZGUCWRQ9N1NfBRmFJYDiqY42SRLFq9Ub09fI4qmLXMyTYiaLI+JGCK2bT19vkJv895WAez2NXGIC4CNOMFXCwS2WsFcyQBudhGrMsz3we00pc9uLV/uKjl2Ku/zJZE/uz3M524wfzLzGWC28Ui4eEI3BTOZgEex61pvDz0uEyvs2+9iW0kcui1eqikafgI++3dkfOcTBr8noGDFFhmIauN/QNu9hM0Xh9u4onPv99gr63ZKAWxWTRqg404ZNoSKeSIGzYLYkShFOIwyly4KWCJXy94cQfx2xdP3iqYK3vtBRlXsM3Jfvph6lIZi6AHoppGPnptWKE8+Hw1yY6b/ADdnYKIdfLhZjq4z0/wWWbIQBt34YbdmcZ++69iLaVVbc2aNUtM9f1Pmq7GXcbbET391HcMm9zXFU7AIAC7Zr/oapyntDS+/vBZK9RwD81VXxcTXdNwU+i4gjNGQUEA1lNDXXRJnnbSMJHkU69t9vLEU2HimFnLpShyBWeM6yKouGaoYCQL3nK5io84piz3xDXTJX4e3ka4gjNGwUwQd81Q0TRPgpyPoh1gWq5GpNCvuXZX8IrjJhn4juOpEdyuWSQYT3oT569KXUt8V7+V8OH2bLfoPKyTbywCfgtu31gErnvc/JUZfGB5Kv2ac6SQaOQYcLtmMmHEiSUpYxHwM/wpS4xLo19zjK1HzjwGv/WNReCtG7h9YxHY12PnrZI95TP8n5laaZhoivaeZ9ZyWU/f/uUt6+I1G73jDIij3I8s8SSNfj181gqRCUk7D7h94xx4C8R6+3yXvMXDWiruWcvlK/n/qWbf34u5GuWin1fMT90InCPtmCrl81XlCvlelkX0eaWFKe08FfKj/h6X0QBZpULZVApjcC7/51XLhKmcswkwOk+GNeJ7XrCn0ROzYcovFUxZ/IRkQbOsj2VREj9JuydZMMHqSfus8hp3SrILfLdcKWBKvydZ1oh1ZvJrWpKuVqFcqWCqlvH60+4bfo1/2xrZS7oGsgdKw08y7CXiCHvc1hD+W3wen5UpnqYcQ9yuUj5f/ttR8aRahutPOwbcTGQuLUw70nKFTAnsiO5F2h8269+tifpjl0beRM4Y+17Na3lpnnwOzgLbwmVolsDK0U16NuMcNHf5jgkwNZEmRz/uJkLPdDFING4CvW5EthlSDjSTxXVUTCPoQvNNXe/ujWWktq8AOaJ7E2nihQnkMgahVSqf76Ud0ihJ854PEwEXWnnaenMOmGS+AoT17tKkhpOJEeBuLLgPimkXmUbTN83MPkwkuIM6NszgJ42lqdSXyPt3ayxNvD6a52FdgvXWjcg2o0mUplofJnCg23REtyKNGBcm6KI+3HwO99hs8ozbIV0aSqCPaxeZRjMxTcE+3BRwh3RulOrfXBdNpTZGWvye0GRvNnnGjYZa1vvwsBHZZsQSdKd8mPBX9KayxBNigK8A4RjiANRxl3HPWG8fbphhMHd8mIgPxLcs8QTmXpUU3DCJ2Jsug8GKZIAvxtEUy8A4HybiMb7mOw92RPfGkit8xQW4YW5xj10GGYOHVR8m8laflrW9601B5Nsjv4XlCpkSGN31JCCb0Z0OiwQaK/ofNoOSC+sHFgVaSbYEjKNctG/w+zAXbPNmCBBoFmHQL7UwYtwgxqAPxIbiFR8Fls1O2rW5JB668S8P6Y6mQYGmy15wH9HZihtKJewPDMqvyQzACMgIuGF0xXd04EZ8kSIM9go6QDaD4g4bA/aDi8pOl/2xvZoKWwGhOlvhAAVc04GhH9rm5JDo/xWuN1RvijGbISwICwE6O0HRZohLEsBgycA4sBmBGXqj4O7fyfrmAiqo9rO/Htg2Yq/EjcR9/REBblgfFL923B3CuUV1ROfKZrAVYDXASoLhYTMKRlgx2A1HdLbiZl7JZSEdGCqnbRI2uBGewxgJEBdGjBs4YAexr47uaR/bgN+i/8Vx3B+bEdxhr2F8rq3gwc+uCOnXsExs8324XvwMYx1coxqgDLOvEfLDH2wGi4RJ2rBxEH+1GckU2rHGbXvjgj/r/QGrxzaqgX3B7+NvsMhcoxr+elDgZ7CJYJ/ZjKTLHBUSIsKmNkPI8JTd/biJH4yfCHC3kfhiw83+ADf+6RrVAFuU+we7T99n00i8UOGJO9cd1tFKZSfOEucx4q+twOS+aiYoLD7bAyvxk/hPPBX2qmNUA/sEthHx2TVignzUr209eYD8hwM3RS55QnCLEGUSt2YmYuQfF27uF7jJY65RDVy3S8H9t7JcIVMC4wYO6N5ElTcSedXyZYtVqMwRMamJVKkkN60yTDKzPW2zmbR6bMs6Vaybk4KpY6MgKREwDu5UnE6HsfH3DGdUsNEJjGaA5skjrtR6QIcGiQIE3FybVr0lOLeul3xq3att3ch5eUqybU5wE8RkzSrkq0M6J4fCEWg1jRTcA3o2SeCubKw3T1FmAcIUU6iwRbhrWWcb7Nm6TjTPBty72nA3qh5RhikMCR4J3DUqqD/EaKRsdBM3T5fxAofhW/WMAsTETRJva8HNTAwdbJrVqqx2twQVBo4RvIM1yxeRRRM3CTk+WwM6q0m9JWAPMHCbBQjnpejUKsNdm9VQ7SxvN0hyengb+EnWtrdIuuiSNyAW3Hx+/I3lgB6NE4mF62C/amNomFmAcF6e1rXKMMWB7e0G6xvHbZtbw33SRRf3j/vI/YxbPQM3/qDXTBt+0z9WUPIg0tCCmzdEWmUY/9RjBOKGP+t5NkFMSOJu06CqFKFFuBslcLO/EJ7Uxv6z4T6yR+NovAC4G9WwrHfnhtHXF8QD2wPNLjHcxAQdy+LWqn4V1bNZrQg3b27Mr+OJZwd0LFrvI7pyr5O48W+Nmwcoc8YVPyHO6q/X47EsbsRr4rbgrlHROieIWWN6fD/5gDeGJm7yR3wQIG9JzDdF5UP/LhPi7tumrmpixd1QHrCwDg2rq85W3LWjURAUT39oW9f61o6HQ/3ZR1hwUxClDcv7LSxXyJTAaBa78NURapPRObhm01ahf8IOQZgLip/ZhErnOKqjsBCwv705Wk0yKH4YLBXN+EDM0CYsOGzm8kgxFrn1ez+fUoxOh81dsUGdF9I86Xi/8JURicZRGgShMcMOAR9UUJNtw79Dl9SNa1CaJ1iaNF/7ZU7EnICVgjCija1xw3vjI0bV3Z8lxfdgFUDvDf68Xl3w0vAEbhoyoVTC6gEf10CTcTHc27erGwaPi2iH1wwabW3SfKNgbkQ7fOzbaeoDiyAijW2aLok2yp2fTE7gXrByoyh+Yyjanj8wiRuW2bkvDheGBOwAVLtpCjRx3/TBeFGgxa4dNEaaGU17a/hcYZJhUGrftwgijixcGdElYaX9+6NJCdywZqD60ngPGwGfMam3NN5Cg6fRNcD9i7CY4sZ5b/lwgvo5ZNhc9/ZYNWZuEvc7I+cJBRuDSQUDxrTRc1dGCr2wZG79cGICN5+v6ak0KOIzJhWU64BWS+M8x3GdJkuI86J2/WNIcf/nu+OszaXvjZofCabC7Bk0PIl7bEgVx2BIQWnmfsZtcYibdZSxCC8Oj8YIaMNv8B8a8MGNry+w4EZdXOviXP9u0R6NG/6MICQG0+bNgqSQI02++BkGK43YYuJmf3HfwQ27CX+w4Wa/LgiZQRwzf2US952fTo6YQTe8P87aOEr80Ow2RiLYWIcT5q+WeITRoHr9++MSDE7iGdRl/h02GaMa1tlwvzxClL+x814qUPNWFG+w5azEWeItdtPg8Vb2HvH6kVBQEsagjXVIk/uVb46OCBL/eHdsAreManjuF8knsOkYk2E2dNPoTD6aszxoYj5vYIGaY8F93xdT1JcTgzyCT9q04BDU1EKY0N5fHlpobXb/25uj5M80/F73ThI37Fjo1whr7kjLFTIlMKiZLvYLxQDUNJRKXVQ57jnBhILoi9CxbIZyLg7so/ih0BrQU910OrriCUyv/DzbyX6h+555HihIu0TVBPeQmbJhuD4n7iEzxbF1grXiHjlXCpDnfrCraGMUHCSCV4YWOtkvsB2gOX81cZEo19qMWAxNkAClZ/NYcf8wUwL0C0Pc6/3uqHmSeJ4b4sZNgCIhvjq0MJFU4+ynNwsK1deTFznZXeBmLUkIH/lwD5kpic7nJ4NHzY/oqS4jQEEdZ46Oi7VDECWZID7nYneBG7VxEjCzP9y4gzX0YfpgzHwprHy+BAsDqj7UYRdrh+uBVgsV2Mfu4nMoiAY7lKbj6+3DzSwlClnO5yJlMsvmmymLBZdLhBX/4brwJx+7CSz4JdRil7F38W8fbhS5eXB4bsgsJ27YOCRy9p0LN/sVCjoFqEtpGmN9KIgobJ24fwxwQ8F32afjF0i85RpduGF/fjlxkXpz+Bwn24j4SAKHFg/t2YebgmjQ8Llu3D/Nkjjowx3E23WyX1xyTMxk+XzCIhmL4GIbkY9eGTpbHtgQ2XQZeYJ84Rv7wYMoecfnJ8wCQyH8BQ9u7ocvT/xXi0b+Hmyyhy6qE9myan46MFTJKYtWe0X+Ji9aLcHJpwxLwJi1dG0mTGk0TzCtSaEDcx4SgU/kj8RC0jSf1s2NRwI3B04lMa1KvTZw++jJ+pipKbg1zdNHc9S409dylQwVS1vLtAcWcDMsyyc6R2IBt6twFtxbt8n1ZcHko0MHmFapFIKUnINCxzVrB6NgXrx6gwRqH82ThJ/Fd7NcWxrTiM/h83xjEVhn1ts3FoHrnrZoTTbcaXt34epUNg7nmbFkjXcsArOilqaMRcDP2CdZ4onvPBqTT0tOn2fm0rXesQi8PVuydmNiiGHccDOGXtrebhfHtCpV/RpMenKv+zwBbl/c4a0bfuIrnMEt653BT9Lo15MWrFZNalZOPYbCyTcWgbduvMHy+S55C8xZ9hxf2e4oy72RKYHZGirjRr9D6jHV0o+pU6WCql6pnDf48rUoDaN1q5UvHUzV0o8x+zlMI3iBO43mCR6f+GQRpvK/GlOW9aahkmZQHzsk+1pWzHZtmY7xfxYjymtWKudlWRStd4b7m8EHsuyBein3DXZFzUrlU2meWXFnw5Rl7/pxg5f1TqOWZrq/snd3TDyhJ6RmlXIJyYz/654rlXuS4Rj2Y7A3M+AupXiSBbcpFWAa8Q/cNsLD/2lfZri2etWy4fYJ7NL3Qi9Nad3fHWm5QqYEhm6JywJ9kKbScOZL5HTX04BJQ6PvGN0s6DJ0bGg6PLaXnT2AsblpcPThLhPipmvfR5cEEw2FNoaUtmND3D5qHnpHCM8d09uNmwBAQ6nv2gR3r6ZBw2MKbldjXhx3+bBR0WXSfFinshcTjW4oDB/ruTb9edBYfYmce4bGjItphHH95fLLSmOxy2jOo0nP5wMEXVR2fdeGHdOrmdCdfYmca29dv1rUPGozmBrl8vMivRmbSVN5/aqyVi4DB9Ri37UFuJsKtd7UGjOPgVbrYuxg+Afr7WJIaQYUNH3fWlLIsY6+a9OYaPj0JXKOgVaLfo/LaOhHj0fr5NgsaHKu7sXNPuMp23cejYl94HsrwzHEARfzBSOO0AzrWycahaHp+/Zc5RA3982XyMFEI7avKOKYprUqS9O6y4IcUFYd4/FLGsqh6fvWm0KOuMw+T8Pdr109b3HBGkLGoJHZZbpZ37fejCegod2353gAPzxHv/7/16Cfnu1QooVqSKKDxnrbUV0SXf8YgmKavn3HMV2tgbVrkxoiBodBh7PJxVPt3nRkZ/kzdEKboivOdNex3SRB0yHvUnSFktqybhWpxAW3ZZYMAUXToO84uqv1ya5Lk+oRbuiHtjkiPGHePCDADX0T5W0bpRLcBDA2DIJnNkMVmu5/WAT/PrqrFTeY9QyK2x24KXAujmjM7RIidxiB7dYQN3RZ5kTYcN95TDcJYBR8F8UE3+IGxZtETxGDD9hm90CVZyYR9u+juloTGYykIvXrdlZmEwXhrUd1kT8TxOMsiDil8s5jugpuCj6tYG4aAnEUVrB77nTgxrfxccF9dJeEGKIO4Jp+fXl4TtNIgPgidlTPpsK6MI3PZ70JvCRgzmUzKOpcF8fdeWw36+gAijiSBXbrgC7WBEwA1/Try/Zva2U2cZ/wRYziEpaYDTf3HbYRBY9LTR7BQPyI+8J12nAzq0UnnVsGdLa+AcCf46rGNoZQgLtLYq/Hjf11+zFdxW8pMF2jAxCW5EGN/Yuf2EYeUCxo+vbNR3axFg4wI/VnXLRfGyvThv3MWurZRLYHKHBzT4gTFKqu0QEIp8JsJF7iJ7a34cRZPV7g5iM7W986wERl/IQWsyWem0bc17jxERilCdxlysge4BopVK89xE5lP2fvnYXGT6F693F23LDHTgrp2zf172wdeUCe0fRrxFhtD1AB7m7yZx4gbKMaNG4terujLFfIlNCoxk1jr2rKNIZMgWvWiqbKMVLapC9ivP7TzsiThC0ZxCc5EhhtMy04B19RRbhrVkpQtAPcRXx/NmZ5S4JqXLMIN0HPhrt2lQoRtVxeZVscuWrFshFuNl4Dy2yICuXyiiWSJrUsuMsE81+K4bYETHBr5WNwM3U4ibu8qhjhzrcWDSQdTV9E2VcrycaNABj/qqBxzXTcPEHZZ9tUiHDXcOKuEL35Ez+xJDF+L47bpJQK7rLFcfOWz3QB/t4oNldCcDtm2+iCks/V1ODiuMtH1HL+b44p0Lh10cn5GhgUXsGdn1fsKyyuzYa7sYnbst7sXY2bz63q8BPt96aPxnFXj+FulMFPwG2GCv5aHDcxIYkJyr9WmuZzq1RMHiP7NVpvO278R683fmeb2VKhbF6xr3FduOO9Gqw3a2Ua8aoIt30qL7g1JZ79qdXJi+GuUBy3y78TuPMsuENqveCWWObAHfoJhVE1y3oT1/Wbbfzb9jWUxJlKwb8TV4lTppE/4gVH4KOJw4rNe6kT21su3K4J3qxjlXC9zdyhrVIsH4G7iRO3v8/ot7BcIVMCowv/X+8HNNy40Wd3+eujhGUBJRG1WpPCij389TT13ZSAdnj56yOtgnEIf2nRLpRhbdREmt80PRUBQqjPptHljvosXf80Zv3zvXEJija4//r6KGFZICgGdXK9BTfKs1+HtMMr3hgV0SvjBp0a0THsnk8nR7RnU/kXWi6G4CPsHtNgFbB+uvmQ60zg3g59fZSwLCLcFpbQE9/OiGiHf3tjdIJSicF6efTrAPe9n08WIULTYEVd+3ZAT4Ud8lKobhs3WBznDywQ3Cico6hsww3tkqbRjVsCP1lnwf3U9zPV52HX/1UcvzyJG9otyrrYfZ9PSSiSa+VfaOcYLCIbuwm2D1Rf2Ao0j1/z9phEYzR/v/qt0dIsSHOm4LawhBDo/GRcwLKCFmtr5oUdhbIu9uCXU6yCiDRlXvVWsN6wzVCeNo3PhyoOzRNcVw+y475m0Bi5Lo47/6UCK7uJddHK7VcPGp1QgMd+mr5M3f/FFPkz9FquwzTuE/cLg7XxtIVRCG7Wj3WEBYg/mP3F/BV/o6mW+8LxNpbQwJ9mRywr6NOzlyZx488oHmP4uU3IkX2h6cDslye+S7Jt8FPiCX4LC5D9ZMN93TtjoiZ1cNtYQrAR2f8YdPWZS5LN01Cb7w4V5xGNNJW9sfkrNohyNAab6nGL2OH6EDdxgrjF8WZfNLivf3esNA0TL89/ucDKEiLOEm8x4tL0xUncBbOXq7s+CdabOG4TcqR594o3RsqfoaE/8nUSN/nj/BA3LMArXk/ixshHkxYEuLlOrZgeN9iGmmUFTd/GOoS6j4I69tR3MyKaedzIV5e9NjKKPw+G8SeB+yUo7n7ySGlbrpApgUHPc7GNCEwomkIbtTmTNqhyFBYuBWF9DOfzKU3D+6c7HlVml8GuIHC94sO9dZvQKT8aO9+pkK0xUVi4FIT13AQSBrRSH32PjWkrBrSR6KH5st4u8gvsEtSxSZwupekAU6EUFi4FYTlmaEA79OGGvkkg5Bp97BAKPmizLtywWqA5fzpuoZeVBtWfBOxSENb3hITx2i9uTCQAEo8PN4GV62PmhYslJbiHFQpt1MdK43MoLHy4oedu3Qrd1b3eFPycx6dGDY4vJiwMzufAHaxPofpiwiKn0rTgHjpb/M6WMLXJfd223TpjQ9sP05YIPfWln92UePYthQ5+4GJ38c98HonQpdisfYCC3pZ4ItzDgvvqUySnMKNw8sUTWC3MScEP0nB/M3mRl00HFh6guH8+ZWviiS9WUMATl3z+DQOUOPHGsEInKw3c+D9xx8dueuXnQnlg/cyLu1Ditw8TBSaFk+8YlK15AGEdXKw04vorQ2eL37nGUGj/Jt7oBw2bobZOoUo8dBkP1hROPtwUgR9Y5lr9lpajX5fACj100eDn0Nu2+o9Ztj5VhZUn2eVrN3qVYQlMBDA+Mw1TGu0QPD6ab4Q75bNI5AQNn8Iqn0OAm5O2BsvWpV/bsnWpwpo89abdNxIcxRCBw2UsD7izYMpyT2yv3BPnSblvJETo7stLA/fydL/k52lMI/G35eu84wVIiAz88hWg/H4WPwn2U9q+XJ9KB2bP8Vk+3Hokgq8A5ffF59JwZ/BLzmHrZyh+zHo1d/l673gB/HrZmk3eQq5or2Tw7wzxxKclF+Fe4cfNAyFrnkY/zrTeGeNJlhjPGyxfvOQt1PJ1m7yFnD5XOqb1asGq9Rmuf33KedbJGyzfWATyDb7iG4ugz5UlnuxIy72RKYHpkdm+n5fGMQgz1qpSwcsO4TtPutBL5/NKBzfBi4Tho3lSeHBcs1LCVBrnobeD75d97BDqJUbUp2Kqk44pq5/4BDoxkhy9A74kDW7We0f5ruCuVdnLsqB3gvX2sUPKhOtdOn6S7TxNa/txB5j9VFd+v7R8F1/Kch769nz1PH0NtauWt/bSxY37tiP9hL4934MI+5E1t/W+FMO9A2Mc52mSgpumWHpl0oq5TOtUp/RiZeOaFb3CwDIWoXI58YPSiHE70nKFTAmMjnVXoKOJT9OYfQkRlhFsBZfAmRyzSws5n4+ah54FAVWLxtkMxWdo2ggsuvyXZjiYD9BBfQkR3LCEbFpE8WNo4nUJ4WEwfhg65RJvw0jg6C2dsEtzJ26ayqBcHtQpqbNkYqIj30eX5BiaD4/3UDjRc2qQgpvAhd7SCX2aOwMduBHmgw7sS4h8DmwFm1ZL/Bg+B4FJn6ItjaOIL7qMRAGDzIebAHhcn2aiSu5LiHwOQW6vUC/LfkwzlZeXJ5/nMpgWJGjfeoMDmi/X7wrQ/PvxvZuLCrxNMDGOm/uHAJ/LThDcZSLmis2gt3L9vn1JAQrjCNwu5Xa5r72byRgCW/NthHvX5tIIGtdvMu348L4SV1yGdhTsRR9uijjiznF9mvpx92mm9pb7V8mLmzjAfXEZ+4R9ibCty6BvE5d8fkIxFND0mzkV53Ef7u9eret6kzBY2Lcw3Vwmn5OfJ0KtvnEOsBd9uClAUUmHXm1rrte4T9yleXD/Qq0km/E5PPQc5FGch7lHU7kPE+McUFs/ybMHyH8ukeLfynKFTAkMquiN/TsnihmC5f3HdxcHp2v8kZN6WoerQansG/L47zmuu/VJg8CsKd6ozWqRrrhBf4RGp2meFCqmMbjr4T/1lMBL4QRd24b73uO7S0DRuG2zZKAREpgwKH62Lvt92tcTKqBWm7UValCybxnQJZptYQtQvM155E+9BDcBCjqsmaMIlncf110COBvvkZN6WWfJnPeHVpLIMSiVtsBKwjwvpHhDC7YVahRC0FsxZvtoBVzzKezRk3sKNo6/zYa7TBmhllNYEJgePamn9auac/feWQonDJpmMwtuCpzz+wUUbyjTtnkcBDZNY2Zuzel7BAq4ceOt36Mn95KEwZMWNHUb7juP7SqFBYUqx9twn7XXTurAkCoNTd+WEAi4F4TU9Iv2a20tMFvUriy0c4wEdOaeyZEHfD44wEPhwDqZIw/4O9fDdXF93B8b7jP6tpRCHoOqywOAbf6RVqWHYmwrMLlPmlZLwaf3QxJ3T7n/FE5Qq03crD/3jcICf+I6bW9nT9u9RTQ9lX1iS2T4s1ZJx8/xd9PYF+DAKJz+YhnVwP4CN/uNN8H4sVn08lfGFEBzFtwn9bKOmDh51+aiko0RD2ziucQPTak/V/ZxEjfrBw6MeVkXWEY1EM+Ia8Q3HkTuOT6Jm+WHBk5hQdzheNtbZeKsFtklntpEaInXWm387L3Yx8lCjbh/d4ibgv+ifZKjGsgfxDVwwwK67/juiWId3Df07yyFBSyih0/qaX2IhurOGAPB3b+zdcREz+Y1I7r7WXvuJIW2DTd5C9ujdV11qWVUQ6VyeeqRP/W0Mlt/S8sVMiW0GYvXJr5H53vH+Nhyvoukaco2Up5mQYzv2RGZNI0GOM1kQTbA9n08WkUrwobigP2Q/D5y7aYt0pQWffaSDLhDFlAS99oIN6POV1uamReu3BAxh2BYLFntwB2KadLEZ8O9buMWWQNtM/hsAzffTxcauG2sJa5N46ZHYNV6x3pvKsLN6HzTVgru4Hc1S8Y02GpxNtdMG+7t24s15NHEud7S3c8xW2PrjWicaTRMa2bAWsG90dpjoPtntjhxb1ELVhbdh1kZcC9w4J4dw01vw8r1m+y4NwbrvXbjVvt6r98kPQYat00SYMNmcG8ovmaGgwe4ixgaATsviZt14XMwPtfmJ+DUfsK9xt9N4z5x3fLZ24p/tjbWLd68y7WZuFnC+O/SI2Jbb/oQinBvduLWjKfAR5N7jt+L47av99biuGP3Oo4bZmJx3Ml9OWfF+khUkHhg85MgPga4WXcbU3LV+k0Rbvb5zAy443tLG8vPfi0eE5LrTbzSkgrEA7SirLg3BveBmGRbb+L+0hTc5A/imjbuyRYb7phcxKLVGyUWmEavThHuor0VN3rttEwNuOMxOMK9frNIRgSfvb3YmmlDAiGtN+i3sFwhUwKDsYNir83+/fFEcSocBeqkrafqvVHz1Idjg25u6I5rwoAeNwTLHg7pqXJOSyc6zZKafv3yz7OEQmwa3flQJHFghCOftFAqsTs+mSisHpLetYPGWnEPHj1fvR/SPKHVrrbgHj9/tXowpKfe8fFENcOCe+nazZE6MJ32NobI5m3bhVpNABoxe7l6/JskNRGDKjh10WpJHlBsbbhhkL07am6E29aEjCbI/Z8HuO/8eJKabqGCLlsH7oAOrJkkdtyjBTcK54+ElG7T7vlssrDWSC5Qmm0kCgT83hkR4ObaVq5P4kZbBto1dtenk62USpKbpl/DfIAxZhrxDV8k4Yydu1I9GPqeaXzWxAWrJFBCMbbhhkmnRen4XBvuKYvWyhoEazFJ/m7aivVbhE6NQRu1CdCBGxwknPHzVkXUaNMe+HKqGjdvpRzH/bFJ5CDMB3MvwD3G2jw9dfFaGYeA3cs9tOjocL1Xh7RxBGRtyvWsG8ewjrA/9FqYBrUehWH86UoHbphmMJIw/BM/NQ1/viuk1d73xWSrJhH7QqtIvzdqrvrQogAP7mvY+xs2C9vmbgduFKuh8oKbfcy+MO3rSQEjUXC/M1bigmkURMQRjLgywaIBRRzStHHik40poyn4xAlo4ZpibBpUaUZGUEDgJzZ2E3GWeIsRf23N6sTr2z8KPoM4Pm5eEjdxX9P0iVE2wU9wk0cQqIRNdnu4FqahyP7LzGUS5//2xignbgQhtbo7+cO0WcvWiwp85HtzkwKUazYVrTditjbBz4CCP9Za5P2WlitkSmCoFruM6hgV6fdHz/cKihEwkW73CYpxDImFAsJHl6TyJUG5jI0mqq+eY8BN8iEIuBSbNSYSnU9YkGMIYLrocdEleQL2YSKRpOEOPm+uzP9wKTZrTCQyFLXdxwR0SQpNH12Sp2QfJopBkm467jlCq3QpNutjKBxsAUUb923Tlq3RTA4XXZJC1YeJRIaKcCruYXNkrouPTcc5SHSjPEq8JPnNW7aptz0KwuwRClUfJnCAJ8t6Q3d3KR/rY0h0Iyxzm7S9O2Ku2rR5q1f5mPtFgQLV12UUsSQCXzwJMBVKcegb5wBuHqB84xzeHTlP3oBAr3XZuHmrZE4WIw1chr9+NGaBqEin4Ybu7mMBgpu3Or5xDsQRCgvf5xGPiEs+HyCuEd98168xfTVxUfSWx3rM8DkSv3zjHJjtQxz0xWaEGXng8eHm7QZrQF7xseneHDZHxj7YCpTomII5MoYBmrbLKKoo+H2YoLrzgOk7hvznywG/heXo1yUwXvP7bMnaTdFEVt85loav51wGNZUnH58ybHCujamY+Cyfg2tMerqt75jFHtpp/PW2T2FVv35NxZ3xmDQBP1nvlPOQyHmT5ivkitRhN/5q3Fw/rIa0Y9LOQ2ImyfkKOcG0ljXYmHptPlpxhCnl+gN6sh83iXzF+k3eQi7ClLre6fcky7UFa+THDd6VGzZ7C7kAU0Dn92PK4CcZ7luW68evV6zd7B2LkBXT4kz7Mts9STuGOIJ/+wqi4FxZYly2eJIlVvoKHZ3INXU87Vzp8QTf/fUxfsmajYLHVxCRb4gpy7LsuQzxZEda7o1MCcymCxO3Dg2rWTVY4sbP29BU5ql3EJSkw9zHamHcOKyWNEzo0GTBlHqeRtWkqcyHmyYycPtYLYy/phk2/fOqZzom03o3CJoPXbZzvSrCyPDRPGnOpCmxXYPqvxp3hyz3pFF1aSb00SVZR3D7aJ6wNAR3Bt/1CYJqTO0aVk+9tlb1q3hx0wSMSriPXg4rhmbv9HXK4LuyL1OurWE18QMXG0c3xbLetmZgbVw39y0Lpiz3JMt5dqpb1cnGwWA9ofxsa6rVxv4gLqViapQlxlX3iuLq8+C/NikAbbDMkAuw6bZpw82IS5kwlVI8aVnHjxtWGn6CPpcPN3EpPZ5ku7b2jdKvjaZ3GwnFHIvAerqMBuN2GX13R1qukCmBQXNzOTDd4jCI6PZ20Q4JFqfu3lJYFraucG2wSzgWVoLLoHrTWQ/jwqfEi5ovuF2K3LAKjhK12gbOAM2mO233lpIwYZG47Iy+OwW4LewYbSgeo8NkY9Bo69ykuurTsrbgdm083sQc07OpsJJswpoa96l7tBSWhWaluHDnpeBG2A09I996UwjstnMdYQm4lMSZ1QCdEvYIidMVLE7fo4WwLDQrxWasIWwF31rCDqG4PH2PnZyjA0g6u7eqI3RXl5I4bBt+vnebula2RoS7b0thWdiEB+O4g//bBVg1O4xC3oebwhm6MzRl16A+rgc6MGwpV2Lh/Nx7Arlm0/jW+wzPenO/YAFyjAs3iZnxAtB08Qeb4T/Q3fdoVdebyMDE2IT+FuFBbadp3B7fRfATFiD3z1WDUgj1a1tf/NeFm/0KjXnXnetYBSqLcO8kcUCLjLpwsy//bGGtaWNfwwKUYx24YXPBxoJe7FJAJz7CSkIYGCVwJ+6+O4n+mRYZdeEmDv65rxs3Aq6wAE/bo4UTN4U+eWJAzybO2VzkoxN3bS7CwIjsuox7j/6ZT7kcNibsPh/u/do3kPxFHnM9HJInbAK1v6XlCpkSGDfwoRN7JIoZgujTp/YWITEc4dnT+yTEwnhSu+XIziLdjkHTNKtW3AJKMvNTsPP6tVaHWhIwMwj+cVjHiHZ4xYFtE5uBYgraJsZGf/jEnlbcz5zeRxwcp3z6tD6JmSzghrKnNwn0VNSETdzM4dDzB/6ydyvrHAEolf88rJP8GTo3NEUTN5vgsRA3gTWgTuYlxPmePq23BBQC3VOn9S4mDIdxPTcc0Uk2OAadlQLJxM3Mm1NCZdhz9trZKj/fq3kt9a8jAtzQ5686OImbp94nTglwk8igVptFGMnpiVN7SUGUF663ObkV3Ncf1lEUbTFo3zYFXQKSpoFDT7Ylsh7Na6ob+we4KVRQOs8zsitvoZ48tbckOgoH1t6K+5RekjA5jrU337qB+x9/7CgFqKanUkjbClmdUP/ct6X83bTuzWpG6u74+t8P7ZAImnw+9x08FGqPW3Dz98dP6SUFCsc9dWqfxCwZ1oPzU4BijFfg822FrKaBk6gook3jPmmaPgnxn4d1TODmfnPfuf+sJ/5gFr3g5j5o8T3uj/m2kNOiVgwNFsM/odCahiI0NGDs5N1aWGc8kbi1Sjr7hXPZcLPe4KYA4c9m0cs+haKtRVW5NnNUA6dFjXvPkL7+z8M7WkdMUAgzhgBjtg0PB2UsyvW3hTR97tkN/Tsl3gQSF54+vY9cD8UAvmuKsBIXoTrzwIM9dkovGdZn4ibOavo6vr5L6OtmIYuSNnZCGBPLWB547jg6oF+jFH7LkV0SuMkfz4a4ic/PnNY7UayDm3zUJMT62Mk9E6MaOO3l+7eNxlD8/Y/4ehL3wZ0aqAtCGjgF9Mm7JXFTUN91bLDeKLNDtU/grlJePXtGn0gUdEdZrpApgUGVo4HLbOblO/9BIcsEo+vf/D4W6hzNmZqWLVobRsMvX1/SbKZpdzOW2DWCYDPoJlC68WlkM8kBUAW1/gpUORduzTLBPh47P/HdJri5Nk3LHjZzmTRzJnBPWiTNZIJ76Vo77rkrpcENoweIpjgTNw3MmhUE7qCBuDhuaLvxZjP0Q8z+na0G7oKZy6UJ08QNc4oR3xh0QpsY4Nh5K9WowpXRmr0/KrneyDPQoBxfb7Pnhl6Wt2KNop+OW5DQLQL32yPnRbRVmnVtDdaIzWn6OtRMRNxsDZw0zQZrtkWambcZX5JDTUU/Kd7MaMMdb7ikodkcdw9umo41bZWm2QnzV1sZFHqcOv//dnISN43ZNBQGnx3gNimzfH6czfSWBTd/j/sJ+jjmuHvWAyFATVtlvWyN4WhHaVoy6/5NKP4aN+6TFnnl/sHqMHFzv2msjjesmz1O641GUfSITL0lTgvbRVOrR81ZIffbNPxiVojbpSXFvtAir+wXmrFtuOMsLNbV7HFin4Ib/8fYD6ZQK6eFxKBHT4yOxbKE9lNI7wU3TCezvQP2H4xMjfudEfMSFGXiAg3h2th/xI+4ERdpzta4icFQxE3cxFk9CoGYMHpusjH8x2lLhGWEEce/nrgogZv4OXRmEW5818RN/oizx94aMTchHCq4C+ZEIyZYI1MaQHDH9P/GxWJZ3H6asUxIARhU968mJtebRl8tTkseYy0TuNdu2uE6S1iukCmBsTFhEdgMYTO653HeB760U0EpXmA8ECT+9d44q+4FCfGBL0L69UeTrFRQAt2N74+XPz/3w0wnk+i2DyeK8+PgUHpthhItxQVzAzSd1zSC3Jvhhrn+vXFWih+B9oEY/drW6Eagu3FwgPv5IT7cEyTQfTtliWxCm6HoSrJjVg50WJuRTF8PA5QLNwkxol9/MsnapEnAuCFUPX/hx5lOBtS/P5ooAeOHqUudjDPWkeBL893dn9pxk0wRggQ3fmITjCOxoNYtuD+dZG2uo3lPq7VDv4Ta76Lg0+w8ZNoSYbjYDL+F5sl9vcNBYYWphD/5cDPvBto1Bp3Z1oQruN8LcCNOR7Kz454kNM+fpy8t9iARN4qJn6YvleM0ndc01kWL4OEntiZ71heaOwZl2ja3h+u9AZX57YFAoy4iTeM8NEvyUBB/kIgbRcqQqUuEfssYBptRuGha7Q3vjbeyJfFnTb++97MpVr2lOG7GC7iYW/eG1008cDFySGIUfSR84o/NYEdpJfYb3rfjxs8Yh4Dd//lkq94S+/lf740PHjCHFUbFmGmofzO/CFo4wpA2g0VGkUfcIf7YjHj1fKhojn/aSA3Ea+1nxEPiuWnEfX4f3Nx/F+OM36eo4MHVJdJIPvp68iIpxG/5YIKTIUWe0OttIzXQUK0p3uQv2ywYcOMn8rA1fK6TcfbQV1Ojh9odZblCpgSWRikj+LCRfYJi742cJxvONzRIP2n5FG15iqHy91GGOQdPc7Y5BSYm6MA+QTE+Z0Thcq+gGMfwBM1cDpcRfKnseavhMp5QP8+Ce9Q8edpyKdrKMSPBvcI65Ct+Xxk4ZptXEg9iPAH6cBMgOEeW9SZwuhRt5ZhR8ySB66c7mwllftMWebPjsskL10ji8PkuARl6su/aNG7W28emAzf3eLoH94djFwju+JOyaczF4cHAt5bgoED37QGNibcgvrEIHDM+9E2XfSK4tzqLa4zrZm++V4q4fSxA7glvVEhWLuMcDJr8YIz785h/QiHqxb11m7y1zeLfn49f6GUBcg7o9fimy4gB4Pb5Jfua/e07hvhAfMsST3hY9bHpOAaavu3tlzbmNckbUMdDAUb8L5i93IuJeCxzZlLyznsjA9zmG5viuOcKTd/1UIBxDgo5HyYKMx5ofJjIfzn16/+PzTY1MW44UuXy/iVl4m7aeSgG2MBpitRMYkw7F69RfQ6eFRM/983hwAhcfF4q7o1bUjExNCoLpvTzpF8biYLg5Svksp5LMFmmgpb02rJ8FomZos9XyGlM5ut02+eVxlqu2bA59TybQty+Qi7r/V2bCRPn2Zp+npT7Bl72ZtpYhGzrVDrrDea08+AfTAtPG4uQJZ6szogpi3+n3RP2I+dKG4uQxXfZ36URT7L429YQt57Q7r+/6X6ZJVauybTe/mMIfxTqaeMcAkzp17YjLfdGpgTW09KUFjcYQvznPUfzWtLw66NL9mheSxovfSJgNK5B3ystTFnOQ2OaS7xMN9zRLOxi42i2EeyRNEw02PbKcm3N04/p3LiGly5JUyoNoS42juCukC/sntLClH6e2qpT4xpOthlG83KdFJonDZlQL3tmwGRrujSPSfOT3i1qSzOjj+YJmwXcPjYODbAdGldP990Ma9m7ZYY90KKW4HGxzTB+Dm6aTF3G/erUqEapYAr8pLb/mOYBbhdrS7O78O+ulubrOG78Kcv9La14gt+62E8YcQSavo+NQzyiWbm0MGXxE2jqLvYTBouSJuMePtxl86Q5vLTiSe8M94345hM0hrVK3rE1jWtjPAF5IAumHWm5QqYEBs0TRVIXVQ7la2ieLvoewV3TPI/u5aYd0q0Py+KcvZMiaNo4D4JiMBJcMzsQWoPvD23WpWxNxzuUU2ieNpaJDnJ8HudAKduNu5Xg1mwDK+7dW8pbKwQGXbhhNMGMQv3bpWwNS+iIbk2E5gk7x2YULzBkYAn5FKI1y8CH++TdW6gqFfKFueKaNQIVmG5+qJncY5vBmjmyR2Nh97iCD7hh9MDK8ilEa9z6/1bcu7WQJPfnPVs6i2cEEUkWMIhcs4tgCUGVJUDBJHIllTP2bClFtk8h+txQlNCHGxYcbA2o8a7iGRwkqAE9mzpnF8G2QTCPItvG1hDcIeUU1qFPaVnjRsTQZVw39w3KsAs37D0KFNbTpcgdxIim8tDjUm7HD/kc/NKntKzxsj9dhp/BRsLvXEU/CY41RzjRNXOJ/cq+pQh3KbeD+6w9d5Y4cIpnxATsR+w8i4hlPCYTl4J4aMfNvYe1B4PLNXMJtg1xkpksNmFNjHh11l47iyCib1SDjt8+/z6md1MpimEeuop+Ck9YkuQV10iP2mFsa9OgmlMBPcC9k+QL4q/LEDkN4ncr79gPYgS0cVfRT6Hvuve/leUKmRKY0DxPSSq6Un0/c1ofUYbFEaBLmsq/OOs9x3WLZp5AcTQTAg4HBU4rCEPdY7ZBPN/zxwM61o+UR9mk1x/eKRE0eUq7/8Qe8mcS+eMnJxVdCTrPnN5bHBxz4b7rmG4ynAzjs8yEAEXw/H6tolktx/dpLvQ9E/f+HeqLwjRGVQ892gyaPKU9GOImITx+Su8EboIOlEqtsPrEyb0Sb6/AjWIzirYYdHUzIYCboIMyNMZcD6jYJm6oi1rRlkIFOrqJm6de1MYFd6Vy6qlTe4kCuYmb9dZfP+JLO9UtjptgjGIzgUnTJSmQTNwUsMxawUjUzJ0xcfdrV0+orhiJ5eYBSdyt61VVj5wUrDeJHFqt+dRWuzK01T6SMLHHTuqZeOsG7n8f1SUaPHftoe0TwQzcAVU8KOKZu0TiNNWfmVUDtRjj7Q40TzNJMYsFn47GH5zWJ/GQwd+5Hv22Akq8OVyN9YAyrUcKXHVwe0lkcUTgY17LgB5BEU9CJDGYFGXu07WHdpA/M1Ts9qO6JnAzi0WPF8AP8AfzIYP1f/o04kxwPYwgMN8Wghs/xB+xKw9qLw8uZcw5Sru3iGaHkBDxdxN331Z1xM8w9gujIUzc7C89XoB9B425jom7Ujn1BPs1vA8P/aln4m0huIl9egzFFQe2U/u1r5/ATfyABowd3LmRKNmbuCnA9RgK1oc4ZRYFLWK4iXNPn9478XDEfn2c/RpO237wTz0SA980bk3Nv2z/tuqADkncFOB6fAZxnHhu4kaR/F+HB2MRUAq/67iuCdzE4SdP6R3hhopt4iYPQbmuHd6H+0/onnjLSV5gDABv+bFL9mujDurUIIEbejs0d63cftG+rRMPmhTgUNyDda0i+cwsZqB/sxfJgzvScoVMCYzvxukMN0d9Q/G7NdbpDivDbC7le15YFpq+B+vG7PrmO2HYPDSVYjRVQXGLt27wR3RMoBxjsI0e/HJK4nt7mlMf/yYQLkRn5ZYPA0aNycTg37XBgrHhhl0Ce0Kzbn6avizxnTAsBLSBMFg5XF8C98RFUYMnLAK6480GTJpTH/06hvuD8QncMDFYb02XvO+LKQlxTcH9yeRIbRu9EpNaDW5YHzR5YsNnLxeWk4kbVoBu8IQlhUChiRsq/cNfB2wzFIlv/mBCpFAex82/a9ycJ64WjNHHcPdnARsHQzwSFoiJ+6WfYSEFjXuajWHihoWh2VOwg+77bHIC99TFa9RDX02Lzot/myPhESPk3zXNEyHG6YZIpeD+dHLEVoP9ZIqZcn7YF7AwMNhyLw+dnVB/hq2mm05h98C2Mfs7aAYGBwaumz8Yn2D48XfWW/dscZ2muCbrAVtPs6doYmTd4ojA9+ovRSwk1v2ln2YnesG4T1rsk3XgPpq4aQbW7L4A94QEw2+Fgfvhr6YmmpDBjf9o9hSjDL42cPPrAQtpeUS9ffGnWQncP0xbGulesV+4jyZu9hf7DMN/b/1wYoLhh7/f8uGESJH7ka+nyn42cT/4xVTZ/9hHY+erLycVpygDD80nzUIKWE4zE7gZ8aBZX8Qn2HtmPw1q1/d+XoQbPzYZfsQX/l0rcj/29bTEqAZwc9+0KjTN2p8b1GrgMaYANhrGOYjnJm4ozMQZ/dnEKRM3cTguKMq6mrjJQ8TvTeGeRvjSZILyswe/mhqph8NygpBg4oaVqPPRlJDlZPYMwrrFn4LPhp01KdFPA/1bi6vuSMsVMiUwuv5dYnjMPvlx2lIJOCRxm8FAQfWV2QH3OG42TVI60EGbtDUW4l8URWzMp76bnphFou3Jb2dIIqBjn2RnM+aRMGuCGQIuaiJBjIQDlrs9uAlQGIHQhpt8BdUX3Ki22qig2NPfT5cATbGm53KYRpLkP4QcwWYzggG0eLDc+clkZxOgXu97Pk0meo37zk8mSuJ59oeZiZke2p75foYEaAKFi1JJMUXCQXhOU2dNY74KPyOwutR6CSBa8ZmAZ2vkDHBPEtwEJhsVFHtuyEwJdLBEXJRKkgYFHTN3SCouJgY/2+LBTcCGDqvpvK4GVH6fBPD8j7OcDL8Xwp/BtjCLa21cTzDPZL1cpxN3mHA05dc0cGq6O/hdDagEca7/xR9nORl+FBPcfwom29winTTwI+4LPmcz/PC5ITPk/pJUbDo6+LNOiIwZcDVyUgTgb/idi+FHEYrQI7jN4lobxQfJkn3AfrAZVOpnfpiZAXdwL9ifLiYR8Yj9PfDnWVK02IwiFMYOmM3iWhuUcx6yiDtPfWfHTZwlbhG/oFjbcAcxMlhvHtRcTa/4PrNYoOm7mImvFxQKQwoaPiM0bEZx/dHY+RLnH/92uvWY4JqmR7htnAYa2XUBwgOCS08s2LNb1WtDC53MRB52YaTtSMuxlkpgPnqupjnqaZzOY8YtlNf8tvkwRedZKE8YeviQzXB+nnZcc220c1JgoYzqx7RANalVySsoxrV1a1bDK4bHMavWM4/ErQxLsGFQmm8tYVkwlMqn1Ko/D90TL+5xC6QXxScaSAJfzfwXz+dRXDA/xoebJxjeOv3iuW8BpoVqRv211oCi7ZPxC+R7fVeRignlcsNm9Z1lOFs8STO8y4ebBM4a+JSfBdPYhbIOXtzjFkqPk23uhzbGCoDbNpwtnqR5Y5OGm/EC+s2UG9MCweNj07GPkOlwFXu66Ae3HthoM4pzhtPFh96ZBgzWW795dWNaIG9rfGw6fOmQzo284xxI4DCS8E2Xkey4/754Agww+UYCBJgWCI3Xx6bjPHxF5xuLQBzhPD4f4C0FxZPvGOIDPy8MB1+6MS2UJO1j03Ft9JKZb4DNop83LZ/FBgiaRhxlSGcW3PptihvTQrVl63Yvm454Qi+NbywCRT9v5D7z+C55i28K0nIhcUB/rb8jLPdGpgSWRnMlUOrXqi4jKOlXmC7jScV83W4/1zZxYD+m9GMCTOnXlkarDo7xHhIdt3lb+jqlX9v2VMr0liy4t3Oebd6CqET3N3WdtqVi4trTrk3Wcev2VNwBpm0Z7l2Ge5Lh2tLuG6fgPNtKY70zrlOW+4YPZMGd5d5l2Sup+1KuLf2+pcUT/IPzmFOd/2/xZHupxZO0awtwp8fCLOfKhmlbpniSdv1yrq3bUnFvzuCX2a5tW7q/Zdgnwbky+HfGeLIjLVfIlMBoQvTZXm3qqb0cHe/xc8D8cInzYeiQ0MBlagPFDbYDdOC927ox0atF1/tebdNxuzr1i46pKwwRH81zzzb1pLHYR/OERYJSK5/pw03jZFrnO+dAfC/tmO7Nawrt22V9W9VVtapU8NI8YZHQeOrDTX/bXhlxp90T7geNhT6aJ82OrLePLklDJiyCvdNwtwF3iu+2rZu6B/gc7r+P5kmTO42VNA+6jEZdGlmzYUo/Ju08XD+f52IlYrzZAzfNmi6jcRQ/SvMB3lqlxoq29WQf+Pom+Rze8JqNt3GD1Qdu/MVl+FmPZrVS/TLAne4D4ErDzX5ysfswWJS1KpdPNLvHDfp2zxY1M93fLPGbz/IIt8sxNNSaGmlxw/9rV63gxU0cJQ+k+resZXqM69vGj5v7RgO6iyWHESfqpuCmuZd9kGW9d6TlCpkSGOwQl0I0zkv3PckH9oDN6DqHxgs75MxQyM1GTbwwFO+6eN82zmBwAV3lZfOEveIqLmAroLAKzdM1k4ZiCaVSgjisIpsRJFE7hbWiBehMo8Nd46Yz3ol7n9aqXIjbNUMCdgiS87BbYHm4ZpEc2LGBsE34v80CWiY0wXwntVpw7xvghgnmCgawsmAAwFZxFUVHdm+iWtatIq/MTXaMNoIg7C7YPSgO24xkqun1f+lnp0LChLhov9BPPLjP69dK2HSwhVxF0eFdGwt74rBujYR9ZTOKZr7CgE0F+8VmFC+oJwvuP7hx49dpuPl9zgN93qX8i7Agr68R6nPN0uF6+DmsFpeyNesC/Zp1Or9fsKamgRO8GrdL+ReKNrhRSXYVc4d2aShJhfvvmqUDXq6P+9LfgRs/PHPPncUvz98nHfdF+7ZxjjyAog0bCXaWq5iD7ULxcVCnhvJ/m8FmO6J7Y2G1uJSt2ffQr4kDF+5j9xPixyX7B7iJKy7cZ+8d0LihFbuKORSkiW/EOdcMINik7F+EgaEY24w4ezZjI8rmCavHhVv7N8e4RjWwHzkfrDLXiAno1LC7wO8a6UE+GtCjidDKoY/bjIdmaOPxmGHFHfrJhSm4yV+wylxFKA9hmiW1oyxXyJTASOT3Ht89QZdkpsIDJ/QQZVjsrmO7JRIwQeffR3WNemgu3a+1zJyJuwvOc9E+bUQ5V9P3cPR40OSPBEKt2Eyg+8dhHVQlgy7ZuXH1SLGZjX6fB7c+/51Csy6Om812y1GdI0Xbi/ZtFTwlGrgJNppOTq/BGaGUfRz3wZ0aRvMXCBwB7uJvpjo1qh4pNhNY7zuheyJAMTPkgRO7Rwqr0JVb1zdxlxW1ca1oSwHFk7mJm0SvlY/3aV9f5pbEgyYbnEKJeR0YARrqpEk77NCoWoSbRHb/CT0SAYqnONabAI5BV2aoYdxQ5kX5GcVyjMQKjTqOG3x/2Xtnmf2jFdAJVCbuAzo0kH/HCNDQ3U3cJFKt2Ewih8JZz4L7/hO7RxT/2wZ0Ue0M3Jz3xiM6SeGsC5F92idxU8Bq5WOe6phdUQx3GMD17BNw39Q/iZvPv3VAoNgMrgdO7JGYgcPfHzihu1wXBo3bLBwEd//O8jk6MVLQxwtxjZunWoy3nOdacHOfdCFEYrn5yM6JN68UXKwfhh/gD+bTPX7DfdBjEfCHDhbc+CEFv04w+KmJmwJNKx/Tc0VhHE9SZcLEo5WP2S+3DOiSUIimsLrj6K4x3N1VAxvu43sU4e7fWR44TNwoXlPwYxR8xIU4buIG8WPf9sEDCrOiLtgniZunfl1QNKxRUeKU+VDXul4VdecxAe78ELf5VoL4QnzU4xyIm2bBQ3wlXhFvsVN2bylxOM/AfdruLYS+jBHHiecmbuLnJWFBUb96RfFjEzf5Q+PmvPi3ObuHeE4+qhL+7vWHd0wUPOC+7rAOEX0fijUFsombfEKBijHj6KL9krgZX3FZWFySx24/ukvioY64rhWyd6TlCpkSGB3ol7w6IkGXpDHxwleGR98LXv76qERTFeP9r3prdEQ7hBKIuGD8m0S+w6XTXTNH6KKHmRH/vpE/ooqqmSOwpBCQXG+wP8bOW6X++e64aKT0xa+OtON+eUT0Pe0Vb4xK0FO55msHjY0azu7/Yqo0D5q4EQpDvA+jEexZg3bIH6EsPvtDwAiAJWUTMBs3f5X6xztj5c+My774lRGJBmMaKuO4//bmaDV1kYl7q7r27TGReNmDX04VpWUT9yNfTxOxRIzG0Wd+mFHsu2S+5qYJkK5/jEZHhAVN9gcNzNeFuGkYBLdJl6Rx96JXRkQ9DVe+NVpNMeipjCz/+9tjo+ZNqLem8i/4Hvt2eqR4TWP0k99NT+BG7fmJbwNqNeyuf1pwQ9e8ZtCYCDf4Fltwcz26mfDqQaPVJAM35+X6YeNo6q2poAs+8NA0i9HsC2W0GO6wiVlT8Dkf5zVx8/ngwGB/XPTyiISQI3+/6NWRkeL81YPGJOipnPcf744VNg7GyAK0wuLtDeBjfXXT/PdTlqjHvpmWwM194n5hsLu4jybbhgb9q94K1pv1ZL3Nhm78hn/Xyu2cZ4IFN8KDsHEw/BM/NXE//cMM9eXEoDET9gvrGu8V0TT9B0MGHPuFfWOOzifO/PXNYL3xX/AttOC++NURkXI7980UWAU3+143DMNsIi7EcRM3iB/oNWGIfkKdN3HDQNLMPcR6r3lrTIIlNHXxWvXXN0YF67F1m7rwlZGJRnTiC7i1cjtx09RSIr4SZzUNHlo1cTjeCqJZdlr7jDhOPDdxEz+1QC90bvzSxE3+IB7r81748vAEW5J4fumrIyPJBOKSqSQO7psGT4hYRDDmGMlg4ibPoKOFQR9/4PMkbpqv7w4ZcIyhuPLN0QnZGu4r+W9HW66QKYExiwTWhktBl0TIzAYXG4MNgyPRiQ+Nz2YEHx0MoR26+sU4ho1JAHNREwO869TbI+Y62QEEGhgUMERIIDZjw1A4sdl8uB/KgJvCgUD45HcznLjfHjlXEss7I+c62QEkJDrjYayA39Vh//yPM2WjP+mgJm7NuN4kLhIP1HAXpZLZJyLkOXKekx2AuB+CkczGAL/NYDwQKEkIehaQDTfzgwT3lz7c0yWRkzBcWlkENgI0/zcL2XgChubJbAwCuM2YawHFmQT8+Df29SaAPhTOfyF5unoCH/92mpyHwtKc26QNHMy8YLwAc3xsxnUhYEcgdwnZsS58Dp/HfXbhphjW6+3E/c00uW/Q3c35R9pI3KyjrKeDucScHsT7oN+6BPqgyIKb+6sLP9PwiwfCsQjgdzVhPvHddEnk+J05R0gbDyjMXOIBy6VcHwjZBgKF7F+bsX+IW+ynR3y4Q/9+yIP7aeLIRnDPcjJBYWsRJyj0XCKVsCnfGTFP4s7bI+zjM4hX7H/il451XtzEaBfu72fIOhBXzQdMbRTG0KtZd5dIJXF90Ii5UjhDe7YZxSOjOMgXD4XYbMZDahpuRgEwQ2bgj7OcDFYKTGZy7UjL0a9LYK4ZBPGf+5rA9LAvmrx8wlxU7EtWb0g8zZhvJQgmPkz4Ik/tPEGmYXKN7tbG5/Bq2icGxmctW7Mx8VRgPiUTTL6f6qawEgy+m7pYDZm6NAXTYlW4vIr/mMlLpGHONRdBhU8ay9dCm3Xj5mmT++FbS3B/P2WxGjrTv4m/m7xYLVjpl7nnrQVfCbiSOMbsFAbn+WjTBEmK7O8ccz+0gds1a0gbBbr51sOGm1fUriSODZ0Z0Dxds3Ywkil+lMV3x6XQr8Hkw6N96fBujbxjEaD5gts1awfjfkG/TosVYPIpVgeYlsgbSx/5hWMoLnxjEbiv+PdPM9z7iWJu5OwVsp5e3FMWqxmOYrfomCWpbDpwM0DTNxYBpeZlazZ5xyKwr0mavniicbseQoswLZavuHyEG97qUoT69gH7jbku+o2pqyjCn9L8G0y+UQZyzOTFqkLZPD/uKYvlYcQ1uwsjLnNdPtzkLWjjafGEuJum71aalnsjUwJzNUBpyy9bJurbcJ4jr0zUI+E8jxzjZjVpozcgPxVT+jEBpgzXlpeGO/istOnUXH+5lHPx8/xMmFKuLcMxjKAHUxpuzpN2f/k565l2TNpayhqlXD/fbZfLtN5lUtc78BP/MWgSpfkuP0+7bywPx+SVwnrL/U3z7wzXJsekrJHgzivjbPQtGabS2nPp8QT/IJ6YUhAJTPnpPlduB8YTwZ2fZY9n2E956dcW7Mtff2/luPy8dD/JGE+yxIr8DPct7fqD49L9Oz9TPMlJFPx/awd2tLNMtPEkemCnBqnHoHzrEnGUz+nUUPRKXCJ3mh0AI0M3aLkKHRhUWrvJh+mAjsUb7mzH8CbJ1WGPHdCpgapeqbxT5A6DPUXDJcc6cZfNk8bbTOudgptrR7HWJYYouDs2UFUrlvPSDtE+0UwpXxCAuZbuAw3kM33xgmNgwLnEEDE+C9w++jFv2lD/9mEieMOM8F1bgKmhNDL6Ah3HdGta00vzpJm3aoVy0qTsMkRB0ePyYSob4vbtgQh3h/pe3PgJzBbfm0maYllv3TxrM66b6/dhAsYBEivSce/Xob43uXIMfukSFdRN1VUr5su5XMabZNSa03BzP7LgZv/6EmfAfKqW0HYzxyLAkGGvuAzmDHHJ59/SsN8J/07D3UBwu8RVNW4YfFozz2bEP3SyfL5LgzHNwL5jNNEgLZ4c2KmB7CWXSGmAu4EwDl1sSoyxAtD0fesEow1SR5Y8tyMtV8iUwKBxupSWCZSwXxBXROjRZjjRCbs0ExaFFiE0jS7wi8NO/L8d1N6qREtAQdwOYa6z9tzJmTRgjiB0Cc3TJatOobNH67qyMRE8sxkd9Kj6slG0CGECd4V8oV1jXFsablgWLgVdmCwUHmw+16wRkgqFB6wNzeAyjWs6edcW8jRypQM3bAFN80TAzqagWybEDSsNVpMr2cEQgoVAUehSiIZpAXZYMlDaXZRKVKt5GkMM0GawYS7dPxDgvOLAtlYFXcF9SIAbWq0LN/cC1gdsM1fxzFqDm3NwLpcCvGbZXXVIO2uBWTmG+/ID2loVdPm9Kw9uH7BA9mgp57UZzBbYXRQWMABtxuwUCifYOFynzSgCYJvweVcebMfN+l5+QOBDlx3QxjkHit/nvrEOriR9+h6BD/VjJotj3gZJhSINtuCZe9lxy73o21LuLyKbNtz48xWhUCvr7hrVwHqDm/3iGtWAv+K3zGPRDC7TdmlZWwoPWC2uUQ0UqbCpiAPgznPhPjDAfcl+bZ2jGtjX7G/YOK5RDVwTbEN8BGaZzZiNQvKlMNIq56YRZ/EhcEs8sOAm7hFHAtxtnKMa/npQO4mnJ+7aPCHAqo2YC0sKdiIPLTZjhtShXRrJgzHCmjbjYUizF68+pIMVdzy2X+zBzbWRv5gSbAqZajvB87PfynKFTAmMm33Vwe0SN5m3FAQCbTgwKqC2QMgTBsaY612MJM2TFwFQKx9TfDAjwFQ13q99AwlyGIlTZpwYTxE8NejAzUa/6qD2iTkidQzczBhobiQNAsqlB7SNZnmgWGwOBCMBkHiZjYExQ+CYnsVxYyQc/TRHoLvAgpu3TDoAElgJGDVM3FXKRwURBvW7hZE0wM190Eq8zKQxB4LxwIjCuFZs5g3IMT2bJnCTwCmqMAosqKoJFen6VaNZNazH1eA25p/Urlxe/l3jhlJqJo2K+Xkyz0Yr8TL7BHViEzdBTis28+bi2N5J3LypOTScVUNBS4Fs4qa41jNfBPch7RPzT3gKk4QTfgD+ZiYNzst6M6APQ5mbJ2oTN0FOKzbzf2ZfmLgpmvSsGgI0czlM3Hy+np0CLvzBnH/CdVx9aLsIN4HeTBqcl8DN+mAkBYYaxo1fP65P00ixmQF0rL/5woH7pBXJuX+X7J9cb9TOz+8X+Ikkcgtu/Ib11m+Q/rJ3K6v6NfM+9CwPKMzmmzl+Hb/Qgx6Z/WLDvcfOdWT2kXx25XJS8OCHcWN/4a9FuNuJPxfHnS8FrP665Ny9WyXmEoGb/aPfkFI89GtbP4H76J5NolkkKFGftFvzxBu13Xaqrfr3CHFXKidxynwQIZ5duG8RbvzEHOdAfOHf9Vd0JH1zLhFx6vx9Wkm8xSjW9m2XVL8mXuuHRuK4OT5DF3vEf4w3NxT05oMIxbt+oNUFMvE6bsRz/r1ciJuCN6F+De5+raLxGRRE5A8T95HdG0djP/A1HiDMN4EUe1pJnTx2hQU3DwX6wXBHWq6QKYHRmPaXgcMT7A8aQc949hdhPSDMdebzw0QFNG407V3xxkihHWNQJ82m0ICxNC1SiEbAzaZqDK1WC+/R6HbD4PEJfRAaCaHM6obPcwcOSzSOLl2zSZ35XIAbO/v5AjXbaIhDLO9vb4yKaIdQJ00NKBgFj34zTX0UKkQjhPbS0OK4NXtAi07SgPiv95O4YZ9AZcdorDznxQK10sS9dpM68/lfIprn2S8WqFkGKwvc0N1htWA3Dh4nGijFcG8PFGM1m+X1XwrVwJ9nJ3DDHkBUD4Pd9c93xyZVpBetUee/FOCmsfTsF4YlGkyXrduk/vz8LxFd8twXCxKsrA1btqmrBo2J1HdR/0ad2MT91PczIoVo2ArQJ03cNOfe/nGgbg5r4zoLblhKfxlYIH+GjXDW8wUJ1goNsH9+7peo0RvcJiuL80LT16wQ1MkTqt3blYgFaoVoWHWwnEzcNILeFqqy08gK/djEzeef++Iw+TMsQPac2ajLdXA9/FxwDyxIqHZz3r+/PUaUobHbP5qYaHgFH6yYt0JWyLsj58r6m5PquU9cN0Yj6zVvJXGjdn7uwMBP8AP8wcRt+g9+ZVO/xg+1zhQimyZbEtwv/jg7UlqGBQWN3MQ9ZPpSUQ/H0H9iLAB+GDf219kvBH4Cu+nPzw0Tfy6Oe4s654UC0YnDLnh5eIJNBm5owlpJHKFC1K9N3C/9XCgCuxisNNh3JnPppxnLhBKNwUojTpkipMQzMGHEC/zYbIwmvuAbWnEearmp2k2c4rO0kjiCljb1a+I14poYcZx4buKm2Z34j8FKgx5ujqGgMfmsF4ZJPiE+s97E67gRz8lHS8OG6UteGZFUvwb34AmRkjh5g/xh4kboGEYtBn0cppjJXKI5H5/T7LTLXh+ZwI1Q6pnPBbh3pOUKmRIYEuYuaiJzP0iIBG8XVY5NRsKhM1zLz9uMWRs4AknWZZqeC/3QRU0ksBFQCWQuNgYieSREZky42EYEHz6PDfOmQ9kbY7ZJGm5UgQmE0A9dFD8SGYnljWFznNREZiqQUJgxoYOiDTfzKDjH6z7cIeUWyq/LXvpptiSeZzy4YT+NmbNSCgsXiwTWALRUmC8uZW9oqczboZBzKZILXo3bQRnGCKokcmi6Lq0ZClMKy0EFc5wsEmadvD18jiqYtczJNiJosj4kYIrZtPX2+Qm/z3lYB5eIHwrRBGjGC7hYJLLXCuZIAnKxjViXZ74PaKUuJfW4f7io5VppmUT+7PcznbjBjPAeuF0sEh6OwE3hbBbgcdyaxutSUo+vs2+9iW0kcui1LvFBfIT99u7IeU4mDX7/RkGhFFguhWyZb/N9QJuGxuvDTTzx+fcb7LU1G6UgtinXY7ARmRVFIedSrg9iRKEU4nrOkQ03BSzx6wUv7iB+++LJWwVzZa+huu5SgIf9xKwxxiK4REHJR68NK5QHH5eYKfkBujsFkUsBXuNG58/nJ/gsM2Sgjbtww+5MY7+VtuXo1yUwXY27jLcjaerXHMMm9wmYETAIwD5lWKpxntLS+PrDZ61Qwz00V31delCfDzeFjk8ZloKCAOxTx4UuydNOGiaSfOq1zV6eeCpMHDNruRRFPmVYroug4pqhgpEseMvlKj7imLLcE9dMl/h5eBvhCs4YBTNB3DVDRdM8CXJpytas04gU+jXX7gpecdwkA99xPDWC2zWLBONJb+L8Valrie+mqV+DO03nj/OwTr6xCPgtuH1jEbjucfNXZvCB5an0a86RxuwaHuJ2zWTCiBNLUsYi4Gf4U5YYl0a/5hhbj5x5DH7rG4vAWzdw+8YisK8Z/sme8hn+r4c1+jDRFO09z6zlsp6+/ctb1sVrNnrHGRBHuR9Z4kka/Xr4rBWiSZV2HnD7xjnwFoj19vkueYuHtVTcs5an6veVpuXeyJTAfIKJ8vOK+akbgXOkHVOlfL6qXCE/lQYnn1damNLOUyE/6u9xGQ2QjDZPozAG5/J/XrVMmMo5mwCj82RYI77nBXsaPTEbpvxSwZTFT0gWNMv6WBYl8ZO0e5IFE6yetM8qr3GnJLvAd8uVAqb0e5JljVhn5D7SknS1CuVKBVO1jNefdt/wa/zb1she0jWQPVAafpJhLxFH2OO2hvDf4vP4rEzxNOUY4naV8vny346KJ9UyXH/aMeBGpqG0MO1IyxUyJTDE0HzWv1sT9ccujbyJvH/3xqpX81pemiefg7PAtnAZIpWwcnSTns04B81dvmMCTE2kydGPu4nQM10MEo2bQK8bkV0ilT4BP4ygC803db27N1YHd27kLUCO6N5EmnhdYp8Yg9Aqlc/30g5plKR5z4eJgAutPG29OQdMMl8Bwnqjm+JiYgS4Gwvugxzik7rpm2ZmHyYS3EEdG2bwk8bSVOpL5Agc0sTro3ke1iVYb92IbDOaRGmq9WECBwKcR3SzixPGMUEX9eHmc7jHLvFJ7JAuDSXQu0QzMZqJaQr24aaAQ4Azzb+5LppKbYy0+D2hyd4lPqkballvxEFdRixBbdqHCX89pEujTPGEGOArQDiGOGBqMcWNe8Z6+3DDDIO548NEfCC+ZYknMPeqpOCGSeQScdQMVvSPfDGOplgGxvkwEY/xNd95sCO6N5Zc4SsuwA1zi3vsMsgYPKz6MJG3+rSs7V1vCiLfHvktLFfIlMDorncpFtOdDosEGuuljq5tKLmwfmBRIDBoS8A4Ciq1GMwF27wZAgQCYRj0S5sSLcSY6/7YQTYUr/gosGx20q7NJfHQjX95SHc0DQo0XfaC+4jOVtxQKrV6KpRfmxItAfn6wwNhRbriOzpwX/vHDlKEwV5B4MxmUNxhY8B+cFHZ6bI/tldTYSsgmGgrHKCAazow9EPbnBwS/b/C9YbqTTFms2sOgRlWTujsBEWbHde7qQQwWDIwDmxGYIbeKLj7d7K+uYAKqv3srwe2tSrRkrivPyLADeuD4teOu0M4t6iOOsqhWAxbAVYDrCQYHjajYIQVg91wRGcrbuaVXBbSgaFy2iZhg1sLnjISQLNuTAMH7CD2lUuxGL9FdJDjuD82I7jDXsP4XFvBg59dEdKvYZnY5vtwvfgZxjq4RjVAGWZfI86HP9gMFgmTtGHjXHOoHTfJFNqxxm1744I/6/0Bq8c2qoF9we/jb7DIXKMa/npQ4GewiWCf2YykyxwVEuK1h3awHoMg4ym7+3ETPxg/EeBuI/HFhpv9AW780zWqAbYo9w92n77PppF4ocITd647rKOVyk6cJc5jxF9bgcl91UxQWHy2B1biJ/GfeCrsVceoBvYJbCPis2vEBPmoX9t68gD5DwduilzyhOC2CMfGmYkY+ceFm/sFbvKYa1QD163FeneU5QqZEhg3cED3Jqq8kcirli9brEJljohJTaRKJblpJV6Sme1pm81EMYS1rFPFujkpmDo2CpISAePgTsXpdBgbX6sMs9EJjGaA5smDSj3C3aFBogABN9emFW0Jzq1DBdhiuNvWjZyXpyTb5gS3VpUlYBzSOTkUjkCraaTgHtCzSQJ3ZWO9eYoyCxCmmEKFLcJdyzrbYM/WdaJ5NuDe1Ya7UfWIMkxhSPBI4K5RQf0hRiNlo5u4ebqMFzgM36pnFCAmbpJ4WwtuZmLoYNOsVmW1uyWoMHCM4B2sWX5CrRcjIcdna0BnNam3BOwBBm6zAOG8FJ1aQbhrsxoJhWyMJKeHt4GfZG17i6SLLnkDYsHN58ffWA7o0TiRWLgO9qs2hoaZBUigJt9I1kcXB7a3G6xvHLdtbg33SRdd3D/uozlNt56BG3/Qa6YNv+kfKyh5EGlowc0bIq18jH/qMQJxw5/1PJsgJiRxo8DevRjuRgnc7C+tRo2x/2y4j+zROBovAO5GNSzr3blh9PUF8cD2QLNLDDcxQceyuLWqX0X1bFYrws2bG/PreOLZAR2L1vuIrtzrJG78W+PmAcqcccVPiLP66/V4LIsb8Zq4LbhrVLTOCWLWmB7fTz7gjaGJm/wRHwTIWxLzTVH50L/LhLj7tqmrmlhxN5QHLKxDw+qqsxV37WgUBMXTH9rWtb614+FQf/YRFtwURGnD8n4LyxUyJTCaxS58dYTaZHQOrtm0VeifsEMQ5oLiZzah0jmOqjMsBK3YbCoIY7BUNOMDMUObsOCwmcvVjYMD2uFXkxaJkrbZyzh3xQZ1XkjzpOP9wldGJBpHaRCExgw7BHxQQU22Df8OXVI3rkFpNpV4sdd+mRMxJ2ClIIxoY2vc8N74iFF192dJ8T1YBdB7gz+vVxe8NDyBm4ZMKJWwesDHNZhK01u3b1c3DB4X0Q6vGTTa2qT5RsHciHb42LfT1AcWQUQa2zRdEm2UOz+ZnMC9YOVGdU5IB0bR9vyBSdywzM59cbgwJGAHnPX8MGkKNHHf9MF4UaDFrh00RpoZTXtr+FxhkmFQat+3CCKOLFwZ0SVhpf37o0kJ3LBmoPrCsoCNgM+Y1Fsab6HB0+ga4P4lodjMeW/5cEKkgH7d22PVmLlJ3O+MnCcUbAwmFQwY00bPXRkpoMOSufXDiQncfL6mp9KgiM+YVFCuA1otjfMcx3WaLCHOe9tHE9WPIcUd5WNbc+l7o+ZHgqkwewYNT+IeG1LFMRhSUJq5n3FbHOJmHWUswovDozEC2vAb/IcGfHDj6wssuO/4eFKki3P9u0V7NG74M4KQGEybNwuSQo40+eJnGKw0YouJm/3FfQc37Cb8wYab/bogZAZxzPyVSdx3fjo5Ygbd8P44a+Mo8UOz2xiJYGMdojhPPMJoUL3+/XEJBifxDOoy/w6bjFEN62y4Xx4hyt/YeS8VqHkrijfYclbiLPEWu2nweCt7j3j9SCgoCWPQxjqkyR3laE2QQH3dxC2jGp77RfIJbDrGZJgN3TQ6k4/mLA+amM8bWKDmWHDf98WUSAEdn7RpwSGoqYUwob2/PLTQ2uz+tzcDZWsaflE3N3HDjoV+jbDmjrRcIVMCg5rpYr9QDEBNQ6nURZXjnhNMKIi+CB3LZijn4sA+ih8KrQE91U2noyuewPTKz7Od7Be675nngYK0S1RNcA+ZKRuG63PiHjIzkLL3UPxQtqYAee4Hu4o2RsFBInhlaKGT/QLbAZrzVxMXiXKtzYjF0AQJUHo2jxX3DzMlQL8wxL3e746aJ4nnuSFu3AQoEuKrQwsTSTXOfnqzoFB9PXmRk90FbtaShPCRD/eQmZLofH4yeNT8iJ7qMgIU1HHm6LhYOwRRkgnicy52F7hRGycBM/vDjTtYQx+mD8bMl8LK50uwMKDqQx12sXa4Hmi1UIF97C4+h4JosENpOr7ePtzMUqKQ5XyuURrMsvlmymLB5RJhxX+4LvzJx24CC34Jtdhl7F3824cbRW4eHJ4bMsuJGzYOiZx958LNfoWCTgHqUprGWB8KIgpbJ+4fA9xQ8F326fgFEm+5Rhdu2J9fTlyk3hw+x8k2Ij6SwKHFQ3v24aYgGjR8rhv3T7MkDvpwB/F2newXl9gjM1k+n7BIxiK42Ebko1eGzpYHNkQ2XUaeIF/4xn7wIEre8fkJs8BQCH/Bg5v74csTv4Xl6NclsMkeuqhOZMuq+enAUCWnLFrtVYadvGi1BCefMiwBY9bStZkwpdE8wbQmhQ7MeUgEPoVVEgtJ03xaNzceCdwcOJXEtCr12sDtoyfrY6am4NY0Tx/NUeNOX8tVMlQsbS3THljAzbAs14wgnVjA7SqcBffWbXJ9WTD56NABplUqhSAl56DQcc3awSiYF6/eIIHaR/Mk4Wfx3SzXlsY04nP4PN9YBNaZ9faNReC6py1akw132t5duDqVjcN5ZixZ4x2LwKyopSljEfAz9kmWeOI7j8bk05LT55m5dK13LAJvz5as3ZgYYhg33Iyhl7a328UxrUpVvwaTntzrPk+A2xd3eOuGn/gKZ3DLemfwkzT69aQFq1WTmpVTj6Fw8o1F4K0bb7B8vkveAnOWPcdXtjvKcm9kSmC2hsq40e+Qeky19GPqVKmgqlcq5w2+fC1Kw2jdauVLB1O19GPMfg7TCF7gTqN5gscnPlmEqfyvxpRlvWmopBnUxw7JvpYVs11bpmP8n8WI8pqVynlZFkXrneH+ZvCBLHugXsp9g11Rs1L5VJpnVtzZMGXZu37c4GW906ilme6v7N0dE0/oCalZpVxCMuP/uudK5Z5kOIb9GOzNDLhLKZ5kwW1KBZhG/AO3jfDwf9qXGa6tXrVsuH0Cu/S90EtTWvd3R1qukCmBoVviskAfpKk0nPkSOd31NGDS0Og7RjcLugwdG5oOj+1lZw9gbG4aHH24y4S46dr30SXBREOhjSGl7dgQt4+ah94RwnPH9HbjJgDQUOq7NsHdq2nQ8JiC29WYF8ddPmxUdJk0H9ap7MVEoxsKw8d6rk1/HjRWXyLnnqEx42IaYVx/ufyy0ljsMprzaNLz+QBBF5Vd37Vhx/RqJnRnXyLn2lvXrxY1j9oMpka5/LxIb8Zm0lRev6qslcvAAbXYd20B7qZCrTe1xsxjoNW6GDsY/sF6uxhSmgEFTd+3lhRyrKPv2jQmGj59iZxjoNWi3+MyGvrR49E6OTYLmpyre3Gzz3jK9p1HY2If+N7KcAxxwMV8wYgjNMP61olGYWj6vj1XOcTNffMlcjDRiO0rijimaa3K0rTusiAHlFXHePyShnJo+r71ppAjLrPP03D3a1fPW1ywhpAxaGR2mW7W96034wloaPftOR7AD/9fol/fdtttqk+fPqpatWqqfv366sgjj1STJgWaNto2bNigLrjgAlWnTh1VtWpVdfTRR6uFC3fs92/aoJ+e7VCihWpIooPGettRXRJd/xiCYpq+fccxXa2BtWuTGiIGh0GHs8nFU+3edGRn+TN0QpuiK85017HdJEHTIe9SdIWS2rJuFanEBbdllgwBRdOg7zi6q/XJrkuT6hFu6Ie2OSI8Yd48IMANfRPlbRulEtwEMDYMgmc2QxWa7n9YBP8+uqsVN5j1DIrbHbgpcC6OaMztEiJ3GIHt1hA3dFnmRNhw33lMNwlgFHwXxQTf4gbFm0RPEYMP2Gb3QJVnJhH276O6WhMZjKQi9et2VmYTBeGtR3WRPxPE4yyIOKXyzmO6Cm4KPq1gbhoCcRRWsHvudODGt/FxwX10l4QYog7gmn59eXhO00iA+CJ2VM+mwrowjc9nvQm8JGDOZTMo6lwXx915bDfr6ACKOJIFduuALtYETADX9OvL9m9rZTZxn/BFjOISlpgNN/cdthEFj0tNHsFA/Ij7wnXacDOrRSedWwZ0tr4BwJ/jqsY2hlCAu0tir8eN/XX7MV3FbykwXaMDEJbkQY39i5/YRh5QLGj69s1HdrEWDjAj9WdctF8bK9OG/cxa6tlEtgcocHNPiBMUqq7RAQinwmwkXuIntrfhxFk9XuDmIztb3zrARGX8hBazJZ6bRtzXuPERGKUJ3GXKyB7gGilUrz3ETmU/Z++dhcZPoXr3cXbcsMdOCunbN/XvbB15QJ7R9GvEWG0PUAHubvJnHiBsoxo0bi16+z9RyHzzzTdSpPz000/qs88+U5s3b1YHHnigWru26DvRyy67TL3//vvqjTfekOPnzZunjjrqqP8YZqpx09irmjKNIVPgmrWiqXKMlDbpixiv/7Qz8iRhSwbxSY4ERttMC87BV1QR7pqVEhTtAHcR35+NWd6SoBrXLMJN0LPhrl2lQkQtl1fZFkeuWrFshJuN18AyG6JCubxiiaRJLQvuMsH8l2K4LQET3Fr5GNxMHU7iLq8qRrjzrUUDSUfTF1H21UqycSMAxr8qaFwzHTdPUPbZNhUi3DWcuCtEb/7ETyxJjN+L4zYppYK7bHHcvOUzXYC/N4rNlRDcjtk2uqDkczU1uDju8hG1nP+bYwo0bl10cr4GBoVXcOfnFfsKi2uz4W5s4rasN3tX4+Zzqzr8RPu96aNx3NVjuBtl8BNwm6GCvxbHTUxIYoLyr5Wm+dwqFZPHyH6N1tuOG//R643f2Wa2VCibV+xrXBfueK8G681amUa8KsJtn8oLbk2JZ39qdfJiuCsUx+3y7wTuPAvukFovuCWWOXCHfkJhVM2y3sR1/WYb/7Z9DSVxplLw78RV4pRp5I94wRH4aOKwYvNe6sT2lgu3a4I361glXG8zd2irFMtH4G7ixO3vM/qvK2Q+/vhjdfrpp6tOnTqpbt26qeeee07Nnj1bFRQE9NuVK1eqp59+Wt1zzz1q3333Vb169VLPPvusGjJkiBQ/Ntu4caNatWpVsf9Ky+jC/9f7AQ03bvTZXf76KGFZQElErdaksGIPfz1NfTcloB1e/vpIq2Acwl9atAtlWBs1keY3TU9FgBDqs2l0uaM+S9c/jVn/fG9cgqIN7r++PkpYFgiKQZ1cb8GN8uzXIe3wijdGRfTKuEGnRnQMu+fTyRHt2VT+hZaLIfgIu8c0WAWsn24+5DoTuLdDXx8lLIsIt4Ul9MS3MyLa4d/eGJ2gVGKwXh79OsB97+eTRYjQNFhR174d0FNhh7wUqtvGDRbH+QMLBDcK5ygq23BDu6RpdOOWwE/WWXA/9f1M9XnY9X8Vxy9P4oZ2i7Iudt/nUxKK5Fr5F9o5BovIxm6C7QPVF7YCzePXvD0m0RjN369+a7Q0C9KcKbgtLCEEOj8ZF7CsoMXamnlhR6Gsiz345RSrICJNmVe9Faw3bDOUp03j86GKQ/ME19WD7LivGTRGrovjzn+pwMpuYl20cvvVg0YnFOCxn6YvU/d/MUX+DL2W6zCN+8T9wmBtPG1hFIKb9WMdYQHiD2Z/MX/F32iq5b5wvI0lNPCn2RHLCvr07KVJ3PgziscYfm4TcmRfaDow++WJ75JsG/yUeILfwgJkP9lwX/fOmKhJHdw2lhBsRPY/Bl195pJk8zTU5rtDxXlEI01lb2z+ig2iHI3BpnrcIna4PsRNnCBucbzZFw3u698dK03DxMvzXy6wsoSIs8RbjLg0fXESd8Hs5equT4L1Jo7bhBxp3r3ijZHyZ2joj3ydxE3+OD/EDQvwiteTuDHy0aQFAW6uUyumxw22oWZZQdO3sQ6h7qOgjj313YyIZh438tVlr42M4s+DYfxJ4H4JirufPPJf3SND4YLVrh18b0pBw1ua/fffPzqmffv2qnnz5urHH390fl1Vo0aN6L9mzfzf+5fEoOe52EYEJhRNoY3anEkbVDkKC5eCsD6G8/mUpuH90x2PKrPLYFcQuF7x4d66TeiUH42d71TI1pgoLFwKwnpuAgkDWqmPvsfGtBUD2kj00HxZbxf5BXYJ6tgkTpfSdICpUAoLl4KwHDM0oB36cEPfJBByjT52CAUftFkXblgt0Jw/HbfQy0qD6k8CdikI63tCwnjtFzcmEgCJx4ebwMr1MfPCxZIS3MMKhTbqY6XxORQWPtzQc7duhe7qXm8Kfs7jU6MGxxcTFgbnc+AO1qdQfTFhkVNpWnAPnS1+Z0uY2uS+bttunbGh7YdpS4Se+tLPbko8+5ZCBz9wsbv4Zz6PROhSbNY+QEFvSzwR7mHBffUpklOYUTj54gmsFuak4AdpuL+ZvMjLpgMLD1DcP5+yNfHEFyso4IlLPv+GAUqceGNYoZOVBm78n7jjYze98nOhPLB+5sVdKPHbh4kCk8LJdwzK1jyAsA4uVhpx/ZWhs8XvXGMotH8Tb/SDhs1QW6dQJR66jAdrCicfborADyxzrf4n6Nfbtm1Tl156qerbt6/q3DnoR1iwYIEqX768qlmzeONggwYN5Gc2u+aaa9Tll18e/Z03MqVVzBR66KLBz6G3bfUfs2x9qgorT7LL1270KsMSmAhgfGYapjTaIXh8NN8Id8pnkcgJGj6FVT6HADcnbQ2WrUu/tmXrUoU1eepNu28kOIohAofLWB5wZ8GU5Z7YXrknzpNy30iI0N2Xlwbu5el+yc/TmEbib8vXeccLkBAZ+OUrQPn9LH4S7Ke0fbk+lQ7MnuOzfLj1SARfAcrvi8+l4c7gl5zD1s9Q/Jj1au7y9d7xAvj1sjWbvIVc0V7J4N8Z4olPSy7CvcKPmwdC1jyNfpxpvTPGkywxnjdYvnjJW6jl6zZ5Czl9rnRM69WCVeszXP/6lPOskzdYvrEI5Bt8xTcWQZ8rSzz5n3wjQ6/M2LFj1auvvvqrzlOhQgVVvXr1Yv+VlumR2b6fl8YxCDPWqlLByw7hO0+60Evn80oHN8GLhOGjeVJ4cFyzUsJUGueht4Pvl33sEOolRtSnYqqTjimrn/gEOjGSHL0DviQNbtZ7R/mu4K5V2cuyoHeC9faxQ8qE6106fpLtPE1r+3EHmP1UV36/tHwXX8pyHvr2fPU8fQ21q5a39tLFjfu2I/2Evj3fgwj7kTW39b4Uw70DYxznaZKCm6ZYemXSirlM61Sn9GJl45oVvcLAMhahcjnxg9KIcf9zhcyFF16oBg8erL766ivVtGkRrathw4Zq06ZNasWK4n0isJb42Y42OtZdgY4mPk1j9iVEWEawFVwCZ3LMLi3kfD5qHnoWBFQtGmczFJ+haSOw6PJfmuFgPkAH9SVEcMMSsmkRxY+hidclhIfB+GHolEu8DSOBo7d0wi7NnbhpKoNyeVCnpM6SiYmOfB9dkmNoPjzeQ+FEz6lBCm4CF3pLJ/Rp7gx04EaYDzqwLyHyObAVbFot8WP4HAQmfYq2NI4ivugyEgUMMh9uAuBxfZqJKrkvIfI5BLm9Qr0s+zHNVF5ennyey2BakKB96w0OaL5cvytA8+/H924uKvA2wcQ4bu4fAnwuO0Fwl4mYKzaD3sr1+/YlBSiMI3C7lNvlvvZuJmMIbM23Ee5dm0sjaFy/ybTjw/tKXHEZ2lGwF324KeKIO8f1aerH3aeZ2lvuXyUvbuIA98Vl7BP2JcK2LoO+TVzy+QnFUEDTb+ZUnMd9uL97ta7rTcJgYd/CdHOZfE5+ngi1+sY5wF704aYARSUderWtuV7jPnGX5sH9C7WSbMbn8NBzkEdxHuYeTeU+TIxzQG39JM8eIP+5RIr/KwsZxn1TxLz99tvqyy+/VDvtVJzaTHNvuXLl1BdffBH9G/RsGoJ33333HY4XquiN/TsnihmC5f3HdxcHp2v8kZN6WoerQansG/L47zmuu/VJg8CsKd6ozWqRrrhBf4RGp2meFCqmMbjr4T/1lMBL4QRd24b73uO7S0DRuG2zZKAREpgwKH62Lvt92tcTKqBWm7UValCybxnQJZptYQtQvM155E+9BDcBCjqsmaMIlncf110COBvvkZN6WWfJnPeHVpLIMSiVtsBKwjwvpHhDC7YVahRC0FsxZvtoBVzzKezRk3sKNo6/zYa7TBmhllNYEJgePamn9auac/feWQonDJpmMwtuCpzz+wUUbyjTtnkcBDZNY2Zuzel7BAq4ceOt36Mn95KEwZMWNHUb7juP7SqFBYUqx9twn7XXTurAkCoNTd+WEAi4F4TU9Iv2a20tMFvUriy0c4wEdOaeyZEHfD44wEPhwDqZIw/4O9fDdXF93B8b7jP6tpRCHoOqywOAbf6RVqWHYmwrMLlPmlZLwaf3QxJ3T7n/FE5Qq03crD/3jcICf+I6bW9nT9u9RTQ9lX1iS2T4s1ZJx8/xd9PYF+DAKJz+YhnVwP4CN/uNN8H4sVn08lfGFEBzFtwn9bKOmDh51+aiko0RD2ziucQPTak/V/ZxEjfrBw6MeVkXWEY1EM+Ia8Q3HkTuOT6Jm+WHBk5hQdzheNtbZeKsFtklntpEaInXWm387L3Yx8lCjbh/d4ibgv+ifZKjGsgfxDVwwwK67/juiWId3Df07yyFBSyih0/qaX2IhurOGAPB3b+zdcREz+Y1I7r7WXvuJIW2DTd5C9ujdV11qWVUQ6VyeeqRP/W0Mlv/awsZvk4aOHCgevnll2WWDH0v/Ld+ffD9Gs26Z555pvS88LaG5t8zzjhDipjddtvtP4J5xuK1ie/R+d4xPrac7yJpmrKNlKdZEON7dkQmTaMBTjNZkA2wfR+PVtGKsKE4YD8kv49cu2mLNKVFn70kA+6QBZTEvTbCzajz1ZZm5oUrN0TMIRgWS1Y7cIdimjTx2XCv27hF1kDbDD7bwM3304UGbhtriWvTuOkRWLXesd6binAzOt+0lYI7+F3NkjENtlqczTXThnv79mINeTRxrrd093PM1th6IxpnGg3TmhmwVnBvtPYY6P6ZLU7cW9SClUX3YVYG3AscuGfHcNPbsHL9JjvujcF6r9241b7e6zdJj4HGbZME2LAZ3BuKr5nh4AHuIoZGwM5L4mZd+ByMz7X5CTi1n3Cv8XfTuE9ct3z2tuKfrY11izfvcm0mbpYw/rv0iNjWmz6EItybnbg14ynw0eSe4/fiuO3rvbU47ti9juOGmVgcd3JfzlmxPhIVJB7Y/CSIjwFu1t3GlFy1flOEm30+MwPu+N7SxvKzX4vHhOR6E6+0pALxAK0oK+6NwX0gJtnWm7i/NAU3+YO4po17ssWGOyYXsWj1RokFptGrU4S7aG/FjV47LVMD7ngMjnCv3yySEcFnby+2ZtqQQEjrDfqvK2QeffRRYSr169dPNWrUKPrvtddei46599571WGHHSaD8Pbee2/5SmnQoEH/EbwwdlDstdm/P54oToWjQJ209VS9N2qe+nBs0M0N3XFNGNDjhmDZwyE9Vc5p6USnWVLTr1/+eZZQiE2jOx+KJA6McOSTFkoldscnE4XVQ9K7dtBYK+7Bo+er90OaJ7Ta1Rbc4+evVg+G9NQ7Pp6oZlhwL127OVIHptPexhDZvG27UKsJQCNmL1ePf5OkJmJQBacuWi3JA4qtDTcMsndHzY1w25qQ0QS5//MA950fT1LTLVTQZevAHdCBNZPEjnu04Ebh/JGQ0m3aPZ9NFtYayQVKs41EgYDfOyMC3FzbyvVJ3GjLQLvG7vp0spVSSXLT9GuYDzDGTCO+4YsknLFzV6oHQ98zjc+auGCVBEooxjbcMOm0KB2fa8M9ZdFaWYNgLSbJ301bsX6L0KkxaKM2ATpwg4OEM37eqogabdoDX05V4+atlOO4PzaJHIT5YO4FuMdYm6enLl4r4xCwe7mHFh0drvfqkDaOgKxNuZ514xjWEfaHXgvToNajMIw/XenADdMMRhKGf+KnpuHPd4W02vu+mGzVJGJfaBXp90bNVR9aFODBfQ17f8NmYdvc7cCNYjVUXnCzj9kXpn09KWAkCu53xkpcMI2CiDiCEVcmWDSgiEOaNk58sjFlNAWfOAEtXFOMTYMqzcgICgj8xMZuIs4SbzHir61ZnXh9+0fBZxDHx81L4ibua5o+Mcom+Alu8ggClbDJbg/XwjQU2X+ZuUzi/N/eGOXEjSCkVncnf5g2a9l6UYGPfG9uUoByzaai9UbM1ib4GVDwx1qLvP/qr5Zs/zFbRlvFihXVww8/rJYtWyaD8ihi/hP9MRiqxS6jOkZF+v3R872CYgRMpNt9gmIcQ2KhgPDRJal8SVAuY6OJ6qvnGHCTfAgCLsVmjYlE5xMW5BgCmC56XHRJnoB9mEgkabiDz5sr8z9cis0aE4kMRW33MQFdkkLTR5fkKdmHiWKQpJuOe47QKl2KzfoYCgdbQNHGfdu0ZWs0k8NFl6RQ9WEikaEinIp72ByZ6+Jj03EOEt0ojxIvSX7zlm3qbY+CMHuEQtWHCRzgybLe0N1dysf6GBLdCMvcJm3vjpirNm3e6lU+5n5RoED1dRlFLInAF08CTIVSHPrGOYCbByjfOId3R86TNyDQa102bt4qmZPFSAOX4a8fjVkgKtJpuKG7+1iA4Oatjm+cA3GEwsL3ecQj4pLPB4hrxDff9WtMX01cFL3lsR4zfI7EL984B2b7EAd9sRlhRh54fLh5u8EakFd8bLo3h82RsQ+2AiU6pmCOjGGApu0yiioKfh8mqO48YPqOIf/5csB/Nf3692C85vfZkrWboomsvnMsDV/PuQxqKk8+PmXY4FwbUzHxWT4H15j0dFvfMYs9tNP4622fwqp+/ZqKO+MxaQJ+st4p5yGR8ybNV8gVqcNu/NW4uX5YDWnHpJ2HxEyS8xVygmkta7Ax9dp8tOIIU8r1B/RkP24S+Yr1m7yFXIQpdb3T70mWawvWyI8bvCs3bPYWcgGmgM7vx5TBTzLctyzXj1+vWLvZOxYhK6bFmfZltnuSdgxxBP/2FUTBubLEuGzxJEus9BU6OpFr6njaudLjCb7762M8awQeX0FEviGmLMuy5zLEk/851tLvxWy6MHHr0LCaVYMlbvy8DU1lnnoHQUk6zH2sFsaNw2pJw4QOTRZMqedpVE2ayny4aSIDt4/VwvhrmmHTP696pmMyrXeDoPnQZTvXqyKMDB/Nk+ZMmhLbNaj+q3F3yHJPGlWXZkIfXZJ1BLeP5glLQ3Bn8F2fIKjG1K5h9dRra1W/ihc3TcCohPvo5bBiaPZOX6cMviv7MuXaGlYTP3CxcXRTLOttawbWxnVz37JgynJPspxnp7pVnWwcDNYTys+2plpt7A/iUiqmRlliXHWvKK4+D/5rkwLQBssMuQCbbps23Iy4lAlTKcWTlnX8uGGl4Sfoc/lwE5fS40m2a2vfKP3aaHq3kVDMsQisp8toMG6X0Xd3pOUKmRIYNDeXA9MtDoOIbm8X7ZBgceruLYVlYesK1wa7hGNhJbgMqjed9TAufEq8qPmC26XIDavgKFGrbeAM0Gy603ZvKQkTFonLzui7U4Dbwo7RhuIxOkw2Bo22zk2qqz4tawtu18bjTcwxPZsKK8kmrKlxn7pHS2FZaFaKC3deCm6E3dAz8q03hcBuO9cRloBLSZxZDdApYY+QOF3B4vQ9WgjLQrNSbMYawlbwrSXsEIrL0/fYyTk6gKSze6s6Qnd1KYnDtuHne7epa2VrRLj7thSWhU14MI47+L9dgFWzwyjkfbgpnKE7Q1N2DerjeqADw5ZyJRbOz70nkGs2jW+9z/CsN/cLFiDHuHCTmBkvAE0Xf7AZ/gPdfY9Wdb2JDEyMTehvER7UdprG7fFdBD9hAXL/XDUohVC/tvXFf1242a/QmHfduY5VoLII904SB7TIqAs3+/LPFtaaNvY1LEA51oEbNhdsLOjFLgV04iOsJISBUQJ34u67k+ifaZFRF27i4J/7unEj4AoL8LQ9WjhxU+iTJwb0bOKczUU+OnHX5iIMjMiuy7j36J/5lMthY8Lu8+Her30DyV/kMdfDIXnCJlD7W1qukCmBcQMfOrFHopghiD59am8REsMRnj29T0IsjCe1W47sLNLtGDRNs2rFLaAkMz8FO69fa3WoJQEzg+Afh3WMaIdXHNg2sRkopqBtYmz0h0/sacX9zOl9xMFxyqdP65OYyQJuKHt6k0BPRU3YxM0cDj1/4C97t7LOEYBS+c/DOsmfoXNDUzRxswkeC3ETWAPqZF5CnO/p03pLQCHQPXVa72LCcBjXc8MRnWSDY9BZKZBM3My8OSVUhj1nr52t8vO9mtdS/zoiwA19/qqDk7h56n3ilAA3iQxqtVmEkZyeOLWXFER54Xqbk1vBff1hHUXRFoP2bVPQJSBpGjj0ZFsi69G8prqxf4CbQgWl8zwju/IW6slTe0uio3Bg7a24T+klCZPjWHvzrRu4//HHjlKAanoqhbStkNUJ9c99W8rfTeverGak7o6v//3QDomgyedz38FDofa4BTd/f/yUXlKgcNxTp/ZJzJJhPTg/BSjGeAU+31bIaho4iYoi2jTuk6bpkxD/eVjHBG7uN/ed+8964g9m0Qtu7oMW3+P+mG8LOS1qxdBgMfwTCq1pKEJDA8ZO3q2FdcYTiVurpLNfOJcNN+sNbgoQ/mwWvexTKNpaVJVrM0c1cFrUuPcM6ev/PLyjdcQEhTBjCDBm2/BwUMaiXH9bSNPnnt3Qv1PiTSBx4enT+8j1UAzgu6YIK3ERqjMPPNhjp/SSYX0mbuKspq/j67uEvm4WsihpYyeEMbGM5YHnjqMD+jVK4bcc2SWBm/zxbIib+PzMab0TxTq4yUdNQqyPndwzMaqB016+f9toDMXf/4ivJ3Ef3KmBuiCkgVNAn7xbEjcF9V3HBuuNMjtU+wTuKuXVs2f0iURBd5TlCpkSGFQ5GrjMZl6+8x8Uskwwuv7N72OhztGcqWnZorVhNPzy9SXNZpp2N2OJXSMINoNuAqUbn0Y2kxwAVVDrr9BA7cKtWSbYx2PnJ77bBDfXpmnZw2Yuk2bOBO5Ji6SZTHAvXWvHPXelNLhh9ADRFGfipoFZs4LAHTQQF8cNbTfebIZ+iNm/s9XAXTBzuTRhmrhhTjHiG4NOaBMDHDtvpRpVuDJas/dHJdcbeQYalOPrbfbc0MvyVqxR9NNxCxK6ReB+e+S8iLZKs66twRqxOU1fh5qJiJutgZOm2WDNtkgz8zbjS3KoqegnxZsZbbjjDZc0NJvj7sFN07GmrdI0O2H+aiuDQo9T5//fTk7ipjGbhsLgswPcJmWWz4+zmd6y4ObvcT9BH8ccd896IASoaausl60xHO0oTUtm3b8JxV/jxn3SIq/cP1gdJm7uN43V8YZ1s8dpvdEoih6RqbfEaWG7aGr1qDkr5H6bhl/MCnG7tKTYF1rklf1CM7YNd5yFxbqaPU7sU3Dj/xj7wRRq5bSQGPToidGxWJbQfgrpveCG6WS2d8D+g5Gpcb8zYl6CokxcoCFcG/uP+BE34iLN2Ro3MRiKuImbOKtHIRATRs9NNob/OG2JsIww4vjXExclcBM/h84swo3vmrjJH3H22Fsj5iaEQwV3wZxoxARrZEoDCO6Y/t+4WCyL208zlgkpAIPq/tXE5HrT6KvFacljrGUC99pNO1xnCcsVMiUwNiYsApshbEb3PM77wJd2KijFC4wHgsS/3htn1b0gIT7wRUi//miSlQpKoLvx/fHy5+d+mOlkEt324URxfhwcSq/NUKKluGBugKbzmkaQezPcMNe/N85K8SPQPhCjX9sa3Qh0Nw4OcD8/xId7ggS6b6cskU1oMxRdSXbMyoEOazOS6ethgHLhJiFG9OtPJlmbNAkYN4Sq5y/8ONPJgPr3RxMlYPwwdamTccY6Enxpvrv7UztukilCkODGT2yCcSQW1LoF96eTrM11NO9ptXbol1D7XRR8mp2HTFsiDBeb4bfQPLmvdzgorDCV8CcfbubdQLvGoDPbmnAF93sBbsTpSHZ23JOE5vnz9KXFHiTiRjHx0/Slcpym85rGumgRPPzE1mTP+kJzx6BM2+b2cL03oDK/PRBo1EWkaZyHZkkeCuIPEnGjSBkydYnQbxnDYDMKF02rveG98Va2JP6s6df3fjbFqrcUx814ARdz697wuokHLkYOSYyij4RP/LEZ7CitxH7D+3bc+BnjELD7P59s1VtiP//rvfHBA+awwqgYMw31b+YXQQtHGNJmsMgo8og7xB+bEa+eDxXN8U8bqYF4rf2MeEg8N424z++Dm/vvYpzx+xQVPLi6RBrJR19PXiSF+C0fTHAypMgTer1tpAYaqjXFm/xlmwUDbvxEHraGz3Uyzh76amr0ULujLFfIlMDSKGUEHzayT1DsvZHzZMP5hgbpJy2foi1PMVT+Psow5+BpzjanwMQEHdgnKMbnjChc7hUU4xieoJnL4TKCL5U9bzVcxhPq51lwj5onT1suRVs5ZiS4V1iHfMXvKwPHbPNK4kGMJ0AfbgIE58iy3gROl6KtHDNqniRw/XRnM6HMb9oib3ZcNnnhGkkcPt8lIENP9l2bxs16+9h04OYeT/fg/nDsAsEdf1I2jbk4PBj41hIcFOi+PaAx8RbENxaBY8aHvumyTwT3VmdxjXHd7M33ShG3jwXIPeGNCsnKZZyDQZMfjHF/HvNPKES9uLduk7e2Wfz78/ELvSxAzgG9Ht90GTEA3D6/ZF+zv33HEB+Ib1niCQ+rPjYdx0DTt7390sa8JnkD6ngowIj/BbOXezERj2XOTEreeW9kgNt8Y1Mc91yh6bseCjDOQSHnw0RhxgONDxP5739W/fr3YLapiXHDkSqX9y8pE3fTzkMxwAZOU6RmEmPauXiN6nPwrJj4uW8OB0bg4vNScW/ckoqJoVFZMKWfJ/3aSBQEL18hl/VcgskyFbSk15bls0jMFH2+Qk5jMl+n2z6vNNZyzYbNqefZFOL2FXJZ7+/aTJg4z9b086TcN/CyN9PGImRbp9JZbzCnnQf/YFp42liELPFkdUZMWfw77Z6wHzlX2liELL7L/i6NeJLF37aGuPWEdv/9TffLLLFyTab19h9D+KNQTxvnEGBKv7Ydabk3MiWwnpamtLjBEOI/7zma15KGXx9dskfzWtJ46RMBo3EN+l5pYcpyHhrTXOJluuGOZmEXG0ezjWCPpGGiwbZXlmtrnn5M58Y1vHRJmlJpCHWxcQR3hXxh95QWpvTz1FadGtdwss0wmpfrpNA8aciEetkzAyZb06V5TJqf9G5RW5oZfTRP2Czg9rFxaIDt0Lh6uu9mWMveLTPsgRa1BI+LbYbxc3DTZOoy7lenRjVKBVPgJ7X9xzQPcLtYW5rdhX93tTRfx3HjT1nub2nFE/zWxX7CiCPQ9H1sHOIRzcqlhSmLn0BTd7GfMFiUNBn38OEumyfN4aUVT3pnuG/EN5+gMaxV8o6taVwb4wnIA1kw7UjLFTIlMGieKJK6qHIoX0PzdNH3CO6a5nl0LzftkG59WBbn7J0UQdPGeRAUg5HgmtmB0Bp8f2izLmVrOt6hnELztLFMdJDj8zgHStlu3K0Et2YbWHHv3lLeWiEw6MINowlmFOrfLmVrWEJHdGsiNE/YOTajeIEhA0vIpxCtWQY+3Cfv3kJVqZAvzBXXrBGowHTzQ83kHtsM1syRPRoLu8cVfMANowdWlk8hWuPW/7fi3q2FJLk/79nSWTwjiEiygEHkml0ESwiqLAEKJpErqZyxZ0spsn0K0eeGooQ+3LDgYGtAjXcVz+AgQQ3o2dQ5uwi2DYJ5FNk2tobgDimnsA59SssaNyKGLuO6uW9Qhl24Ye9RoLCeLkXuIEY0lYcel3I7fsjn4Jc+pWWNl/3pMvwMNhJ+5yr6SXCsOcKJrplL7Ff2LUW4S7kd3GftubPEgVM8IyZgP2LnWUQs4zGZuBTEQztu7j2sPRhcrplLsG2Ik8xksQlrYsSrs/baWQQRfaMadPz2+fcxvZtKUQzz0FX0U3jCkiSvuEZ61A5jW5sG1ZwK6AHunSRfEH9dhshpEL9becd+ECOgjbuKfgp9173/rSxXyJTAhOZ5SlLRler7mdP6iDIsjgBd0lT+xVnvOa5bNPMEiqOZEHA4KHBaQRjqHrMN4vmePx7QsX6kPMomvf7wTomgyVPa/Sf2kD+TyB8/OanoStB55vTe4uCYC/ddx3ST4WQYn2UmBCiC5/drFc1qOb5Pc6Hvmbj371BfFKYxqnro0WbQ5CntwRA3CeHxU3oncBN0oFRqhdUnTu6VeHsFbhSbUbTFoKubCQHcBB2UoTHmekDFNnFDXdSKthQq0NFN3Dz1ojYuuCuVU0+d2ksUyE3crLf++hFf2qlucdwEYxSbCUyaLkmBZOKmgGXWCkaiZu6Mibtfu3pCdcVILDcPSOJuXa+qeuSkYL1J5NBqzae22pWhrfaRhIk9dlLPxFs3cP/7qC7R4LlrD22fCGbgDqjiQRHP3CUSp6n+zKwaqMUYb3egeZpJilks+HQ0/uC0PomHDP7O9ei3FVDizeFqrAeUaT1S4KqD20siiyMCH/NaBvQIingSIonBpChzn649tIP8maFitx/VNYGbWSx6vAB+gD+YDxms/9OnEWeC62EEgfm2ENz4If6IXXlQe3lwKWPOUdq9RTQ7hISIv5u4+7aqI36GsV8YDWHiZn/p8QLsO2jMdUzclcqpJ9iv4X146E89E28LwU3s02Morjiwndqvff0EbuIHNGDs4M6NRMnexE0BrsdQsD7EKbMoaBHDTZx7+vTeiYcj9uvj7Ndw2vaDf+qRGPimcWtq/mX7t1UHdEjipgDX4zOI48RzEzeK5P86PBiLgFL4Xcd1TeAmDj95Su8IN1RsEzd5CMp17fA+3H9C98RbTvICYwB4y49dsl8bdVCnBgnc0NuhuWvl9ov2bZ140KQAh+IerGsVyWdmMQP9m71IHtyRlitkSmB8N05nuDnqG4rfrbFOd1gZZnMp3/PCstD0PVg3Ztc33wnD5qGpFKOpCopbvHWDP6JjAuUYg2304JdTEt/b05z6+DeBcCE6K7d8GDBqTCYG/64NFowNN+wS2BOadfPT9GWJ74RhIaANhMHK4foSuCcuiho8YRHQHW82YNKc+ujXMdwfjE/ghonBemu65H1fTEmIawruTyZHatvolZjUanDD+qDJExs+e7mwnEzcsAJ0gycsKQQKTdxQ6R/+OmCboUh88wcTIoXyOG7+XePmPHG1YIw+hrs/C9g4GOKRsEBM3C/9DAspaNzTbAwTNywMzZ6CHXTfZ5MTuKcuXqMe+mpadF782xwJjxgh/65pnggxTjdEKgX3p5MjthrsJ1PMlPPDvoCFgcGWe3no7IT6M2w13XQKuwe2jdnfQTMwODBw3fzB+ATDj7+z3rpni+s0xTVZD9h6mj1FEyPrFkcEvld/KWIhse4v/TQ70QvGfdJin6wD99HETTOwZvcFuCckGH4rDNwPfzU10YQMbvxHs6cYZfC1gZtfD1hIyyPq7Ys/zUrg/mHa0kj3iv3CfTRxs7/YZxj+e+uHExMMP/z9lg8nRIrcj3w9VfazifvBL6bK/sc+GjtffTmpOEUZeGg+aRZSwHKamcDNiAfN+iI+wd4z+2lQu7738yLc+LHJ8CO+8O9akfuxr6clRjWAm/umVaFp1v7coFYDjzEFsNEwzkE8N3FDYSbO6M8mTpm4icNxQVHW1cRNHiJ+bwr3NMKXJhOUnz341dRIPRyWE4QEEzesRJ2PpoQsJ7NnENYt/hR8NuysSYl+GujfWlx1R1qukCmB0fXvEsNj9smP05ZKwCGJ2wwGCqqvzA64x3GzaZLSgQ7apK2xEP+iKGJjPvXd9MQsEm1PfjtDEgEd+yQ7mzGPhFkTzBBwURMJYiQcsNztwU2AwgiENtzkK6i+4Ea11UYFxZ7+froEaIo1PZfDNJIk/yHkCDabEQygxYPlzk8mO5sA9Xrf82ky0Wvcd34yURLPsz/MTMz00PbM9zMkQBMoXJRKiikSDsJzmjprGvNV+BmB1aXWSwDRis8EPFsjZ4B7kuAmMNmooNhzQ2ZKoIMl4qJUkjQo6Ji5Q1JxMTH42RYPbgI2dFhN53U1oPL7JIDnf5zlZPi9EP4MtoVZXGvjeoJ5JuvlOp24w4SjKb+mgVPT3cHvakAliHP9L/44y8nwo5jg/lMw2eYW6aSBH3Ff8Dmb4YfPDZkh95ekYtPRwZ91QmTMgKuRkyIAf8PvXAw/ilCEHsFtFtfaKD5IluwD9oPNoFI/88PMDLiDe8H+dDGJiEfs74E/z5KixWYUoTB2wGwW19qgnPOQRdx56js7buIscYv4BcXahjuIkcF686DmanrF95nFAk3fxUx8vaBQGFLQ8BmhYTOK64/Gzpc4//i3063HBNc0PcJt4zTQyK4LEB4QXHpiwZ7dql4bWuhkJvKwCyNtR1qOtVQC89FzNc1RT+N0HjNuobzmt82HKTrPQnnC0MOHbIbz87TjmmujnZMCC2VUP6YFqkmtSl5BMa6tW7MaXjE8jlm1nnkkbmVYgg2D0nxrCcuCoVQ+pVb9eeieeHGPWyC9KD7RQBL4aua/eD6P4oL5MT7cPMHw1ukXz30LMC1UM+qvtQYUbZ+MXyDf67uKVEwolxs2q+8sw9niSZrhXT7cJHDWwKf8LJjGLpR18OIet1B6nGxzP7QxVgDctuFs8STNG5s03IwX0G+m3JgWCB4fm459hEyHq9jTRT+49cBGm1GcM5wuPvTONGCw3vrNqxvTAnlb42PT4UuHdG7kHedAAoeRhG+6jGTH/ffFE2CAyTcSIMC0QGi8PjYd5+ErOt9YBOII5/H5AG8pKJ58xxAf+HlhOPjSjWmhJGkfm45ro5fMfANsFv28afksNkDQNOIoQzqz4NZvU9yYFqotW7d72XTEE3ppfGMRKPp5I/eZx3fJW3xTkJYLiQP6a/0dYbk3MiWwNJorgVK/VnUZQUm/wnQZTyrm63b7ubaJA/sxpR8TYEq/tjRadXCM95DouM3b0tcp/dq2p1Kmt2TBvZ3zbPMWRCW6v6nrtC0VE9eedm2yjlu3p+IOMG3LcO8y3JMM15Z23zgF59lWGuudcZ2y3Dd8IAvuLPcuy15J3Zdyben3LS2e4B+cx5zq/H+LJ9tLLZ6kXVuAOz0WZjlXNkzbMsWTtOuXc23dlop7cwa/zHZt29L9LcM+Cc6Vwb8zxpMdablCpgRGE6LP9mpTT+3l6HiPnwPmh0ucD0OHhAYuUxsobrAdoAPv3daNiV4tut73apuO29WpX3RMXWGI+Giee7apJ43FPponLBKUWvlMH24aJ9M63zkH4ntpx3RvXlNo3y7r26quqlWlgpfmCYuExlMfbvrb9sqIO+2ecD9oLPTRPGl2ZL19dEkaMmER7J2Guw24U3y3bd3UPcDncP99NE+a3GmspHnQZTTq0siaDVP6MWnn4fr5PBcrEePNHrhp1nQZjaP4UZoP8NYqNVa0rSf7wNc3yefwhtdsvI0brD5w4y8uw896NKuV6pcB7nQfAFcabvaTi92HwaKsVbl8otk9btC3e7aomen+ZonffJZHuF2OoaHW1EiLG/5fu2oFL27iKHkg1b9lLdNjXN82ftzcNxrQXSw5jDhRNwU3zb3sgyzrvSMtV8iUwGCHuBSicV6670k+sAdsRtc5NF7YIWeGQm42auKFoXjXxfu2cQaDC+gqL5sn7BVXcQFbAYVVaJ6umTQUSyiVEsRhFdmMIInaKawVLUBnGh3uGjed8U7c+7RW5ULcrhkSsEOQnIfdAsvDNYvkwI4NhG3C/20W0DKhCeY7qdWCe98AN0wwVzCAlQUDALaKqyg6snsT1bJuFXllbrJjtBEEYXfB7kFx2GYkU02v/0s/OxUSJsRF+4V+4sF9Xr9WwqaDLeQqig7v2ljYE4d1ayTsK5tRNPMVBmwq2C82o3hBPVlw/8GNG79Ow83vcx7o8y7lX4QFeX2NUJ9rlg7Xw89htbiUrVkX6Nes0/n9gjU1DZzg1bhdyr9QtMGNSrKrmDu0S0NJKtx/1ywd8HJ93Jf+Dtz44Zl77ix+ef4+6bgv2reNc+QBFG3YSLCzXMUcbBeKj4M6NZT/2ww22xHdGwurxaVszb6Hfk0cuHAfu58QPy7ZP8BNXHHhPnvvgMYNrdhVzKEgTXwjzrlmAMEmZf8iDAzF2GbE2bMZG1E2T1g9LtzavznGNaqB/cj5YJW5RkxAp4bdBX7XSA/y0YAeTYRWDn3cZjw0QxuPxwwr7tBPLkzBTf6CVeYqQnkI0yypHWW5QqYERiK/9/juCbokMxUeOKGHKMNidx3bLZGACTr/Pqpr1ENz6X6tZeZM3F1wnov2aSPKuZq+h6PHgyZ/JBBqxWYC3T8O66AqGXTJzo2rR4rNbPT7PLj1+e8UmnVx3Gy2W47qHCnaXrRvq+Ap0cBNsNF0cnoNzgil7OO4D+7UMJq/QOAIcBd/M9WpUfVIsZnAet8J3RMBipkhD5zYPVJYha7cur6Ju6yojWtFWwoonsxN3CR6rXy8T/v6MrckHjTZ4BRKzOvACNBQJ03aYYdG1SLcJLL7T+iRCFA8xbHeBHAMujJDDeOGMi/KzyiWYyRWaNRx3OD7y947y+wfrYBOoDJxH9Chgfw7RoCG7m7iJpFqxWYSORTOehbc95/YPaL43zagi2pn4Oa8Nx7RSQpnXYjs0z6JmwJWKx/zVMfsimK4wwCuZ5+A+6b+Sdx8/q0DAsVmcD1wYo/EDBz+/sAJ3eW6MGjcZuEguPt3ls/RiZGCPl6Ia9w81WK85TzXgpv7pAshEsvNR3ZOvHml4GL9MPwAfzCf7vEb7oMei4A/dLDgxg8p+HWCwU9N3BRoWvmYnisK43iSKhMmHq18zH65ZUCXhEI0hdUdR3eN4e6uGthwH9+jCHf/zvLAYeJG8ZqCH6PgIy7EcRM3iB/7tg8eUJgVdcE+Sdw89euComGNihKnzIe61vWqqDuPCXDnh7jNtxLEF+KjHudA3DQLHuIr8Yp4i52ye0uJw3kG7tN2byH0ZYw4Tjw3cRM/LwkLivrVK4ofm7jJHxo358W/zdk9xHPyUZXwd68/vGOi4AH3dYd1iOj7UKwpkE3c5BMKVIwZRxftl8TN+IrLwuKSPHb70V0SD3XEda2QvSMtV8iUwOhAv+TVEQm6JI2JF74yPPpe8PLXRyWaqhjvf9VboyPaIZRAxAXj3yTyHS6d7po5Qhc9zIz49438EVVUzRyBJYWA5HqD/TF23ir1z3fHRSOlL351pB33yyOi72mveGNUgp7KNV87aGzUcHb/F1OledDEjVAY4n0YjWDPGrRD/ghl8dkfAkYALCmbgNm4+avUP94ZK39mXPbFr4xINBjTUBnH/bc3R6upi0zcW9W1b4+JxMse/HKqKC2buB/5epqIJWI0jj7zw4xi3yXzNTdNgHT9YzQ6Iixosj9oYL4uxE3DILhNuiSNuxe9MiLqabjyrdFqikFPZWT5398eGzVvQr01lX/B99i30yPFaxqjn/xuegI3as9PfBtQq2F3/dOCG7rmNYPGRLjBt9iCm+vRzYRXDxqtJhm4OS/XDxtHU29NBV3wgYemWYxmXyijxXCHTcyags/5OK+Jm88HBwb746KXRySEHPn7Ra+OjBTnrx40JkFP5bz/eHessHEwRhagFRZvbwAf66ub5r+fskQ99s20BG7uE/cLg93FfTTZNjToX/VWsN6sJ+ttNnTjN/y7Vm7nPBMsuBEehI2D4Z/4qYn76R9mqC8nBo2ZsF9Y13iviKbpPxgy4Ngv7BtzdD5x5q9vBuuN/4JvoQX3xa+OiJTbuW+mwCq42fe6YRhmE3Ehjpu4QfxArwlD9BPqvIkbBpJm7iHWe81bYxIsoamL16q/vjEqWI+t29SFr4xMNKITX8CtlduJm6aWEvGVOKtp8NCqicPxVhDNstPaZ8Rx4rmJm/ipBXqhc+OXJm7yB/FYn/fCl4cn2JLE80tfHRlJJhCXTCVxcN80eELEIoIxx0gGEzd5Bh0tDPr4A58ncdN8fXfIgGMMxZVvjk7I1nBfyX872nKFTAmMWSSwNlwKuiRCZja42BhsGByJTnxofDYj+OhgCO3Q1S/GMWxMApiLmhjgXafeHjHXyQ4g0MCggCFCArEZG4bCic3mw/1QBtwUDgTCJ7+b4cT99si5kljeGTnXyQ4gIdEZD2MF/K4O++d/nCkb/UkHNXFrxvUmcZF4oIa7KJXMPhEhz5HznOwAxP0QjGQ2BvhtBuOBQElC0LOAbLiZHyS4v/Thni6JnITh0soisBGg+b9ZyMYTMDRPZmMQwG3GXAsoziTgx7+xrzcB9KFw/gvJ09UT+Pi30+Q8FJbm3CZt4GDmBeMFmONjM64LATsCuUvIjnXhc/g87rMLN8WwXm8n7m+myX2D7m7OP9JG4mYdZT0dzCXm9CDeB/3WJdAHRRbc3F9d+JmGXzwQjkUAv6sJ84nvpksix+/MOULaeEBh5hIPWC7l+kDINhAoZP/ajP1D3GI/PeLDHfr3Qx7cTxNHNoJ7lpMJCluLOEGh5xKphE35zoh5EnfeHmEfn0G8Yv8Tv3Ss8+ImRrtwfz9D1oG4aj5gaqMwhl7NurtEKonrg0bMlcIZ2rPNKB4ZxUG+eCjEZjMeUtNwMwqAGTIDf5zlZLBSYDKTa0dajn5dAnPNIIj/3NcEpod90eTlE+aiYl+yekPiacZ8K0Ew8WHCF3lq5wkyDZNrdLc2PodX0z4xMD5r2ZqNiacC8ymZYPL9VDeFlWDw3dTFasjUpSmYFqvC5VX8x0xeIg1zrrkIKnzSWL4W2qwbN0+b3A/fWoL7+ymL1dCZ/k383eTFasFKv8w9by34SsCVxDFmpzA4z0ebJkhSZH/nmPuhDdyuWUPaKNDNtx423LyidiVxbOjMgObpmrWDkUzxoyy+Oy6Ffg0mHx7tS4d3a+QdiwDNF9yuWTsY9wv6dVqsAJNPsTrAtETeWPrILxxDceEbi8B9xb9/muHeTxRzI2evkPX04p6yWM1wFLtFxyxJZdOBmwGavrEIKDUvW7PJOxaBfU3S9MUTjdv1EFqEabF8xeUj3PBWlyLUtw/Yb8x10W9MXUUR/pTm32DyjTKQYyYvVhXK5vlxT1ksDyOu2V0YcZnr8uEmb0EbT4snxN00fbfStNwbmRKYqwFKW37ZMlHfhvMceWWiHgnneeQYN6tJG70B+amY0o8JMGW4trw03MFnpU2n5vrLpZyLn+dnwpRybRmOYQQ9mNJwc560+8vPWc+0Y9LWUtYo5fr5brtcpvUuk7regZ/4j0GTKM13+XnafWN5OCavFNZb7m+af2e4NjkmZY0Ed14ZZ6NvyTCV1p5Ljyf4B/HElIJIYMpP97lyOzCeCO78LHs8w37KS7+2YF/++nsrx+XnpftJxniSJVbkZ7hvadcfHJfu3/mZ4klOouD/Wzuwo51loo0n0QM7NUg9BuVbl4ijfE6nhqJX4hK50+wAGBm6QctV6MCg0tpNPkwHdCzecGc7hjdJrg577IBODVT1SuWdIncY7CkaLjnWibtsnjTeZlrvFNxcO4q1LjFEwd2xgapasZyXdoj2iWZK+YIAzLV0H2ggn+mLFxwDA84lhojxWeD20Y9504b6tw8TwRtmhO/aAkwNpZHRF+g4plvTml6aJ828VSuUkyZllyEKih6XD1PZELdvD0S4O9T34sZPYLb43kzSFMt66+ZZm3HdXL8PEzAOkFiRjnu/DvW9yZVj8EuXqKBuqq5aMV/O5TLeJKPWnIab+5EFN/vXlzgD5lO1hLabORYBhgx7xWUwZ4hLPv+Whv1O+Hca7gaC2yWuqnHD4NOaeTYj/qGT5fNdGoxpBvYdo4kGafHkwE4NZC+5REoD3A2EcehiU2KMFYCm71snGG2QOrLkuR1puUKmBAaN06W0TKCE/YK4IkKPNsOJTtilmbAotAihaXSBXxx24v/toPZWJVoCCuJ2CHOdtedOzqQBcwShS2ieLll1Cp09WteVjYngmc3ooEfVl42iRQgTuCvkC+0a49rScMOycCnowmSh8GDzuWaNkFQoPGBtaAaXaVzTybu2kKeRKx24YQtomicCdjYF3TIhblhpsJpcyQ6GECwEikKXQjRMC7DDkoHS7qJUolrN0xhigDaDDXPp/oEA5xUHtrUq6AruQwLc0GpduLkXsD5gm7mKZ9Ya3JyDc7kU4DXL7qpD2lkLzMox3Jcf0NaqoMvvXXlw+4AFskdLOa/NYLbA7qKwgAFoM2anUDjBxuE6bUYRANuEz7vyYDtu1vfyAwIfuuyANs45UPw+9411cCXp0/cIfKgfM1kc8zZIKhRpsAXP3MuOW+5F35ZyfxHZtOHGn68IhVpZd9eoBtYb3OwX16gG/BW/ZR6LZnCZtkvL2lJ4wGpxjWqgSIVNRRwAd54L94EB7kv2a+sc1cC+Zn/DxnGNauCaYBviIzDLbMZsFJIvhZFWOTeNOIsPgVvigQU3cY84EuBu4xzV8NeD2kk8PXHX5gkBVm3EXFhSsBN5aLEZM6QO7dJIHowR1rQZD0OavXj1IR2suOOx/WIPbq6N/MWUYFPIVNsJnp/9VpYrZEpg3OyrDm6XuMm8pSAQaMOBUQG1BUKeMDDGXO9iJGmevAiAWvmY4oMZAaaq8X7tG0iQw0icMuPEeIrgqUEHbjb6VQe1T8wRqWPgZsZAcyNpEFAuPaBtNMsDxWJzIBgJgMTLbAyMGQLH9CyOGyPh6Kc5At0FFty8ZdIBkMBKwKhh4q5SPiqIMKjfLYykAW7ug1biZSaNORCMB0YUxrViM29AjunZNIGbBE5RhVFgQVVNqEjXrxrNqmE9rga3Mf+kduXy8u8aN5RSM2lUzM+TeTZaiZfZJ6gTm7gJclqxmTcXx/ZO4uZNzaHhrBoKWgpkEzfFtZ75IrgPaZ+Yf8JTmCSc8APwNzNpcF7WmwF9GMrcPFGbuAlyWrGZ/zP7wsRN0aRn1RCgmcth4ubz9ewUcOEP5vwTruPqQ9tFuAn0ZtLgvARu1gcjKTDUMG78+nF9mkaKzQygY/3NFw7cJ61Izv27ZP/keqN2fn6/wE8kkVtw4zest36D9Je9W1nVr5n3oWd5QGE238zx6/iFHvTI7Bcb7j12riOzj+SzK5eTggc/jBv7C38twt1O/Lk47nwpYPXXJefu3Soxlwjc7B/9hpTioV/b+gncR/dsEs0iQYn6pN2aJ96o7bZTbdW/R4i7UjmJU+aDCPHswn2LcOMn5jgH4gv/rr+iI+mbc4mIU+fv00riLUaxtm+7pPo18Vo/NBLHzfEZutgj/mO8uaGgNx9EKN71A60ukInXcSOe8+/lQtwUvAn1a3D3axWNz6AgIn+YuI/s3jga+4Gv8QBhvgmk2NNK6uSxKyy4eSjQD4Y70nKFTAmMxrS/DByeYH/QCHrGs78I6wFhrjOfHyYqoHGjae+KN0YK7RiDOmk2hQaMpWmRQjQCbjZVY2i1WniPRrcbBo9P6IPQSAhlVjd8njtwWKJxdOmaTerM5wLc2NnPF6jZRkMcYnl/e2NURDuEOmlqQMEoePSbaeqjUCEaIbSXhhbHrdkDWnSSBsR/vZ/EDfsEKjtGY+U5LxaolSbutZvUmc//EtE8z36xQM0yWFnghu4OqwW7cfA40UAphnt7oBir2Syv/1KoBv48O4Eb9gCiehjsrn++OzapIr1ojTr/pQA3jaVnvzAs0WC6bN0m9efnf4nokue+WJBgZW3Ysk1dNWhMpL6L+jfqxCbup76fESlEw1aAPmnipjn39o8DdXNYG9dZcMNS+svAAvkzbISzni9IsFZogP3zc79Ejd7gNllZnBeavmaFoE6eUO3erkQsUCtEw6qD5WTiphH0tlCVnUZW6Mcmbj7/3BeHyZ9hAbLnzEZdroPr4eeCe2BBQrWb8/797TGiDI3d/tHERMMr+GDFvBWyQt4dOVfW35xUz33iujEaWa95K4kbtfNzBwZ+gh/gDyZu03/wK5v6NX6odaYQ2TTZkuB+8cfZkdIyLCho5CbuIdOXino4hv4TYwHww7ixv85+IfAT2E1/fm6Y+HNx3FvUOS8UiE4cdsHLwxNsMnBDE9ZK4ggVon5t4n7p50IR2MVgpcG+M5lLP81YJpRoDFYaccoUISWegQkjXuDHZmM08QXf0IrzUMtN1W7iFJ+llcQRtLSpXxOvEdfEiOPEcxM3ze7EfwxWGvRwcwwFjclnvTBM8gnxmfUmXseNeE4+Who2TF/yyoik+jW4B0+IlMTJG+QPEzdCxzBqMejjMMVM5hLN+ficZqdd9vrIBG6EUs98LsC9Iy1XyJTAkDB3UROZ+0FCJHi7qHJsMhIOneFaft5mzNrAEUiyLtP0XOiHLmoigY2ASiBzsTEQySMhMmPCxTYi+PB5bJg3HcreGLNN0nCjCkwghH7ooviRyEgsbwyb46QmMlOBhMKMCR0UbbiZR8E5XvfhDim3UH5d9tJPsyXxPOPBDftpzJyVUli4WCSwBqClwnxxKXtDS2XeDoWcS5Fc8GrcDsowRlAlkUPTdWnNUJhSWA4qmONkkTDr5O3hc1TBrGVOthFBk/UhAVPMpq23z0/4fc7DOrhE/FCIJkAzXsDFIpG9VjBHEpCLbcS6PPN9QCt1KanH/cNFLddKyyTyZ7+f6cQNZoT3wO1ikfBwBG4KZ7MAj+PWNF6Xknp8nX3rTWwjkUOvdYkP4iPst3dHznMyafD7NwoKpcByKWTLfJvvA9o0NF4fbuKJz7/fYK+t2SgFsU25HoONyKwoCjmXcn0QIwqlENdzjmy4KWCJXy94cQfx2xdP3iqYK3sN1XWXAjzsJ2aNMRbBJQpKPnptWKE8+LjETMkP0N0piFwK8Bo3On8+P8FnmSEDbdyFG3ZnGvuttC1Hvy6B6WrcZbwdSVO/5hg2uU/AjIBBAPYpw1KN85SWxtcfPmuFGu6huerr0oP6fLgpdHzKsBQUBGCfOi50SZ520jCR5FOvbfbyxFNh4phZy6Uo8inDcl0EFdcMFYxkwVsuV/ERx5TlnrhmusTPw9sIV3DGKJgJ4q4ZKprmSZBLU7ZmnUak0K+5dlfwiuMmGfiO46kR3K5ZJBhPehPnr0pdS3w3Tf0a3Gk6f5yHdfKNRcBvwe0bi8B1j5u/MoMPLE+lX3OONGbX8BC3ayYTRpxYkjIWAT/Dn7LEuDT6NcfYeuTMY/Bb31gE3rqB2zcWgX3N8E/2lM/wfz2s0YeJpmjveWYtl/X07V/esi5es9E7zoA4yv3IEk/S6NfDZ60QTaq084DbN86Bt0Cst893yVs8rKXinrU8Vb+vNC33RqYE5hNMlJ9XzE/dCJwj7Zgq5fNV5Qr5qTQ4+bzSwpR2ngr5UX+Py2iAZLR5GoUxOJf/86plwlTO2QQYnSfDGvE9L9jT6InZMOWXCqYsfkKyoFnWx7IoiZ+k3ZMsmGD1pH1WeY07JdkFvluuFDCl35Msa8Q6I/eRlqSrVShXKpiqZbz+tPuGX+Pftkb2kq6B7IHS8JMMe4k4wh63NYT/Fp/HZ2WKpynHELerlM+X/3ZUPKmW4frTjgE3Mg2lhWlHWq6QKYEhhuaz/t2aqD92aeRN5P27N1a9mtfy0jz5HJwFtoXLEKmElaOb9GzGOWju8h0TYGoiTY5+3E2EnulikGjcBHrdiOwSqfQJ+GEEXWi+qevdvbE6uHMjbwFyRPcm0sTrEvvEGIRWqXy+l3ZIoyTNez5MBFxo5WnrzTlgkvkKENYb3RQXEyPA3VhwH+QQn9RN3zQz+zCR4A7q2DCDnzSWplJfIkfgkCZeH83zsC7BeutGZJvRJEpTrQ8TOBDgPKKbXZwwjgm6qA83n8M9dolPYod0aSiB3iWaidFMTFOwDzcFHAKcaf7NddFUamOkxe8JTfYu8UndUMt6Iw7qMmIJatM+TPjrIV0aZYonxABfAcIxxAFTiylu3DPW24cbZhjMHR8m4gPxLUs8gblXJQU3TCKXiKNmsKJ/5ItxNMUyMM6HiXiMr/nOgx3RvbHkCl9xAW6YW9xjl0HG4GHVh4m81adlbe96UxD59shvYblCpgRGd71LsZjudFgk0FgvdXRtQ8mF9QOLAoFBWwLGUVCpxWAu2ObNECAQCMOgX9qUaCHGXPfHDrKheMVHgWWzk3ZtLomHbvzLQ7qjaVCg6bIX3Ed0tuKGUqnVU6H82pRoCcjXHx4IK9IV39GB+9o/dpAiDPYKAmc2g+IOGwP2g4vKTpf9sb2aClsBwURb4QAFXNOBoR/a5uSQ6P8VrjdUb4oxm11zCMywckJnJyja7LjeTSWAwZKBcWAzAjP0RsHdv5P1zQVUUO1nfz2wrVWJlsR9/REBblgfFL923B3CuUV11FEOxWLYCrAaYCXB8LAZBSOsGOyGIzpbcTOv5LKQDgyV0zYJG9xa8JSRAJp1Yxo4YAexr1yKxfgtooMcx/2xGcEd9hrG59oKHvzsipB+DcvENt+H68XPMNbBNaoByjD7GnE+/MFmsEiYpA0b55pD7bhJptCONW7bGxf8We8PWD22UQ3sC34ff4NF5hrV8NeDAj+DTQT7zGYkXeaokBCvPbSD9RgEGU/Z3Y+b+MH4iQB3G4kvNtzsD3Djn65RDbBFuX+w+/R9No3ECxWeuHPdYR2tVHbiLHEeI/7aCkzuq2aCwuKzPbASP4n/xFNhrzpGNbBPYBsRn10jJshH/drWkwfIfzhwU+SSJwS3RTg2zkzEyD8u3NwvcJPHXKMauG4t1rujLFfIlMC4gQO6N1HljURetXzZYhUqc0RMaiJVKslNK/GSzGxP22wmiiGsZZ0q1s1JwdSxUZCUCBgHdypOp8PY+FplmI1OYDQDNE8eVOoR7g4NEgUIuLk2rWhLcG4dKsAWw922buS8PCXZNie4taosAeOQzsmhcARaTSMF94CeTRK4KxvrzVOUWYAwxRQqbBHuWtbZBnu2rhPNswH3rjbcjapHlGEKQ4JHAneNCuoPMRopG93EzdNlvMBh+FY9owAxcZPE21pwMxNDB5tmtSqr3S1BhYFjBO9gzfITar0YCTk+WwM6q0m9JWAPMHCbBQjnpejUCsJdm9VIKGRjJDk9vA38JGvbWyRddMkbEAtuPj/+xnJAj8aJxMJ1sF+1MTTMLEACNflGsj66OLC93WB947htc2u4T7ro4v5xH81puvUM3PiDXjNt+E3/WEHJg0hDC27eEGnlY/xTjxGIG/6s59kEMSGJGwX27sVwN0rgZn9pNWqM/WfDfWSPxtF4AXA3qmFZ784No68viAe2B5pdYriJCTqWxa1V/SqqZ7NaEW7e3JhfxxPPDuhYtN5HdOVeJ3Hj3xo3D1DmjCt+QpzVX6/HY1nciNfEbcFdo6J1ThCzxvT4fvIBbwxN3OSP+CBA3pKYb4rKh/5dJsTdt01d1cSKu6E8YGEdGlZXna24a0ejICie/tC2rvWtHQ+H+rOPsOCmIEoblvdbWK6QKYHRLHbhqyPUJqNzcM2mrUL/hB2CMBcUP7MJlc5xVJ1hIWjFZlNBGIOlohkfiBnahAWHzVyubhwc0A6/mrRIlLTNXsa5Kzao80KaJx3vF74yItE4SoMgNGbYIeCDCmqybfh36JK6cQ1Ks6nEi732y5yIOQErBWFEG1vjhvfGR4yquz9Liu/BKoDeG/x5vbrgpeEJ3DRkQqmE1QM+rsFUmt66fbu6YfC4iHZ4zaDR1ibNNwrmRrTDx76dpj6wCCLS2Kbpkmij3PnJ5ATuBSs3qnNCOjCKtucPTOKGZXbui8OFIQE74Kznh0lToIn7pg/GiwItdu2gMdLMaNpbw+cKkwyDUvu+RRBxZOHKiC4JK+3fH01K4IY1A9UXlgVsBHzGpN7SeAsNnkbXAPcvCcVmznvLhxMiBfTr3h6rxsxN4n5n5DyhYGMwqWDAmDZ67spIAR2WzK0fTkzg5vM1PZUGRXzGpIJyHdBqaZznOK7TZAlx3ts+mqh+DCnuKB/bmkvfGzU/EkyF2TNoeBL32JAqjsGQgtLM/Yzb4hA36yhjEV4cHo0R0Ibf4D804IMbX19gwX3Hx5MiXZzr3y3ao3HDnxGExGDavFmQFHKkyRc/w2ClEVtM3Owv7ju4YTfhDzbc7NcFITOIY+avTOK+89PJETPohvfHWRtHiR+a3cZIBBvrEMV54hFGg+r1749LMDiJZ1CX+XfYZIxqWGfD/fIIUf7GznupQM1bUbzBlrMSZ4m32E2Dx1vZe8TrR0JBSRiDNtYhTe4oR2uCBOrrJm4Z1fDcL5JPYNMxJsNs6KbRmXw0Z3nQxHzewAI1x4L7vi+mRAro+KRNCw5BTS2ECe395aGF1mb3v70ZKFvT8Iu6uYkbdiz0a4Q1d6TlCpkSGNRMF/uFYgBqGkqlLqoc95xgQkH0RehYNkM5Fwf2UfxQaA3oqW46HV3xBKZXfp7tZL/Qfc88DxSkXaJqgnvITNkwXJ8T95CZgZS9h+KHsjUFyHM/2FW0MQoOEsErQwud7BfYDtCcv5q4SJRrbUYshiZIgNKzeay4f5gpAfqFIe71fnfUPEk8zw1x4yZAkRBfHVqYSKpx9tObBYXq68mLnOwucLOWJISPfLiHzJRE5/OTwaPmR/RUlxGgoI4zR8fF2iGIkkwQn3Oxu8CN2jgJmNkfbtzBGvowfTBmvhRWPl+ChQFVH+qwi7XD9UCrhQrsY3fxORREgx1K0/H19uFmlhKFLOdzjdJgls03UxYLLpcIK/7DdeFPPnYTWPBLqMUuY+/i3z7cKHLz4PDckFlO3LBxSOTsOxdu9isUdApQl9I0xvpQEFHYOnH/GOCGgu+yT8cvkHjLNbpww/78cuIi9ebwOU62EfGRBA4tHtqzDzcF0aDhc924f5olcdCHO4i362S/uMQemcny+YRFMhbBxTYiH70ydLY8sCGy6TLyBPnCN/aDB1Hyjs9PmAWGQvgLHtzcD1+e+C0sR78ugU320EV1IltWzU8Hhio5ZdFqrzLs5EWrJTj5lGEJGLOWrs2EKY3mCaY1KXRgzkMi8CmsklhImubTurnxSODmwKkkplWp1wZuHz1ZHzM1Bbemefpojhp3+lqukqFiaWuZ9sACboZluWYE6cQCblfhLLi3bpPry4LJR4cOMK1SKQQpOQeFjmvWDkbBvHj1BgnUPponCT+L72a5tjSmEZ/D5/nGIrDOrLdvLALXPW3Rmmy40/buwtWpbBzOM2PJGu9YBGZFLU0Zi4CfsU+yxBPfeTQmn5acPs/MpWu9YxF4e7Zk7cbEEMO44WYMvbS93S6OaVWq+jWY9ORe93kC3L64w1s3/MRXOINb1juDn6TRryctWK2a1KycegyFk28sAm/deIPl813yFpiz7Dm+st1RlnsjUwKzNVTGjX6H1GOqpR9Tp0oFVb1SOW/w5WtRGkbrVitfOpiqpR9j9nOYRvACdxrNEzw+8ckiTOV/NaYs601DJc2gPnZI9rWsmO3aMh3j/yxGlNesVM7Lsiha7wz3N4MPZNkD9VLuG+yKmpXKp9I8s+LOhinL3vXjBi/rnUYtzXR/Ze/umHhCT0jNKuUSkhn/1z1XKvckwzHsx2BvZsBdSvEkC25TKsA04h+4bYSH/9O+zHBt9aplw+0T2KXvhV6a0rq/O9JyhUwJDN0SlwX6IE2l4cyXyOmupwGThkbfMbpZ0GXo2NB0eGwvO3sAY3PT4OjDXSbETde+jy4JJhoKbQwpbceGuH3UPPSOEJ47prcbNwGAhlLftQnuXk2DhscU3K7GvDju8mGjosuk+bBOZS8mGt1QGD7Wc23686Cx+hI59wyNGRfTCOP6y+WXlcZil9GcR5OezwcIuqjs+q4NO6ZXM6E7+xI51966frWoedRmMDXK5edFejM2k6by+lVlrVwGDqjFvmsLcDcVar2pNWYeA63WxdjB8A/W28WQ0gwoaPq+taSQYx1916Yx0fDpS+QcA60W/R6X0dCPHo/WybFZ0ORc3YubfcZTtu88GhP7wPdWhmOIAy7mC0YcoRnWt040CkPT9+25yiFu7psvkYOJRmxfUcQxTWtVlqZ1lwU5oKw6xuOXNJRD0/etN4UccZl9noa7X7t63uKCNYSMQSOzy3Szvm+9GU9AQ7tvz/EAfniOfv3/r0E/PduhRAvVkEQHjfW2o7okuv4xBMU0ffuOY7paA2vXJjVEDA6DDmeTi6favenIzvJn6IQ2RVec6a5ju0mCpkPepegKJbVl3SpSiQtuyywZAoqmQd9xdFfrk12XJtUj3NAPbXNEeMK8eUCAG/omyts2SiW4CWBsGATPbIYqNN3/sAj+fXRXK24w6xkUtztwU+BcHNGY2yVE7jAC260hbuiyzImw4b7zmG4SwCj4LooJvsUNijeJniIGH7DN7oEqz0wi7N9HdbUmMhhJRerX7azMJgrCW4/qIn8miMdZEHFK5Z3HdBXcFHxawdw0BOIorGD33OnAjW/j44L76C4JMUQdwDX9+vLwnKaRAPFF7KieTYV1YRqfz3oTeEnAnMtmUNS5Lo6789hu1tEBFHEkC+zWAV2sCZgArunXl+3f1sps4j7hixjFJSwxG27uO2wjCh6XmjyCgfgR94XrtOFmVotOOrcM6Gx9A4A/x1WNbQyhAHeXxF6PG/vr9mO6it9SYLpGByAsyYMa+xc/sY08oFjQ9O2bj+xiLRxgRurPuGi/NlamDfuZtdSziWwPUODmnhAnKFRdowMQToXZSLzET2xvw4mzerzAzUd2tr51gInK+AktZks8N424r3HjIzBKE7jLlJE9wDVSqF57iJ3Kfs7eOwuNn0L17uPsuGGPnRTSt2/q39k68oA8o+nXiLHaHqAC3N3kzzxA2EY1aNxa9HZHWa6QKaFRjZvGXtWUaQyZAtesFU2VY6S0SV/EeP2nnZEnCVsyiE9yJDDaZlpwDr6iinDXrJSgaAe4i/j+bMzylgTVuGYRboKeDXftKhUiarm8yrY4ctWKZSPcbLwGltkQFcrlFUskTWpZcJcJ5r8Uw20JmODWysfgZupwEnd5VTHCnW8tGkg6mr6Isq9Wko0bATD+VUHjmum4eYKyz7apEOGu4cRdIXrzJ35iSWL8Xhy3SSkV3GWL4+Ytn+kC/L1RbK6E4HbMttEFJZ+rqcHFcZePqOX83xxToHHropPzNTAovII7P6/YV1hcmw13YxO3Zb3Zuxo3n1vV4Sfa700fjeOuHsPdKIOfgNsMFfy1OG5iQhITlH+tNM3nVqmYPEb2a7Tedtz4j15v/M42s6VC2bxiX+O6cMd7NVhv1so04lURbvtUXnBrSjz7U6uTF8NdoThul38ncOdZcIfUesEtscyBO/QTCqNqlvUmrus32/i37WsoiTOVgn8nrhKnTCN/xAuOwEcThxWb91IntrdcuF0TvFnHKuF6m7lDW6VYPgJ3Eyduf5/Rb2G5QqYERhf+v94PaLhxo8/u8tdHCcsCSiJqtSaFFXv462nquykB7fDy10daBeMQ/tKiXSjD2qiJNL9peioChFCfTaPLHfVZuv5pzPrne+MSFG1w//X1UcKyQFAM6uR6C26UZ78OaYdXvDEqolfGDTo1omPYPZ9OjmjPpvIvtFwMwUfYPabBKmD9dPMh15nAvR36+ihhWUS4LSyhJ76dEdEO//bG6ASlEoP18ujXAe57P58sQoSmwYq69u2Ango75KVQ3TZusDjOH1gguFE4R1HZhhvaJU2jG7cEfrLOgvup72eqz8Ou/6s4fnkSN7RblHWx+z6fklAk18q/0M4xWEQ2dhNsH6i+sBVoHr/m7TGJxmj+fvVbo6VZkOZMwW1hCSHQ+cm4gGUFLdbWzAs7CmVd7MEvp1gFEWnKvOqtYL1hm6E8bRqfD1Ucmie4rh5kx33NoDFyXRx3/ksFVnYT66KV268eNDqhAI/9NH2Zuv+LKfJn6LVch2ncJ+4XBmvjaQujENysH+sICxB/MPuL+Sv+RlMt94XjbSyhgT/NjlhW0KdnL03ixp9RPMbwc5uQI/tC04HZL098l2Tb4KfEE/wWFiD7yYb7unfGRE3q4LaxhGAjsv8x6OozlySbp6E23x0qziMaaSp7Y/NXbBDlaAw21eMWscP1IW7iBHGL482+aHBf/+5YaRomXp7/coGVJUScJd5ixKXpi5O4C2YvV3d9Eqw3cdwm5Ejz7hVvjJQ/Q0N/5OskbvLH+SFuWIBXvJ7EjZGPJi0IcHOdWjE9brANNcsKmr6NdQh1HwV17KnvZkQ087iRry57bWQUfx4M408C90tQ3P3kkdK2XCFTAoOe52IbEZhQNIU2anMmbVDlKCxcCsL6GM7nU5qG9093PKrMLoNdQeB6xYd76zahU340dr5TIVtjorBwKQjruQkkDGilPvoeG9NWDGgj0UPzZb1d5BfYJahjkzhdStMBpkIpLFwKwnLM0IB26MMNfZNAyDX62CEUfNBmXbhhtUBz/nTcQi8rDao/CdilIKzvCQnjtV/cmEgAJB4fbgIr18fMCxdLSnAPKxTaqI+VxudQWPhwQ8/duhW6q3u9Kfg5j0+NGhxfTFgYnM+BO1ifQvXFhEVOpWnBPXS2+J0tYWqT+7ptu3XGhrYfpi0ReupLP7sp8exbCh38wMXu4p/5PBKhS7FZ+wAFvS3xRLiHBffVp0hOYUbh5IsnsFqYk4IfpOH+ZvIiL5sOLDxAcf98ytbEE1+soIAnLvn8GwYoceKNYYVOVhq48X/ijo/d9MrPhfLA+pkXd6HEbx8mCkwKJ98xKFvzAMI6uFhpxPVXhs4Wv3ONodD+TbzRDxo2Q22dQpV46DIerCmcfLgpAj+wzLX6LS1Hvy6BFXroosHPobdt9R+zbH2qCitPssvXbvQqwxKYCGB8ZhqmNNoheHw03wh3ymeRyAkaPoVVPocANydtDZatS7+2ZetShTV56k27byQ4iiECh8tYHnBnwZTlntheuSfOk3LfSIjQ3ZeXBu7l6X7Jz9OYRuJvy9d5xwuQEBn45StA+f0sfhLsp7R9uT6VDsye47N8uPVIBF8Byu+Lz6XhzuCXnMPWz1D8mPVq7vL13vEC+PWyNZu8hVzRXsng3xniiU9LLsK9wo+bB0LWPI1+nGm9M8aTLDGeN1i+eMlbqOXrNnkLOX2udEzr1YJV6zNc//qU86yTN1i+sQjkG3zFNxZBnytLPNmRlnsjUwLTI7N9Py+NYxBmrFWlgpcdwneedKGXzueVDm6CFwnDR/Ok8OC4ZqWEqTTOQ28H3y/72CHUS4yoT8VUJx1TVj/xCXRiJDl6B3xJGtys947yXcFdq7KXZUHvBOvtY4eUCde7dPwk23ma1vbjDjD7qa78fmn5Lr6U5Tz07fnqefoaalctb+2lixv3bUf6CX17vgcR9iNrbut9KYZ7B8Y4ztMkBTdNsfTKpBVzmdapTunFysY1K3qFgWUsQuVy4gelEeN2pOUKmRIYHeuuQEcTn6Yx+xIiLCPYCi6BMzlmlxZyPh81Dz0LAqoWjbMZis/QtBFYdPkvzXAwH6CD+hIiuGEJ2bSI4sfQxOsSwsNg/DB0yiXehpHA0Vs6YZfmTtw0lUG5PKhTUmfJxERHvo8uyTE0Hx7voXCi59QgBTeBC72lE/o0dwY6cCPMBx3YlxD5HNgKNq2W+DF8DgKTPkVbGkcRX3QZiQIGmQ83AfC4Ps1EldyXEPkcgtxeoV6W/ZhmKi8vTz7PZTAtSNC+9QYHNF+u3xWg+ffjezcXFXibYGIcN/cPAT6XnSC4y0TMFZtBb+X6ffuSAhTGEbhdyu1yX3s3kzEEtubbCPeuzaURNK7fZNrx4X0lrrgM7SjYiz7cFHHEneP6NPXj7tNM7S33r5IXN3GA++Iy9gn7EmFbl0HfJi75/IRiKKDpN3MqzuM+3N+9Wtf1JmGwsG9hurlMPic/T4RafeMcYC/6cFOAopIOvdrWXK9xn7hL8+D+hVpJNuNzeOg5yKM4D3OPpnIfJsY5oLZ+kmcPkP9cIsW/leUKmRIYVNEb+3dOFDMEy/uP7y4OTtf4Iyf1tA5Xg1LZN+Tx33Ncd+uTBoFZU7xRm9UiXXGD/giNTtM8KVRMY3DXw3/qKYGXwgm6tg33vcd3l4CicdtmyUAjJDBhUPxsXfb7tK8nVECtNmsr1KBk3zKgSzTbwhageJvzyJ96CW4CFHRYM0cRLO8+rrsEcDbeIyf1ss6SOe8PrSSRY1AqbYGVhHleSPGGFmwr1CiEoLdizPbRCrjmU9ijJ/cUbBx/mw13mTJCLaewIDA9elJP61c15+69sxROGDTNZhbcFDjn9wso3lCmbfM4CGyaxszcmtP3CBRw48Zbv0dP7iUJgyctaOo23Hce21UKCwpVjrfhPmuvndSBIVUamr4tIRBwLwip6Rft19paYLaoXVlo5xgJ6Mw9kyMP+HxwgIfCgXUyRx7wd66H6+L6uD823Gf0bSmFPAZVlwcA05h/pFXpoRjbCkzuk6bVUvDp/ZDE3VPuP4UT1GoTN+vPfaOwwJ+4Ttvb2dN2bxFNT2Wf2BIZ/qxV0vFz/N009gU4MAqnv1hGNbC/wM1+400wfmwWvfyVMQXQnAX3Sb2sIyZO3rW5qGRjxAObeC7xQ1Pqz5V9nMTN+oEDY17WBZZRDcQz4hrxjQeRe45P4mb5oYFTWBB3ON72Vpk4q0V2iac2EVritVYbP3sv9nGyUCPu3x3ipuC/aJ/kqAbyB3EN3LCA7ju+e6JYB/cN/TtLYQGL6OGTelofoqG6M8ZAcPfvbB0x0bN5zYjuftaeO0mhbcNN3sL2aF1XXWoZ1VCpXJ565E89rczW39JyhUwJbcbitYnv0fneMT62nO8iaZqyjZSnWRDje3ZEJk2jAU4zWZANsH0fj1bRirChOGA/JL+PXLtpizSlRZ+9JAPukAWUxL02ws2o89WWZuaFKzdEzCEYFktWO3CHYpo08dlwr9u4RdZA2ww+28DN99OFBm4ba4lr07jpEVi13rHem4pwMzrftJWCO/hdzZIxDbZanM0104Z7+/ZiDXk0ca63dPdzzNbYeiMaZxoN05oZsFZwb7T2GOj+mS1O3FvUgpVF92FWBtwLHLhnx3DT27By/SY77o3Beq/duNW+3us3SY+Bxm2TBNiwGdwbiq+Z4eAB7iKGRsDOS+JmXfgcjM+1+Qk4tZ9wr/F307hPXLd89rbin62NdYs373JtJm6WMP679IjY1ps+hCLcm524NeMp8NHknuP34rjt6721OO7YvY7jhplYHHdyX85ZsT4SFSQe2PwkiI8BbtbdxpRctX5ThJt9PjMD7vje0sbys1+Lx4TkehOvtKQC8QCtKCvujcF9ICbZ1pu4vzQFN/mDuKaNe7LFhjsmF7Fo9UaJBabRq1OEu2hvxY1eOy1TA+54DI5wr98skhHBZ28vtmbakEBI6w36LSxXyJTAYOyg2Guzf388UZwKR4E6aeupem/UPPXh2KCbG7rjmjCgxw3BsodDeqqc09KJTrOkpl+//PMsoRCbRnc+FEkcGOHIJy2USuyOTyYKq4ekd+2gsVbcg0fPV++HNE9otastuMfPX60eDOmpd3w8Uc2w4F66dnOkDkynvY0hsnnbdqFWE4BGzF6uHv8mSU3EoApOXbRakgcUWxtuGGTvjpob4bY1IaMJcv/nAe47P56kpluooMvWgTugA2smiR33aMGNwvkjIaXbtHs+myysNZILlGYbiQIBv3dGBLi5tpXrk7jRloF2jd316WQrpZLkpunXMB9gjJlGfMMXSThj565UD4a+ZxqfNXHBKgmUUIxtuGHSaVE6PteGe8qitbIGwVpMkr+btmL9FqFTY9BGbQJ04AYHCWf8vFURNdq0B76cqsbNWynHcX9sEjkI88HcC3CPsTZPT128VsYhYPdyDy06Olzv1SFtHAFZm3I968YxrCPsD70WpkGtR2EYf7rSgRumGYwkDP/ET03Dn+8KabX3fTHZqknEvtAq0u+Nmqs+tCjAg/sa9v6GzcK2uduBG8VqqLzgZh+zL0z7elLASBTc74yVuGAaBRFxBCOuTLBoQBGHNG2c+GRjymgKPnECWrimGJsGVZqRERQQ+ImN3UScJd5ixF9bszrx+vaPgs8gjo+bl8RN3Nc0fWKUTfAT3OQRBCphk90eroVpKLL/MnOZxPm/vTHKiRtBSK3uTv4wbday9aICH/ne3KQA5ZpNReuNmK1N8DOg4I+1Fnm/peUKmRIYqsUuozpGRfr90fO9gmIETKTbfYJiHENioYDw0SWpfElQLmOjieqr5xhwk3wIAi7FZo2JROcTFuQYApguelx0SZ6AfZhIJGm4g8+bK/M/XIrNGhOJDEVt9zEBXZJC00eX5CnZh4likKSbjnuO0Cpdis36GAoHW0DRxn3btGVrNJPDRZekUPVhIpGhIpyKe9gcmeviY9NxDhLdKI8SL0l+85Zt6m2PgjB7hELVhwkc4Mmy3tDdXcrH+hgS3QjL3CZt746YqzZt3upVPuZ+UaBA9XUZRSyJwBdPAkyFUhz6xjmAmwco3ziHd0fOkzcg0GtdNm7eKpmTxUgDl+GvH41ZICrSabihu/tYgODmrY5vnANxhMLC93nEI+KSzweIa8Q33/VrTF9NXBS95bEeM3yOxC/fOAdm+xAHfbEZYUYeeHy4ebvBGpBXfGy6N4fNkbEPtgIlOqZgjoxhgKbtMooqCn4fJqjuPGD6jiH/+XLAb2E5+nUJjNf8PluydlM0kdV3jqXh6zmXQU3lycenDBuca2MqJj7L5+Aak55u6ztmsYd2Gn+97VNY1a9fU3FnPCZNwE/WO+U8JHLepPkKuSJ12I2/GjfXD6sh7Zi085CYSXK+Qk4wrWUNNqZem49WHGFKuf6AnuzHTSJfsX6Tt5CLMKWud/o9yXJtwRr5cYN35YbN3kIuwBTQ+f2YMvhJhvuW5frx6xVrN3vHImTFtDjTvsx2T9KOIY7g376CKDhXlhiXLZ5kiZW+Qkcnck0dTztXejzBd399jF+yZqPg8RVE5BtiyrIsey5DPNmRlnsjUwKz6cLErUPDalYNlrjx8zY0lXnqHQQl6TD3sVoYNw6rJQ0TOjRZMKWep1E1aSrz4aaJDNw+Vgvjr2mGTf+86pmOybTeDYLmQ5ftXK+KMDJ8NE+aM2lKbNeg+q/G3SHLPWlUXZoJfXTJ/8feeUBpUSVvv4EBBCTnjJJz1jUu5rAKYnbNOaKrrnFd05rDml1zTmtAxbRmFLMMGSTnHCWJIOE7v+qupuf2vbd7dsf5++1OneNxYJp+n75dt6q633rqYR3B7aN5wtIQ3Dl81ycIqpjaN6qReW2tG1Tz4qYJGJVwH70cVgzN3tnrlMN3ZV9mXFuj6uIHLjaONsWy3rZmYDWum/uWB1Oee5LnPNvV29bJxsFgPaH8bGuqVWN/EJcyMTXOE+NqeEVx9Tz4r00KQA2WGXIBNt02NdyMuJQLUwnFk1Z1/bhhpeEn6HP5cBOXsuNJvmvr0Dj72mh6t5FQzLEIrKfLaDBun9N3S9PKCpliGDQ3lwPTLQ6DiG5vF+2QYHHCTq2EZWHrCleDXcKxsBJcBtWbznoYFz4lXtR8we1S5IZVcKio1TZ0Bmg23Yk7tZKECYvEZSfvsl2I28KOUUPxGB0mG4NGrUvTGkHfVnUEt2vj8Sbm8F7NhJVkE9ZU3Cfs3EpYFspKceEun4EbYTf0jHzrTSHwu+3rCkvApSTOrAbolLBHSJyuYHHSzi2FZaGsFJuxhrAVfGsJO4Ti8qSdt3OODiDp7NS6rtBdXUrisG34/e5t61nZGjHuXVoJy8ImPJjEHf7fLsCq7DAKeR9uCmfoztCUXYP6uB7owLClXImF83PvCeTKpvGt98me9eZ+wQLkGBduEjPjBaDp4g82w3+gu+/cup43kYGJsQkDLMKDaicqbo/vIvgJC5D756pBKYT6tWsg/uvCzX6Fxrzj9nWtApVbcW8ncUBFRl242ZenWFhrauxrWIByrAM3bC7YWNCLXQroxEdYSQgDowTuxL3LdqJ/piKjLtzEwVN2ceNGwBUW4Ik7t3TiptAnTwzs1dQ5m4t8dMyOLUQYGJFdl3Hv0T/zKZfDxoTd58O9V4eGkr/IY66HQ/KETaD217SyQqYYxg28/5ieqWKGIPr4CX1ESAxHePKkvimxMJ7Ubjyki0i3Y9A0zaoVt4CSzPwU7Ox+bYIDLQmYGQR/PahTTDu8eN92qc1AMQVtE2OjP3BMLyvuJ07qKw6OUz5+Yt/UTBZwQ9nTTQI9FTVhEzdzOHT+wFm7t7bOEYBSefVBneVn6NzQFE3cbIKHItwE1pA6WT4lzvf4iX0koBDoHjuxTxFhOIzrua5/Z9ngGHRWCiQTNzNvjo+UYc/YbXur/HzvFrWDa/uHuKHPX7Z/GjdPvY8cH+ImkUGtNoswktMjJ/SWgqh8tN7m5FZwX3NQJ1G0xaB92xR0CUhKA4eebEtkPVvUCq4fEOKmUEHpvLyRXXkL9egJfSTRUTiw9lbcx/eWhMlxrL351g3cf/1DJylAlZ5KIW0rZDWhnrJLK/mzaT2a14rV3fH1vxzYMRU0+XzuO3go1B624ObPDx/fWwoUjnvshL6pWTKsB+enAMUYr8Dn2wpZpYGTqCiiTeM+KU2fhHj1QZ1SuLnf3HfuP+uJP5hFL7i5Dyq+x/0x3xZyWtSKocFi+CcUWtNQhIYGjB33u5bWGU8kblVJZ79wLhtu1hvcFCD8bBa97FMo2iqqyrWZoxo4LWrcu0b09asP7mQdMUEhzBgCjNk2PByUsyjX3xzR9Lln1w3onHoTSFx4/KS+cj0UA/iuKcJKXITqzAMP9tDxvWVYn4mbOKv0dXx9h8jXzUIWJW3s6CgmlrM88Nx2WEi/Rin8xkO6pnCTP56McBOfnzixT6pYBzf5qGmE9aHjeqVGNXDai/ZuF4+h+Msf8PU07v07NwzOjWjgFNDH/S6Nm4L6jiPC9UaZHap9Cne1SsGTJ/eNRUFLy8oKmWIYVDkauMxmXr7zHxyxTDC6/s3vY6HO0ZyptGzR2jAafvn6kmYzpd3NWGrXCILNoE2gdOPTyGaSA6AKqv4KVDkXbmWZYP8atyD13Sa4uTalZQ+fuVyaOVO4Jy2WZjLBvWytHfe8ldLghtEDRFOciZsGZmUFgTtsIC6KG9pustkM/RCzf2eTgbtw5gppwjRxw5xixDcGndAmBjhu/spg9JyV8Zq9NTq93sgz0KCcXG+z54ZeltcSjaIfjF+Y0i0C9+uj5se0VZp1bQ3WiM0pfR1qJiJutgZOmmbDNdsozcybjS/Joaain5RsZrThTjZc0tBsjrsHN03HSlulafaHBautDAodp87/P5+cxk1jNg2F4WeHuE3KLJ+fZDO9ZsHNn5N+gj6OOe6e9UAIUGmrrJetMRztKKUls+6fReKvSeM+qcgr9w9Wh4mb+01jdbJh3exxWmc0iqJHZOotcVrYLkqtHj33R7nfpuEXsyLcLi0p9oWKvLJfaMa24U6ysFhXs8eJfQpu/B9jP5hCrZwWEoOOnhiTiGUp7aeI3gtumE5mewfsPxiZivuNkfNTFGXiAg3hauw/4kfSiIs0ZytuYjAUcRM3cVZHIRATxsxLN4Z/PW2psIww4vjQiYtTuImf383cihvfNXGTP5LssddGzksJhwruwrnxiAnWyJQGENwJ/b/xiViWtG9mLBdSAAbV/dOJ6fWm0VfFacljrGUK99oNpa6zhJUVMsUwNiYsApshbEb3PM577yd2KijFC4wHgsS1Q8ZbdS9IiPd+HNGv35tkpYIS6K5/a4L8/NSXM51MopvfnSjOj4ND6bUZSrQUF8wNUDqvaQS5V6MNc82Q8VaKH4H23gT92tboRqC7/u0Q99Nf+XD/IIHu8ylLZRPaDEVXkh2zcqDD2oxk+nIUoFy4SYgx/fr9SdYmTQLGdZHq+TNfz3QyoG55b6IEjC+nLnMyzlhHgi/Nd3d+YMdNMkUIEtz4iU0wjsSCWrfg/mCStbmO5j1Va4d+CbXfRcGn2fmraUuF4WIz/BaaJ/f1NgeFFaYS/uTDzbwbaNcYdGZbE67gHhLiRpyOZGfHPUlont9OX1bkQSJpFBPfTF8mxymd1zTWRUXw8BNbkz3rC80dgzJtm9vD9V6HyvyWUKBRi0jTOA/NkjwUJB8kkkaR8tXUpUK/ZQyDzShclFZ73ZAJVrYk/qz067s+nGLVW0riZryAi7l1V3TdxAMXI4ckRtFHwif+2Ax2lCqxX/eWHTd+xjgE7J6PJlv1ltjP1w6ZED5gDp8TF2Omof7N/CJo4QhD2gwWGUUecYf4YzPi1dORojn+aSM1EK/Vz4iHxHPTiPv8e3Bz/12MM/49RQUPri6RRvLR0MmLpRC/8Z0fnAwp8oSut43UQEO1UrzJX7ZZMODGT+Rha8Q8J+Ps/k+nxg+1pWVlhUwxLItSRvBhI/sExYaMmi8bzjc0SJ+0fIq2PMVQ+fsow5yDpznbnAITE3Rgn6AYnzNyzgqvoBjH8ATNXA6XEXyp7Hmr4TKeUD/Kg3v0fHnacinayjGjwP2jdchX8r4ycMw2ryQZxHgC9OEmQHCOPOtN4HQp2soxo+dLAtenO5sJZX7DRnmz47LJi9ZI4vD5LgEZerLv2hQ36+1j04Gbezzdg/vdcQsFd/JJ2TTm4vBg4FtLcFCg+/aAYuItiG8sAsdMiHzTZe8L7k3O4hrjutmbQ0oQt48FyD3hjQrJymWcg0GT74x1fx7zTyhEvbg3bZa3tnn8+6MJi7wsQM4BvR7fdBkxANw+v2Rfs799xxAfiG954gkPqz42HcdA07e9/VJjXpO8AXU8FGDE/8LZK7yYiMcyZyYj7wwZFeI239gUxT1PaPquhwKMc1DI+TBRmPFA48NE/itTv/4Nm21qYtJwpKqV/EvKxN2s81AMsIGzFKmZxJh1Ll6j+hw8LyZ+75vDgRG4+LxM3Os3ZmJiaFQeTNnnyb42EgXBy1fI5T2XYLJMBS3uteX5LBIzRZ+vkFNM5ut02+eVxFqu+fmXzPNsiHD7Crm893dtLkycZ1P2eTLuG3jZm1ljEfKtU8msN5izzoN/MC08ayxCnniyOiemPP6ddU/Yj5wrayxCHt9lf5dEPMnjb5si3Dqh3X9/s/0yT6xck2u9/ccQ/ijUs8Y5hJiyr+1/5o3M559/Hhx88MFBkyZNpBnvjTfeKPL7k046Sf4++d/+++//f4a3l6UpLWkwhPjPe44WtaXh10eX7NmitjRe+kTAaFyDvldSmPKch8Y0l3iZNtzRLOxi4yjbCPZIFiYabHvnubYW2cd0aVLTS5ekKZWGUBcbR3BXLhB2T0lhyj5PnaBzk5pOthlG83LdDJonDZlQL3vlwGRrujSPyfKTPi3rSDOjj+YJmwXcPjYODbAdm9TI9t0ca9mnVY490LK24HGxzTB+D26aTF3G/ercuGaJYAr9pI7/mBYhbhdrS9ld+Hc3S/N1Ejf+lOf+llQ8wW9d7CeMOAJN38fGIR7RrFxSmPL4CTR1F/sJg0VJk3FPH+4K5aU5vKTiSZ8c94345hM0hrVK3rE1jasxnoA8kAfT/0whs3bt2qB79+7BAw884DyGwmXBggXxfy+++GLwf2XQPFEkdVHlUL6G5umi7xHcleZ5WG837ZBufYq2M3ZPi6CpcR4ExWAkuGZ2ILQG3x/arEvZmo53KKfQPG0sEw1yfB7nQCnbjbu14Fa2gRX3Tq3krRUCgy7cMJpgRqH+7VK2hiXUv3tToXnCzrEZxQsMGVhCPoVoZRn4cB+3U8ugWuUCYa64Zo1ABaabH2om99hmsGYO6dlE2D2u4ANuGD2wsnwK0Ypb/2/F/buWkuRO2bWVs3hGEJFkAYPINbsIlhBUWQIUTCJXUjl511ZSZPsUos+MRAl9uGHBwdaAGu8qnsFBghrYq5lzdhFsGwTzKLJtbA3BHVFOYR36lJYVNyKGLuO6uW9Qhl24Ye9RoLCeLkXuMEY0k4cel3I7fsjn4Jc+pWXFy/50GX4GGwm/cxX9JDjWHOFE18wl9iv7liLcpdwO7tN23V7iwPGeEROwH7GzLSKWyZhMXArjoR039x7WHgwu18wl2DbESWay2IQ1MeLVabttL4KIvlENGr99/n14n2ZSFMM8dBX9FJ6wJMkrrpEedaLY1rZhdacCeoh7O8kXxF+XIXIaxu/W3rEfxAho466in0Lfde//KwuZAw44ILjhhhuCgQMHOo+pXLly0KhRo/i/2rX9ld769euDVatWFfmvpExonsenFV2pvp84sa8ow+II0CVN5V+c9e9Hdo9nnkBxNBMCDgcFThWEoe4x2yCZ7/lxn04NYuVRNuk1B3dOBU2e0u45pqf8TCJ/+Li0oitB54mT+oiDYy7cdxzeXYaTYXyWmRCgCJ7Tr3U8q+Wovi2Evmfi3rtjA1GYxqjqoUebQZOntPsi3CSEh4/vk8JN0IFSqQqrjxzXO/X2CtwoNqNoi0FXNxMCuAk6KENjzPWAim3ihrqoirYUKtDRTdw89aI2LrirVAweO6G3KJCbuFlv/foRX9quXlHcBGMUmwlMSpekQDJxU8AyawUjUTN3xsTdr319obpiJJYbBqZxt6m/bfDgseF6k8ih1ZpPbXWqQlvtKwkTe+jYXqm3buC+5dCu8eC5Kw/skApm4A6p4mERz9wlEqep/sysGqjFGG93oHmaSYpZLPh0PP7gxL6phwz+zPXo2woo8eZwNdYDyrSOFLhs/w6SyJKIwMe8loE9wyKehEhiMCnK3KcrD+woPzNU7NZDu6VwM4tFxwvgB/iD+ZDB+j9+InEmvB5GEJhvC8GNH+KP2KX7dZAHl3LmHKWdWsazQ0iI+LuJe5fWdcXPMPYLoyFM3OwvHS/AvoPGXNfEXaVi8Aj7NboP9/+xV+ptIbiJfTqG4uJ92wd7dWiQwk38gAaM7d+lsSjZm7gpwHUMBetDnDKLgpYJ3MS5x0/qk3o4Yr8+zH6Npm3f98eeqYFvilup+Rfu3S7Yp2MaNwW4js8gjhPPTdwokl97cDgWAaXwO47slsJNHH70+D4xbqjYJm7yEJTrOtF9uOfoHqm3nOQFxgDwlh+7YK+2wX6dG6ZwQ2+H5q7K7YP2bJN60KQAh+Ierms1yWdmMQP9m71IHixN+803+w4dOjRo0KBB0L59++Dss88Oli1za1xgN998c1CzZs34v+bN3U/ixTW+G6cz3Bz1DcXvpkSnO6wMs7mU73lhWSh9D9aN2fXNd8KweWgqxWiqguKWbN3gR3RMoBxjsI3u+2RK6nt7mlMf/iwULkRn5cZ3Q0aNycTg79Vgwdhwwy6BPaGsm2+mL099JwwLAW0gDFYO15fCPXFx3OAJi4DueLMBk+bUfwxN4H5nQgo3TAzWW+mSd388JSWuKbjfnxyrbaNXYlKrwQ3rgyZPbMTsFcJyMnHDCtAGT1hSCBSauKHSPzA0ZJuhSHzDOz/ECuVJ3Py94uY8SbVgjD6GOz8M2TgY4pGwQEzcz38LCyls3FM2hokbFoayp2AH3f3h5BTuqUvWBPd/Oi0+L/5tjoRHjJC/V5onQozTDZFKwf3B5JitBvvJFDPl/LAvYGFgsOVe+G52Sv0Ztpo2ncLugW1j9nfQDAwODFw3vDMhxfDjz6y39mxxnaa4JusBW0/ZUzQxsm5JROB76futLCTW/flvZqd6wbhPKvbJOnAfTdw0Ayu7L8T9Q4rh96OB+4FPp6aakMGN/yh7ilEGQw3c/POQhbQipt4++82sFO4vpy2Lda/YL9xHEzf7i32G4b83vTsxxfDD329894dYkfvBoVNlP5u47/t4qux/7L1xC4JPJhWlKAMPzSdlIYUsp5kp3Ix4UNYX8Qn2ntlPg9r1XR9txY0fmww/4gt/r4rcDw2dlhrVAG7um6pC06z9kUGtBh5jCmCjYZyDeG7ihsJMnNHPJk6ZuInDSUFR1tXETR4ifm+I9jTClyYTlN/d9+nUWD0clhOEBBM3rETNR1MilpPZMwjrFn8KPxt21qRUPw30bxVXLU37TRcyfK30zDPPBB9//HFw6623Bp999pm8xdm0yd1odMUVVwQrV66M/5szxy/MVhyj698lhsfsk6+nLZOAQxK3GQwUVF+ZHfB3x82mSUoDHbRJW2Mh/kVRxMZ8bNj01CwStUc/nyGJgI59kp3NmEfCrAlmCLioiQQxEg5Y7vTgJkBhBEIbbvIVVF9wo9pqo4Jij38xXQI0xZrO5TCNJMl/CDmCzWYEA2jxYLn9/cnOJkBd779/kE70ivv29ydK4nnyy5mpmR5qT3wxQwI0gcJFqaSYIuEgPKfUWdOYr8LvCKwutV4CiCo+E/BsjZwh7kmCm8Bko4JiT301UwIdLBEXpZKkQUHHzB2SiouJwe82enATsKHDKp3X1YDKvycBPP31LCfD75nod7AtzOJajesJ55msk+t04o4SjlJ+TQOn0t3B72pAJYhz/c9+PcvJ8KOY4P5TMNnmFmnSwI+4L/iczfDDp76aIfeXpGLT0cGfNSEyZsDVyEkRgL/hdy6GH0UoQo/gNotrNYoPkiX7gP1gM6jUT3w5Mwfu8F6wP11MIuIR+/u5b2dJ0WIzilAYO2A2i2s1KOc8ZBF3Hhtmx02cJW4Rv6BY23CHMTJcbx7UXE2v+D6zWKDpu5iJLxfOEYYUNHxGaNiM4vq9cQskzj/8+XTrMeE1TY9x2zgNNLJrAcIDgktPLNyzm4J/fjfHyUzkYRdGWmnab5q1dPTRR8c/d+3aNejWrVvQunVreUuz1157Ob+K4r9fw3z0XKU56jRO5zHjF8lrftt8mK3nWSRPGDp8yGY4P087rrk26pwUWCij+jEtDJrWruIVFOPaujev6RXD45hV65hH4n5rRrBhUJpvLWFZMJTKp9Sqn4fuiRf3+IXSi+ITDSSBr2b+i+fzKC6YH+PDzRMMb52+99y3ENOiYEaDtdaAovb+hIXyvb6rSMWEcvnzL8Ewy3C2ZJJmeJcPNwmcNfApPwumcYtkHby4xy+SHifb3A81xgqA2zacLZmkeWOThZvxAvpmyo1poeDxsenYR8h0uIo9LfrBrQMbbUZxznC65NA704DBeuubVzemhfK2xsemw5cO6NLYO86BBA4jCd90GcmO+++LJ8AAk28kQIhpodB4fWw6zsNXdL6xCMQRzuPzAd5SUDz5jiE+8Ps50eBLN6ZFkqR9bDqujV4y8w2wWfTzpuXDxABB04ijDOnMg1vfprgxLQo2btriZdMRT+il8Y1FoOjnjdyHHt8lb/FNQVYuJA7o1/rB//obGdO23377oF69esHUqeGTf2lbFs2VQKmvVV1GUNJXmC7jScV83W4/12ZxYD+m7GNCTNnXlkWrDo/xHhIf98vm7HXKvrYtmZTpjXlwb+E8m70FUbHub+Y6bc7ExLVnXZus46YtmbhDTJtz3Lsc9yTHtWXdN07BeTaXxHrnXKc89w0fyIM7z73Ls1cy96VcW/Z9y4on+AfnMac6/3vxZEuJxZOsawtxZ8fCPOfKh2lzrniSdf1yrk2bM3H/ksMv813b5mx/y7FPwnPl8O+c8aQ07f+rQmbu3LnSI9O4sVuQ7tc0mhB9tlvb+sFujo735DlgfrjE+TB0SGjgMrWBkgbbATrw7u3cmOjVout9t3bZuF2d+luPqScMER/Nc9e29aWx2EfzhEWCUiuf6cNN42RW5zvnQHwv65geLWoJ7dtlu7SuF9SuVtlL84RFQuOpDzf9bbvlxJ11T7gfNBb6aJ40O7LeProkDZmwCHbPwt0W3Bm+265e5h7gc7j/PponTe40VtI86DIadWlkzYcp+5is83D9fJ6LlYjxZg/cNGu6jMZR/CjLB3hrlRkr2tWXfeDrm+RzeMNrNt4mDVYfuPEXl+FnPZvXzvTLEHe2D4ArCzf7ycXuw2BR1q5aKdXsnjTo271a1sp1f/PEbz7LI9wux9BQa2qkJQ3/r7NtZS9u4ih5INO/ZS2zY9wubf24uW80oLtYchhxol4Gbpp72Qd51vt/ppBZs2ZNMGrUKPkPmzFjhvw8e/Zs+d0ll1wSfPPNN8HMmTOlT2bAgAFBmzZtgv322+//BC/sEJdCNM5L9z3JB/aAzeg6h8YLO9vjWGMAAQAASURBVOTUSMjNRk08LxLvOn/Pts5gcC5d5RXKC3vFVVzAVkBhFZqnayYNxRJKpQRxWEU2I0iidgprRQXoTKPDXXHTGe/EvUeboGKE2zVDAnYIkvOwW2B5uGaR7NupobBN+L/NQlomNMECJ7VacO8Z4oYJ5goGsLJgAMBWcRVFh/RoGrSqV01emZvsGDWCIOwu2D0oDtuMZKr0+rP62amQMCEG7RX5iQf32f1aC5sOtpCrKDq4WxNhTxzUvbGwr2xG0cxXGLCpYL/YjOIF9WTB/Xs3bvw6Czf/nvNAn3cp/yIsyOtrhPpcs3S4Hn4Pq8WlbM26QL9mnc7pF66paeAEr+J2Kf9C0QY3KsmuYu7Aro0kqXD/XbN0wMv1cV8GOHDjh6fuur345Tl7ZOMetGdb58gDKNqwkWBnuYo52C4UH/t1biT/txlstv49mgirxaVszb6Hfk0cOG8Pu58QPy7YO8RNXHHhPn33kMYNrdhVzKEgTXwjzrlmAMEmZf8iDAzF2GbE2dMZG1GhvLB6XLjVvznGNaqB/cj5YJW5RkxAp4bdBX7XSA/y0cCeTYVWDn3cZjw0QxtPxgwr7shPzsvATf6CVeYqQnkIU5bU/0QhM3z48KBnz57yH3bRRRfJz1dffXVQoUKFYMyYMUH//v2Ddu3aBaeeemrQu3fvYNiwYb9aD0yWkcjvOqpHii7JTIV7j+4pyrDYHUd0TyVggs4th3aLe2j+tFcbmTmTdBecZ9AebUU5V+l7OHoyaPIjgVAVmwl0fz2oY1DFoEt2aVIjVmxmo9/twa3nv11o1kVxs9luPLRLrGg7aM/W4VOigZtgo3Ryeg1OjqTsk7j379wonr9A4AhxF30z1blxjVixmcB699E9UgGKmSH3HtMjVliFrtymgYm7gqiNq6ItBRRP5iZuEr0qH+/RoYHMLUkGTTY4hRLzOjACNNRJk3bYsXH1GDeJ7J6je6YCFE9xrDcBHIOuzFDDpKHMi/IziuUYiRUadRI3+M7afXuZ/aMK6AQqE/c+HRvK32MEaOjuJm4SqSo2k8ihcNa34L7nmB4xxf/mgV2D9gZuznt9/85SOGshskeHNG4KWFU+5qmO2RVFcEcBXGefgPtvA9K4+fybBoaKzeC695ieqRk4/Pneo3vIdWHQuM3CQXAP6CKfo4mRgj5ZiCtunmox3nKeacHNfdJCiMRywyFdUm9eKbhYPww/wB/Mp3v8hvugYxHwh44W3PghBb8mGPzUxE2BpsrH9FxRGCeTVLko8ajyMfvlxoFdUwrRFFa3HdYtgbtH0NCG+6ieW3EP6CIPHCZuFK8p+DEKPuJCEjdxg/ixZ4fwAYVZUefukcbNU78WFI1qbiNxynyoa1O/WnD74SHuggi3+VaC+EJ81HEOxE2z4CG+Eq+It9jxO7WSOFzewH3iTi2FvowRx4nnJm7i5wVRQdGgxjbixyZu8ofi5rz4tzm7h3hOPqoW/dtrDu6UKnjAfdVBHWP6PhRrCmQTN/mEAhVjxtGgvdK4GV9xYVRcksduPaxr6qGOuK4K2f8zhUy/fv2kk9r876mnngqqVKkSvP/++8HixYuDDRs2yFuZRx55JGjY0P70XRpGB/oFL41M0SVpTDzvxRHx94IXvTw61VTFeP/LXhsT0w6hBCIumPwmke9w6XRX5ghd9DAzkt838iOqqMocgSWFgOQ6g/0xbv6q4Oo3x8cjpc9/aZQd9wsj4+9pL35ldIqeyjVfOXhc3HB2z8dTpXnQxI1QGOJ9GI1gTxq0Q36EsvjklyEjAJaUTcBs/IJVwV/fGCc/My77/BdHphqMaahM4r7k1THB1MUm7k3Bla+PjcXL7vtkqigtm7gfHDpNxBIxGkef+HJGke+S+ZqbJkC6/jEaHREWNNkfNDBfFeGmYRDcJl2Sxt1BL46MexoufW1MMMWgpzKy/C+vj4ubN6Hemsq/4Hvo8+mx4jWN0Y8Om57CjdrzI5+H1GrYXVdbcEPXvGLw2Bg3+JZYcHM92kx4+eAxwSQDN+fl+mHjKPXWVNAFH3homsVo9oUyWgR31MSsFHzOx3lN3Hw+ODDYH4NeGJkScuTPg14aFSvOXz54bIqeynn/+uY4YeNgjCxAKyzZ3gA+1leb5r+YsjR46LNpKdzcJ+4XBruL+2iybWjQv+y1cL1ZT9bbbOjGb/h7VW7nPD9YcCM8CBsHwz/xUxP341/OCD6ZGDZmwn5hXZO9IkrTvy9iwLFf2Dfm6HzizJ9fDdcb/wXfIgvu818aGSu3c99MgVVws++1YRhmE3EhiZu4QfxArwlD9BPqvIkbBpIy9xDrveK1sSmW0NQla4M/vzI6XI9Nm4PzXhyVakQnvoBblduJm6aWEvGVOKs0eGjVxOFkK4iy7FT7jDhOPDdxEz9VoBc6N35p4iZ/EI/1vOe9MCLFliSe/+mlUbFkAnHJVBIH99/e/iFmEcGYYySDiZs8g44WBn383o/SuGm+vjNiwDGG4tJXx6Rka7iv5L/Stv+vemT+r41ZJLA2XAq6JEJmNrjYGGwYHIlOfGh8NiP4aDCEdujqF+MYNiYBzEVNDPH+FLw+cp6THUCggUEBQ4QEYjM2DIUTm82H+/4cuCkcCISPDpvhxP36qHmSWN4YNc/JDiAh0RkPYwX8rg77p7+eKRv9UQc1cVPO9SZxkXighrsolcw+ESHPUfOd7ADE/RCMZDYG+G0G44FASULQWUA23MwPEtyf+HBPl0ROwnBpZRHYCND83yxkkwkYmiezMQjgNmOuBRRnEvDDn9nXmwB6fzT/heTp6gl8+PNpch4KS3Nukxo4mHnBeAHm+NiM60LAjkDuErJjXfgcPo/77MJNMazr7cT92TS5b9DdzflHaiRu1lHW08FcYk4P4n3Qb10CfVBkwc391cLPNPzi3mgsAvhdTZiPDJsuiRy/M+cIqfGAwswlHrBcyvWhkG0oUMj+tRn7h7jFfnrQhzvy7/s9uB8njqwH9ywnExS2FnGCQs8lUgmb8o2R8yXuvD7SPj6DeMX+J35prPPiJka7cH8xQ9aBuGo+YKpRGEOvZt1dIpXE9cEj50nhDO3ZZhSPjOIgX9wfYbMZD6lZuBkFwAyZ576e5WSwUmAyk6s07TdNv/6tmWsGQfL3viYwHfZFk5dPmIuKfenqn1NPM+ZbCYKJDxO+yFM7T5BZmFyju9X4HF5N+8TA+Kzla9anngrMp2SCyRdT3RRWgsGwqUuCr6b6hx9CO56zopr/mMlLpWHONRchiJ40VqyFNuvGzdMm98O3luD+YsqS4LuZ/k08bPKSYOFKv8w9by34SsCVxDFmpzA4z0ebJkhSZA9zzP1QA7dr1pAaBbr51sOGm1fUriSOfTczpHm6Zu1gJFP8KI/vjs+gX4PJh0d96eDujb1jEaD5gts1awfjfkG/zooVYPIpVoeYlsobSx/5hWMoLnxjEbiv+Pc3M9z7iWJu1OwfZT29uKcsCWY4it2txyzNZNOBmwGavrEIKDUvX7PBOxaBfU3S9MUTxe16CN2KaYl8xeUj3PBWlyLUtw/Yb8x10TemrqIIf8rybzD5RhnIMZOXBJUrlPfjnrJEHkZcs7sw4jLX5cNN3oI2nhVPiLtZ+m4laWVvZIphrgYotYIK5eK+Dec5ypeLeySc55Fj3KwmNXoDCjIxZR8TYspxbeWzcIeflTWdmuuvmHEufl+QC1PGteU4hhH0YMrCzXmy7i+/Zz2zjslaS1mjjOvnu+2Kuda7XOZ6h37iPwZNoizf5fdZ943l4ZjyJbDecn+z/DvHtckxGWskuMuXczb6Fg9TSe257HiCfxBPTCmIFKaCbJ+rWIrxRHAX5NnjOfZT+exrC/flf35v5biC8tl+kjOe5IkVBTnuW9b1h8dl+3dBrnhSJlHwm7V9O9lZJmo8ie7buWHmMSjfukQc5XM6NxK9EpfInbIDYGRog5ar0IFBpdpNPkz7dCracGc7hjdJrg57bJ/ODYMaVSo5Re4w2FM0XHKsE3eF8tJ4m2u9M3Bz7SjWusQQBXenhsG221T00g7RPlGmlC8IwFzL9oGG8pm+eMExMOBcYogYnwVuH/2YN22of/swEbxhRviuLcTUSBoZfYGOY7o3q+WledLMu23litKk7DJEQdHj8mGqEOH27YEYd8cGXtz4CcwW35tJmmJZb22etRnXzfX7MAFjH4kV2bj36tjAm1w5Br90iQpqU/W22xTIuVzGm2TUmrNwcz/y4Gb/+hJnyHyqntJ2M8ciwJBhr7gM5gxxyeff0rDfGf/Owt1QcLvEVRU3DD7VzLMZ8Q+dLJ/v0mBMM7DvGCUaZMWTfTs3lL3kEikNcTcUxqGLTYkxVgCavm+dYLRB6siT50rTygqZYhg0TpfSMoES9gviigg92gwnOnqH5sKiUBFC0+gCPz/qxL9kvw5WJVoCCuJ2CHOdtut2zqQBcwShS2ieLll1Cp2d29STjYngmc3ooEfVl42iIoQp3JULhHaNcW1ZuGFZuBR0YbJQeLD5XLNGSCoUHrA2lMFlGtd03I4t5WnkUgdu2AJK80TAzqagWy7CDSsNVpMr2cEQgoVAUehSiIZpAXZYMlDaXZRKVKt5GkMM0GawYf60dyjAefG+7awKuoL7gBA3tFoXbu4FrA/YZq7imbUGN+fgXC4FeGXZXXZAe2uBWTWB+6J92lkVdPl3l+7fIWSB7NxKzmszmC2wuygsYADajNkpFE6wcbhOm1EEwDbh8y7d346b9b1on9CHLtynrXMOFP+e+8Y6uJL0STuHPtSPmSyOeRskFYo02IKn7mbHLfdil1ZyfxHZtOHGny+OhFpZd9eoBtYb3OwX16gG/BW/ZR6LMrhM26FVHSk8YLW4RjVQpMKmIg6Au7wL974h7gv2aucc1cC+Zn/DxnGNauCaYBviIzDLbMZsFJIvhZGqnJtGnMWHwC3xwIKbuEccCXG3dY5q+PN+7SWeHrNji5QAqxoxF5YU7EQeWmzGDKkDuzaWB2OENW3Gw5CyFy8/oKMVdzK2n+/BzbWRv5gSbAqZqh3t+d2vZWWFTDGMm33Z/u1TN5m3FAQCNRwYFVBbIOQJA2PM9Q5GkubJiwCoyscUH8wIMFWN9+rQUIIcRuKUGSfGUwRPDRq42eiX7dchNUekroGbGQMtjKRBQPnTPu3iWR4oFpsDwUgAJF5mY2DMEDi8V1HcGAlHn+YIdOdacPOWSQMggZWAUdPEXa1SXBBhUL9bGkkD3NwHVeJlJo05EIwHRhTGVbGZNyCH92qWwk0Cp6jCKLCgqqZUpBtsG8+qYT0uB7cx/6RO1Ury94obSqmZNLYpKC/zbFSJl9knqBObuAlyqtjMm4sj+qRx86bmwGhWDQUtBbKJm+JaZ74I7gM6pOaf8BQmCSf6APzNTBqcl/VmQB+GMjdP1CZugpwqNvN/Zl+YuCmadFYNAZq5HCZuPl9np4ALfzDnn3Adlx/YPsZNoDeTBuclcLM+GEmBoYZJ458f2bdZrNjMADrW33zhwH1SRXLu3wV7p9cbtfNz+oV+Ioncghu/Yb31DdJZu7e2ql8z70NneUBhNt/M8c/xCx30yOwXG+6dt68rs4/ks6tWlIIHP0wa+wt/3Yq7vfhzUdwFUsDq1yVn7t46NZcI3OwffUNK8dCvXYMU7sN6NY1nkaBEfezvWqTeqP1uuzrBgJ4R7ioVJU6ZDyLEs/P23IobPzHHORBf+Hv9io6kb84lIk6ds0dribcYxdqe7dPq18RrfWgkjpvjM7TYI/5jvLmhoDcfRCje9YFWC2TiddKI5/x9xQg3BW9K/Rrc/VrH4zMoiMgfJu5DejSJx37gazxAmG8CKfZUSZ08drEFNw8F+mBYmlZWyBTDaEw767kRKfYHjaAnP/m9sB6gj5/69HBRAU0aTXsXvzJKaMcY1EmzKTRkLE2LFaIRcLOpGkOrVeE9Gt2ue3tCSh+ERkIos9rweeZzw1ONo8vWbAhOfSrEjZ3+dGEw22iIQyzvkldGx7RDqJOmBhSMgn98Ni14L1KIRgjt+e+K4lb2gIpO0oB47Vtp3LBPoLJjNFae8WxhsNLEvXZDcOrT38c0z9OfLQxmGawscEN3h9WCXf/2eNFAKYJ7S6gYq2yWl7+fEzz37ewUbtgDiOphsLuufnNcWkV68ZrgnOdD3DSWnv7M8FSD6fKfNgSnPP19TJc889nCFCvr542bg8sGj43Vd1H/Rp3YxP3YFzNihWjYCtAnTdw05976r1DdHNbGVRbcsJTOeq5QfoaNcNrThSnWCg2wpzz1fdzoDW6TlcV5oekrKwR18pRq95ZAxAJVIRpWHSwnEzeNoDdHquw0skI/NnHz+Wc+O1x+hgXInjMbdbkOroffC+7nClOq3Zz3L6+PFWVo7Nb3JqYaXsEHK+a1iBXy5qh5sv7mpHruE9eN0ch6xWtp3Kidn/lc6Cf4Af5g4jb9B7+yqV/jh6ozhcimyZYE97Nfz46VlmFBQSM3cX81fZmoh2PoPzEWAD9MGvvr9GdCP4HddMpTw8Wfi+LeGJzxTKHoxGHnvjAixSYDNzRhVRJHqBD1axP389/OEYFdDFYa7DuTufTNjOVCicZgpRGnTBFS4hmYMOIFfmw2RhNf8A1VnIdabqp2E6f4LFUSR9DSpn5NvEZcEyOOE89N3DS7E/8xWGnQw80xFDQmn/bMcMknxGfWm3idNOI5+WhZ1DB9wYsj0+rX4H77h1hJnLxB/jBxI3QMoxaDPg5TzGQu0ZyPzyk77cKXR6VwI5R66lMh7tK0skKmGIaEuYuayNwPEiLB20WVY5ORcOgMV/l5mzFrA0cgybpM6bnQD13URAIbAZVA5mJjIJJHQmTGhIttRPDh89gwrzqUvTFmm2ThRhWYQAj90EXxI5GRWF4ZPtdJTWSmAgmFGRMaFG24mUfBOV724Y4ot1B+Xfb8N7Ml8TzhwQ37aezclVJYuFgksAagpcJ8cSl7Q0tl3g6FnEuRXPAqbgdlGCOoksih6bq0ZihMKSwHF851skiYdfL6iLlB4azlTrYRQZP1IQFTzGatt89P+Pech3VwifihEE2AZryAi0Uie61wriQgF9uIdXnii5BW6lJST/qHi1quSssk8ie/mOnEDWaE98DtYpHwcARuCmezAE/iVhqvS0k9uc6+9Sa2kcih17rEB/ER9tubo+Y7mTT4/SuFc6TAcilky3ybL0LaNDReH27iic+/X2GvrVkvBbFNuR6DjcisKAo5l3J9GCPmSCGuc45suClgiV/PeHGH8dsXT14rnCd7DdV1lwI87CdmjTEWwSUKSj765/A58uDjEjMlP0B3pyByKcArbnT+fH6CzzJDBtq4Czfsziz2W0lbGf26GKbVuMt4O5Klfs0xbHKfgBkBgwDsU4alGucpLYuvP2LWj8EID81Vr0sH9flwU+j4lGEpKAjAPnVc6JI87WRhIslnXtvsFamnwtQxs1ZIUeRThuW6CCquGSoYyYK3XK7iI4kpzz1xzXRJnoe3Ea7gjFEwE8RdM1SU5kmQy1K2Zp1GZtCvuXZX8EriJhn4juOpEdyuWSQYT3oTF6zKXEt8N0v9GtxZOn+ch3XyjUXAb8HtG4vAdY9fsDKHD6zIpF9zjixm14gIt2smE0acWJoxFgE/w5/yxLgs+jXH2HrkzGPwW99YBN66gds3FoF9zfBP9pTP8H8d1ujDRFO09zyzVsh6+vYvb1mXrFnvHWdAHOV+5IknWfTrEbN+FE2qrPOA2zfOgbdArLfPd8lbPKxl4p61IlO/rySt7I1MMcwnmCi/36YgcyNwjqxjqlUqCKpWLsikwcnnlRSmrPNULoj7e1xGAySjzbMojOG5/J9XPRemis4mwPg8OdaI73nBnkVPzIepoEQw5fETkgXNsj6WRXH8JOue5MEEqyfrsyop7oxkF/puxRLAlH1P8qwR64zcR1aSrl65Yolgqp7z+rPuG36Nf9sa2Yu7BrIHSsJPcuwl4gh73NYQ/mt8Hp+VK55mHEPcrlapQP4rrXhSPcf1Zx0DbmQaSgpTaVpZIVMMQwzNZwO6Nw3+0LWxN5EP6NEk6N2itpfmyefgLLAtXIZIJawcbdKzGeeguct3TIipqTQ5+nE3FXqmi0GiuAn02ojsEqn0CfhhBF1ovpnr3aNJsH+Xxt4CpH+PptLE6xL7xBiEVqVSgZd2SKMkzXs+TARcaOVZ6805YJL5ChDWG90UFxMjxN1EcO/nEJ/Upm+amX2YSHD7dWqUw0+aSFOpL5EjcEgTr4/meVDXcL21EdlmNInSVOvDBA4EOPt3t4sTJjFBF/Xh5nO4xy7xSeyAro0k0LtEMzGaiWkK9uGmgEOAM8u/uS6aSm2MtOQ9ocneJT6pDbWsN+KgLiOWoDbtw4S/HtC1ca54QgzwFSAcQxwwtZiSxj1jvX24YYbB3PFhIj4Q3/LEE5h71TJwwyRyiTgqgxX9I1+MoymWgXE+TMRjfM13Hqx/jyaSK3zFBbhhbnGPXQYZg4dVHybyVt9WdbzrTUHk2yO/hpUVMsUwuutdisV0p8Migcb6J0fXNpRcWD+wKBAYtCVgHAWVWgzmgm3eDAECgTAM+qVNiRZizFV/6Cgbild8FFg2O3bHFpJ46Ma/KKI7mgYFmi57wd2/ixU3lEpVT4Xya1OiJSBfc3AorEhXfCcH7iv/0FGKMNgrCJzZDIo7bAzYDy4qO132R/RuJmwFBBNthQMUcKUDQz+0zckh0V8brTdUb4oxm11xAMywikJnJyja7Mg+zSSAwZKBcWAzAjP0RsE9oLP1zQVUUPWzP+/bzqpES+K+pn+IG9YHxa8dd8doblHd4FCHYjFsBVgNsJJgeNiMghFWDHZd/y5W3MwruTCiA0PltE3CBrcKnjISQFk3poEDdhD7yqVYjN8iOshx3B+bEdxhr2F8rq3gwc8ujujXsExs8324XvwMYx1coxqgDLOvEefDH2wGi4RJ2rBxrjjQjptkCu1YcdveuODPuj9g9dhGNbAv+Pf4Gywy16iGP+8X+hlsIthnNiPpMkeFhHjlgR2txyDIePxOftzED8ZPhLjbSnyx4WZ/gBv/dI1qgC3K/YPdp/fZNBIvVHjizlUHdbJS2YmzxHmM+GsrMLmvygSFxWd7YCV+Ev+Jp8JedYxqYJ/ANiI+u0ZMkI/6tasvD5B/deCmyCVPCG6LcGySmYiRf1y4uV/gJo+5RjVw3SrWW1pWVsgUw7iBA3s0DSoZiXzbShWKVKjMETGpiVSpJDdV4iWZ2Z622UwUQ1irutWsm5OCqVPjMCkRMPbvXJROh7HxVWWYjU5gNAM0Tx5U6jHujg1TBQi4uTZVtCU4t4kUYIvgblcvdl6ekmybE9yqKkvAOKBLeigcgVZppOAe2KtpCndVY715ijILEKaYQoXdiru2dbbBrm3qxvNswL2jDXfjGjFlmMKQ4JHCXbNy8PsEjZSNbuLm6TJZ4DB8q75RgJi4SeLtLLiZiaHBpnntqsFOlqDCwDGCd7hmBSm1XoyEnJytAZ3VpN4SsAcauM0ChPNSdKqCcLfmNVMK2RhJToe3gZ9kbXuLpEWXvAGx4Obzk28sB/ZskkosXAf7VY2hYWYBEqrJN5b10eLA9naD9U3its2t4T5p0cX94z6a03TrG7jxB10zNfxmQKKg5EGkkQU3b4hU+Rj/1DECScOfdZ5NGBPSuFFg71EEd+MUbvaXqlFj7D8b7kN6NonHC4C7cU3LendpFH99QTywPdDskMBNTNBYlrTWDaoFvZrXjnHz5sb8Op54tk+nrevdvxv3Oo0b/1bcPECZM674DXFWv15PxrKkEa+J24K75jbWOUHMGtPx/eQD3hiauMkfyUGAvCUx3xRVivy7XIR7l7b1gqZW3I3kAQvr2KhG0MWKu048CoLi6fft6lnf2vFwqJ/d34KbgihrWN6vYWWFTDGMZrHzXhoZbDA6B9ds2CT0T9ghCHNB8TObUOkcR9UZFoIqNpsKwhgsFWV8IGZoExYcPnNFcP3bIe3w00mLRUnb7GWc9+PPwdkRzZOO9/NeHJlqHKVBEBoz7BDwQQU12Tb8PXRJbVyD0mwq8WL//H5uzJyAlYIwoo2tcd2QCTGj6s4P0+J7sAqg94Y/rwvOfX5ECjcNmVAqYfWAj2swlaY3bdkSXPf2+Jh2eMXgMdYmzVcK58W0w4c+nxa8YxFEpLFN6ZJoo9z+/uQU7oUr1wdnRHRgFG3PeS6NG5bZmc+OEIYE7IDTnh4uTYEm7r+9M0EUaLErB4+VZkbTXhsxT5hkGJTatyyCiKPmrIzpkrDSbnlvUgo3rBmovrAsYCPgMyb1lsZbaPA0uoa4v08pNnPeG9/9IVZAv+r1ccHYeWncb4yaLxRsDCYVDBjTxsxbGSugw5K56d2JKdx8vtJTaVDEZ0wqKNcBrZbGeY7jOk2WEOe9+b2JwdcRxR3lY1tz6ZDRC2LBVJg9g0ekcY+LqOIYDCkozdzPpC2JcLOOMhbh2RHxGAE1/Ab/oQEf3Pj6Qgvu2/41KdbFuebNrXs0afgzgpAYTJtXC9NCjjT54mcYrDRii4mb/cV9BzfsJvzBhpv9ujBiBnHMgpVp3Ld/MDlmBl331nhr4yjxQ9ltjESwsQ5RnCceYTSoXvPW+BSDk3gGdZm/h03GqIafbLhfGCnK39jZzxcG838s2mDLWYmzxFvsb29PsLL3iNcPRoKSMAZtrEOa3FGOVoIE6usmbhnV8NT3kk9g0zEmw2zoptGZfDR3RdjEfPZzhcFcC+67P54SK6DjkzYtOAQ1VQgT2vsL382xNrtf8mqobE3DL+rmJm7YsdCvEdYsTSsrZIphUDNd7BeKAahpKJW6qHLcc4IJBdHHkWPZDOVcHNhH8UOhNaSnuul0dMUTmF78draT/UL3PfM8UJB2iaoJ7q9myobh+py4v5oZStl7KH4oW1OAPPWlXUUbo+AgEbz43Rwn+wW2AzTnTycuFuVamxGLoQkSoHQ2jxX3lzMlQD/zlXu93xw9XxLPU1+5cROgSIgvfTcnlVST7KdXC+cEQycvdrK7wM1akhDe8+H+aqYkOp+fvD16QUxPdRkBCuo4c3RcrB2CKMkE8TkXuwvcqI2TgJn94cYdrqEP0ztjF0hh5fMlWBhQ9aEOu1g7XA+0WqjAPnYXn0NB9LZDaTq53j7czFKikOV8rlEazLL5bMoSweUSYcV/uC78ycduAgt+CbXYZexd/NuHG0VuHhye+mqWEzdsHBI5+86Fm/0KBZ0C1KU0jbE+FEQUtk7cX4e4oeC77IMJCyXeco0u3LA/P5m4OHh1xFwn24j4SAKHFg/t2YebgmjwiHlu3N/Mkjjowx3G259kv7jEHpnJ8tEPi2UsgottRD568bvZ8sCGyKbLyBPkC9/YDx5EyTs+P2EWGArhz3hwcz98eeLXsDL6dTFssocuqolseXU/HRiq5JTFq73KsJMXr5bg5FOGJWDMWrY2F6YsmieY1mTQgTkPicCnsEpiIWmaT+vmxiOBmwOn0phWZV4buH30ZD1magZupXn6aI6KO3stV8lQsay1zHpgATfDslwzgjSxgNtVOAvuTZvl+vJg8tGhQ0yrggyClJyDQsc1awejYF6y+mcJ1D6aJwk/j+/mubYsphGfw+f5xiKwzqy3bywC1z1t8Zp8uLP27qLVmWwczjNj6RrvWARmRS3LGIuAn7FP8sQT33kUk09LTs8zc9la71gE3p4tXbs+NcQwabgZQy9tb7eLYlqVqX4NJp3c6z5PiNsXd3jrhp/4Cmdwy3rn8JMs+vWkhauDprWqZh5D4eQbi8BbN95g+XyXvAXmPHuOr2xLy8reyBTDbA2VSaPfIfOY6tnH1K1WOahRpaI3+PK1KA2j9apXKhlM1bOPMfs5TCN4gTuL5gken/jkVkyV/mNMedabhkqaQX3skPxruU2+a8t1jP+zGFFeq0pFL8ti63rnuL85fCDPHqifcd9gV9SqUimT5pkXdz5MefauHzd4We8sammu+yt7t3TiCT0htapVTElm/Lt7rkTuSY5j2I/h3syBu4TiSR7cplSAacQ/cNsID//WvsxxbfWr58PtE9il74VempK6v6VpZYVMMQzdEpeF+iDNpOHMl8jprqcBk4ZG3zHaLOgydGxoOjyit509gLG5aXD04S4X4aZr30eXBBMNhTaGlNoREW4fNQ+9I4TnDu/jxk0AoKHUd22Cu3ezsOExA7erMS+Ju1LUqOgyaT6sW9WLiUY3FIaP8Fybfh40Vl8i556hMeNiGmFcf8WCCtJY7DKa82jS8/kAQReVXd+1YYf3bi50Z18i59rbNKgeN4/aDKZGxYLysd6MzaSpvMG2slYuAwfUYt+1hbibCbXe1Bozj4FW62LsYPgH6+1iSCkDCpq+by0p5FhH37UpJho+fYmcY6DVot/jMhr60eNRnRybhU3ONby42Wc8ZfvOo5jYB763MhxDHHAxXzDiCM2wvnWiURiavm/PVY1wc998iRxMNGL7iiKOaVa7qjStuyzMARWCwz1+SUM5NH3felPIEZfZ51m4+7Wv7y0uWEPIGDQyu0yb9X3rzXgCGtp9e44H8IPL6Ne/XYN+erpDiRaqIYkOGuvNh3ZNdf1jCIopffu2w7tZA2u3pjVFDA6DDmeTi6fa/dshXeRn6IQ2RVec6Y4jukuCpkPepegKJbVVvWpSiQtuyywZAorSoG87rJv1ya5r0xoxbuiHtjkiPGHeMDDEDX0T5W0bpRLcBDA2DIJnNkMVmu5/WAS3HNbNihvMOoPiVgduCpzzYxpz+5TIHUZguynCDV2WORE23Lcf3l0CGAXfoITgW9KgeJPoKWLwAdvsHqjyzCTCbjm0mzWRwUjaqn7d3spsoiC86dCu8jNBPMmCSFIqbz+8m+Cm4FMFc9MQiKOwgt1zuwM3vo2PC+7DuqbEEDWAK/36ouicppEA8UXs0F7NhHVhGp/PehN4ScCcy2ZQ1Lkujrv9iO7W0QEUcSQL7KaBXa0JmACu9OsL925nZTZxn/BFjOISlpgNN/cdthEFj0tNHsFA/Ij7wnXacDOrRZPOjQO7WN8A4M9JVWMbQyjE3TW115PG/rr18G7itxSYrtEBCEvyoMb+xU9sIw8oFpS+fcMhXa2FA8xI/YxBe7W1Mm3Yz6ylziayPUCBm3tCnKBQdY0OQDgVZiPxEj+xvQ0nzup4gRsO6WJ96wATlfETKmZLPDeNuK+48REYpSnc5crJHuAaKVSvPMBOZT9j9+2Fxk+heueRdtywx46N6Nt/G9DFOvKAPKP0a8RYbQ9QIe7u8jMPELZRDYpbRW9Ly8oKmWIa1bhp7FWlTGPIFLhmrShVjpHSJn0R4/WfOiNPErZkkJzkSGC0zbTgHHxFFeOuVSVF0Q5xb+X7szErWRJUk1pbcRP0bLjrVKscU8vlVbbFkbfdpkKMm43X0DIbonLF8kUSSdPaFtzlwvkvRXBbAia4VfkY3EwdTuOuFGwT4y6wFg0kHaUvouyrSrJJIwAmvypoUisbN09Q9tk2lWPcNZ24K8dv/sRPLEmMf5fEbVJKBXeForh5y2e6AH9unJgrIbgds220oORzlRpcFHelmFrO/80xBYpbi07O19Cg8ArugvJFvsLi2my4m5i4LevN3lXcfO62Dj9Rvzd9NIm7RgJ34xx+Am4zVPDHoriJCWlMUP5VaZrPrbZN+hjZr/F623HjP7re+J1tZkvlCuWLfI3rwp3s1WC9WSvTiFdbcdun8oJbKfHsT1UnL4K7clHcLv9O4S5vwR1R6wW3xDIH7shPKIyqW9abuK5vtvFv29dQEmeqhH9PXCVOmUb+SBYcoY+mDisy76VuYm+5cLsmeLOO1aL1NnOHWpVEPgJ3Uyduf5/Rr2FlhUwxjC78a98KabhJo8/uopdHC8sCSiJqtSaFFXtg6LRg2JSQdnjRy6OsgnEIf6loF8qwNmoizW9KT0WAEOqzaXS5oz5L1z+NWVcPGZ+iaIP7zy+PFpYFgmJQJ9dZcKM8OzSiHV78yuiYXpk06NSIjmF//2ByTHs2lX+h5WIIPsLuMQ1WAeunzYdcZwr3Fujro4VlEeO2sIQe+XxGTDu85JUxKUolBuvlH0ND3Hd9NFmECE2DFXXl6yE9FXbI85G6bdJgcZzzXKHgRuEcRWUbbmiXNI2u3xj6yU8W3I99MTP4KOr6v4zjV6RxQ7tFWRe7+6MpKUVyVf6Fdo7BIrKxm2D7QPWFrUDz+BWvj001RvPny18bI82CNGcKbgtLCIHO98eHLCtosbZmXthRKOti930yxSqISFPmZa+F6w3bDOVp0/h8qOLQPMF1+WA77isGj5Xr4rhzni+0sptYF1Vuv3zwmJQCPPbN9OXBPR9PkZ+h13IdpnGfuF8YrI3HLYxCcLN+rCMsQPzB7C/mj/gbTbXcF463sYSe+2Z2zLKCPj17WRo3/oziMYaf24Qc2RdKB2a/PDIszbbBT4kn+C0sQPaTDfdVb4yNm9TBbWMJwUZk/2PQ1WcuTTdPQ22+M1KcRzTSVPbGFvz4syhHY7CpHraIHa6LcBMniFscb/ZFg/uaN8dJ0zDx8pwXCq0sIeIs8RYjLk1fksZdOHtFcMf74XoTx21CjjTvXvzKKPkZGvqDQ9O4yR/nRLhhAV78cho3Rj6atDDEzXWqYnrSYBsqywqavo11CHUfBXXssWEzYpp50shXF/5zVBx/7oviTwr381Dc/eSRkrayQqYYBj3PxTYiMKFoCm3U5kxqUOUoLFwKwnoM5/MpTcP7pzseVWaXwa4gcL3ow71ps9Ap3xu3wKmQrZgoLFwKwjo3gYQBrdRH32Nj2ooBNRI9NF/W20V+gV2COjaJ06U0HWKaI4WFS0FYjvkupB36cEPfJBByjT52CAUftFkXblgt0Jw/GL/Iy0qD6k8CdikI6z0hYfzzezcmEgCJx4ebwMr1MfPCxZIS3MPnCG3Ux0rjcygsfLih527aBN3Vvd4U/JzHp0YNjo9/WBSez4E7XJ85wcc/LHYqTQvu72aL39kSpprc181brDM21L6ctlToqc9/66bEs28pdPADF7uLv+bzSIQuxWb1AQp6W+KJcQ8P76tPkZzCjMLJF09gtTAnBT/Iwv3Z5MVeNh1YeIDi/vmUrYknvlhBAU9c8vk3DFDixCvD5zhZaeDG/4k7PnbTi9/OkQfWD72450j89mGiwKRw8h2DsjUPIKyDi5VGXH/xu9nid64xFOrfxBt90LAZausUqsRDl/FgTeHkw00R+I5lrtWvaWX062LYHA9dNPw99LZN/mOWr8tUYeVJdsXa9V5lWAITAYzPzMKURTsEj4/mG+PO+CwSOUHDp7DK5xDg5matwfKfsq9t+U+Zwpo89WbdNxIcxRCBw2UsD7jzYMpzT2yv3FPnybhvJETo7itKAveKbL/k91lMI/G3FT95xwuQEBn45StA+fd5/CTcT1n7cl0mHZg9x2f5cOtIBF8Byr8Xn8vCncMvOYetn6HoMeuCeSvWeccL4NfL12zwFnJb90oO/84RT3xacjHuH/24eSBkzbPox7nWO2c8yRPjeYPli5e8hVrx0wZvIafnysa0Lli4al2O61+XcZ6f5A2WbywC+QZf8Y1F0HPliSelaWVvZIphOjLb9/uSOAZhxtrVKnvZIXznSRd6yXxeyeAmeJEwfDRPCg+Oa15CmEriPPR28P2yjx1CvcSI+kxMdbMx5fUTn0AnRpKjd8CXpMHNepeW7wru2lW9LAt6J1hvHzukXLTeJeMn+c7TrI4fd4jZT3Xl35eU7+JLec5D356vnqevoc62lay9dEnjvpWmn9C353sQYT+y5rbelyK4SzHGcZ6mGbhpiqVXJquYy7VOdUsuVjaptY1XGFjGIlStKH5QEjGuNK2skCmG0bHuCnQ08SmN2ZcQYRnBVnAJnMkxO7SU8/moeehZEFBVNM5mKD5D00Zg0eW/NMPBfIAO6kuI4IYlZNMiSh5DE69LCA+D8cPQKZd4G0YCR2/p6B1aOHHTVAblcr/OaZ0lExMd+T66JMfQfHiUh8KJnlPDDNwELvSWju7bwhnowI0wH3RgX0Lkc2Ar2LRaksfwOQhM+hRtaRxFfNFlJAoYZD7cBMAj+zYXVXJfQuRzCHK7RXpZ9mOaB+XLl5fPcxlMCxK0b73BAc2X63cFaP7+qD4tRAXeJpiYxM39Q4DPZUcL7nIxc8Vm0Fu5ft++pACFcQRul3K73Nc+zWUMga35Nsa9YwtpBE3qN5l2VHRfiSsuQzsK9qIPN0UccefIvs38uPs2D3aX+1fFi5s4wH1xGfuEfYmwrcugbxOXfH5CMRTS9Js7FedxH+7vbm3qeZMwWNi3MN1cJp9TUF6EWn3jHGAv+nBTgKKSDr3a1lyvuI/ZoUV4/yKtJJvxOTz07OdRnIe5R1O5DxPjHFBbP9azB8h/LpHi31Qhs2zZ1n6DOXPmBFdffXVwySWXBMOGDQv+mw2q6PUDuqSKGYLlPUf1EAena/zBY3tZh6tBqdwl4vH//cge1icNArNSvFGbVZGupEF/hEanNE8KFdMY3PXAH3tJ4KVwgq5tw33XUT0koChu2ywZaIQEJgyKn63Lfo8O9YUKqGqztkINSvaNA7vGsy1sAYq3OQ/+sbfgJkBBhzVzFMHyziN7SABn4z14bG/rLJmzf99aEjkGpdIWWEmYZ0cUb2jBtkKNQgh6K8ZsH1XANZ/C/nFcL8HG8TfbcJcrJ9RyCgsC0z+O7WX9qubM3beXwgmDptncgpsC55x+IcUbyrRtHgeBTWnMzK05aedQATdpvPX7x3G9JWHwpAVN3Yb79iO6SWFBocrxNtyn7bZdsG9ElYamb0sIBNxzI2r6oL3aWAvMlnWqCu0cIwGdumt65AGfDw7wUDiwTubIA/7M9XBdXB/3x4b75F1aSSGPQdXlAcA2/0hV6aEY2wpM7pPSain4dD+kcfeS+0/hBLXaxM36c98oLPAnrtP2dvbEnVrG01PZJ7ZEhj+rSjp+jr+bxr4AB0bhdJZlVAP7C9zsN94E48dm0csfGVMAzVlwH9vbOmLiuB1biEo2RjywiecSP5RSf6bs4zRu1g8cGPOyzrWMaiCeEdeIbzyI/P2oNG6WHxo4hQVxh+Ntb5WJsyqySzy1idASr1Vt/PTd2MfpQo24f2eEm4J/0B7pUQ3kD+IauGEB3X1Uj1SxDu7rBnSRwgIW0QPH9rI+REN1Z4yB4B7QxTpioleLWjHd/bRdt5NC24abvIXt3KZe8CfLqIYqFcsHD/6xl5XZ+pspZMaOHRu0atUqaNCgQdChQ4dg1KhRQd++fYO77roreOSRR4I99tgjeOONN4L/ZpuxZG3qe3S+d0yOLee7SJqmbCPlaRbE+J4dkUnTaIBTJguyAbbv49Eq+jFqKA7ZD+nvI9du2ChNafFnL82BO2IBpXGvjXEz6ny1pZl50cqfY+YQDIulqx24IzFNmvhsuH9av1HWQG0Gn23g5vvpOQZuG2uJa1Pc9AisWudY7w1bcTM637SVgjv8t8qSMQ22WpLNNdOGe8uWIg15NHGus3T3c8ymxHojGmcaDdPKDFgruNdbewy0f2ajE/fGYOHKrfdhVg7cCx24Zydw09uwct0GO+714XqvXb/Jvt7rNkiPgeK2SQL8/Au4fy66ZoaDh7i3MjRCdl4aN+vC52B8rs1PwKl+wr3G303jPnHd8tmbi362GuuWbN7l2kzcLGHy39IjYltv+hC24v7FiVsZT6GPpvcc/y6J277em4riTtzrJG6YiUVxp/fl3B/XxaKCxAObn4TxMcTNutuYkqvWbYhxs89n5sCd3FtqLD/7tWhMSK838UolFYgHaEVZca8P7wMxybbexP1lGbjJH8Q1Ne7JRhvuhFzE4tXrJRaYRq/OVtxb91bS6LVTmRpwJ2NwjHvdLyIZEX72liJrpoYEQlZv0P95IXPppZcGXbt2DT7//POgX79+wUEHHRT84Q9/CFauXBmsWLEiOPPMM4Nbbrkl+G81GDso9trsln9NFKfCUaBO2nqqhoyeH7w7Luzmhu64JgroSUOw7IGInirntHSi0yyp9OsXvp0lFGLT6M6HIokDIxz5qIVSid32/kRh9ZD0rhw8zor77TELgrcimie02tUW3BMWrA7ui+ipt/1rYjDDgnvZ2l9idWA67W0MkV82bxFqNQFo5OwVwcOfpamJGFTBqYtXS/KAYmvDDYPszdHzYty2JmQ0Qe75KMR9+78mBdMtVNDlP4E7pAMrk8SOe4zgRuH8wYjSbdrfP5wsrDWSC5RmG4kCAb83Roa4ubaV69K40ZaBdo3d8cFkK6WS5Kb0a5gPMMZMI77hiySccfNWBvdFvmcanzVx4SoJlFCMbbhh0qkoHZ9rwz1l8VpZg3AtJsmfTftx3UahU2PQRm0CdOAGBwlnwvxVMTXatHs/mRqMn79SjuP+2CRyEOaDuRfiHmttnp66ZK2MQ8Du4h5adHS43ssj2jgCsjbletaNY1hH2B+6FqZBrUdhGH+61IEbphmMJAz/xE9Nw5/viGi1d3882apJxL5QFekho+cF71oU4MF9BXv/51+EbXOnAzeK1VB5wc0+Zl+YNnRSyEgU3G+Mk7hgGgURcQQjrvxg0YAiDiltnPhkY8ooBZ84AS1cKcamQZVmZAQFBH5iYzcRZ4m3GPHX1qxOvL71vfAziOPj56dxE/eVpk+Msgl+gps8gkAlbLJbo7UwDUX272culzh/ySujnbgRhFR1d/KHabOWrxMV+Nj35qUFKNds2LreiNnaBD9DCv44a5H3mylkvv/+++DGG28Mdtlll+COO+4I5s+fH5xzzjnyfTf/DRo0KJg40b7g/w2GarHLqI5RkX5rzAKvoBgBE+l2n6AYx5BYKCB8dEkqXxKUy9hoovrqOQbcJB+CgEuxWTGR6HzCghxDANOix0WX5AnYh4lEkoU7/Lx5Mv/DpdismEhkKGq7jwnpkhSaProkT8k+TBSDJN1s3HOFVulSbNZjKBxsAUWN+7Zh46Z4JoeLLkmh6sNEIkNFOBP38Lky18XHpuMcJLrRHiVekvwvGzcHr3sUhNkjFKo+TOAAT571hu7uUj7WY0h0Iy1zm9TeHDkv2PDLJq/yMfeLAgWqr8soYkkEvngSYpojxaFvnAO4eYDyjXN4c9R8eQMCvdZl4+evkjlZjDRwGf763tiFoiKdhRu6u48FCG7e6vjGORBHKCx8n0c8Ii75fIC4RnzzXb9i+nTi4vgtj/WYEXMlfvnGOTDbhzjoi80IM/LA48PN2w3WgLziY9O9OnyujH2wFSjxMYVzZQwDNG2XUVRR8PswQXXnAdN3DPnPlwP+z+nXy5cvDxo1Cr9L3nbbbYNq1aoFtWtv7YXg59Wr/aqY/z8br/l9tnTthngiq+8cy6LXcy6DmsqTj08ZNjzX+kxMfJbPwRWTTrf1HbPEQztNvt72Kazq69dM3DmPyRLwk/XOOA+JnDdpvkJuqzrs+v8YN9cPqyHrmKzzkJhJcr5CTjCtZQ3WZ16bj1YcY8q4/pCe7MdNIv9x3QZvIRdjylzv7HuS59rCNfLjBu/Kn3/xFnIhppDO78eUw09y3Lc8149f/7j2F+9YhLyYluTal/nuSdYxxBH821cQhefKE+PyxZM8sdJX6GgiV+p41rmy4wm++5/H+KVr1gseX0FEviGmLM+z53LEk990s6+Oqnf9+b/ZbLowSevYqLpVgyVp/L4tTWWeZUNQkg5zH6uFceOwWrIwoUOTB1PmeRpXl6YyH26ayMDtY7Uw/ppm2OzPq5HrmFzr3TBsPnTZ9vWrCSPDR/OkOZOmxPYNa/zHuDvmuSeNa0gzoY8uyTqC20fzhKUhuHP4rk8QVDG1b1Qj89paN6jmxU0TMCrhPno5rBiavbPXKYfvyr7MuLZG1cUPXGwcbYplvW3NwGpcN/ctD6Y89yTPebart62TjYPBekL52dZUq8b+IC5lYmqcJ8bV8Iri6nnwX5sUgBosM+QCbLptargZcSkXphKKJ63q+nHDSsNP0Ofy4SYuZceTfNfWoXH2tdH0biOhmGMRWE+Xke7b5/Td33Qhc9JJJwWHHnqo/Pfzzz8HZ511VvznU045JfhvNmhuLgemWxwGEd3eLtohweKEnVoJy8LWFa4Gu4RjYSW4DKo3nfUwLnxKvKj5gtulyA2r4FBRq23oDNBsuhN3aiUJExaJy07eZbsQt4Udo4biMTpMNgaNWpemNYK+reoIbtfG403M4b2aCSvJJqypuE/YuZWwLJSV4sJdPgM3wm7oGfnWm0Lgd9vXFZaAS0mcWQ3QKWGPkDhdweKknVsKy0JZKTZjDXmQ8K0l7BCKy5N23s45OoCks1PrukJ3dSmJw7bh97u3rWdla8S4d2klLAub8GASd/h/uwCrssMo5H24KZyhO0NTdg3q43qgA8OWciUWzs+9J5Arm8a33id71pv7BQuQY1y4ScyMF4Cmiz/YDP+B7r5z63reRAYmxiYMsAgPqp2ouD2+i+AnLEDun6sGpRDq166B+K8LN/sVGvOO29e1ClRuxb2dxAEVGXXhZl+eYmGtqbGvYQHKsQ7csLlgY0EvdimgEx9hJSEMjBK4E/cu24n+mYqMunATB0/ZxY0bAVdYgCfu3NKJm0KfPDGwV1PnbC7y0TE7thBhYER2Xca9R//Mp1wOGxN2nw/3Xh0aSv4ij7keDskTNoHa30whc+KJJwpjqWbNmvLfcccdFzRp0iT+M7874YQTgv9W4wbef0zPVDFDEH38hD4iJIYjPHlS35RYGE9qNx7SRaTbMWiaZtWKW0BJZn4Kdna/NsGBlgTMDIK/HtQpph1evG+71GagmIK2ibHRHzimlxX3Eyf1FQfHKR8/sW9qJgu4oezpJoGeipqwiZs5HDp/4KzdW1vnCECpvPqgzvIzdG5oiiZuNsFDEW4Ca0idLJ8S53v8xD4SUAh0j53Yp4gwHMb1XNe/s2xwDDorBZKJm5k3x0fKsGfstr1Vfr53i9rBtf1D3NDnL9s/jZun3keOD3GTyKBWm0UYyemRE3pLQVQ+Wm9zciu4rzmokyjaYtC+bQq6BCSlgUNPtiWyni1qBdcPCHFTqKB0Xt7IrryFevSEPpLoKBxYeyvu43tLwuQ41t586wbuv/6hkxSgSk+lkLYVsppQT9mllfzZtB7Na8Xq7vj6Xw7smAqafD73HTwUag9bcPPnh4/vLQUKxz12Qt/ULBnWg/NTgGKMV+DzbYWs0sBJVBTRpnGflKZPQrz6oE4p3Nxv7jv3n/XEH8yiF9zcBxXf4/6Ybws5LWrF0GAx/BMKrWkoQkMDxo77XUvrjCcSt6qks184lw036w1uChB+Note9ikUbRVV5drMUQ2cFjXuXSP6+tUHd7KOmKAQZgwBxmwbHg7KWZTrb45o+tyz6wZ0Tr0JJC48flJfuR6KAXzXFGElLkJ15oEHe+j43jKsz8RNnFX6Or6+Q+TrZiGLkjZ2dBQTy1keeG47LKRfoxR+4yFdU7jJH09GuInPT5zYJ1Wsg5t81DTC+tBxvVKjGjjtRXu3i8dQ/OUP+Hoa9/6dGwbnRjRwCujjfpfGTUF9xxHheqPMDtU+hbtapeDJk/vGoqClZcX6tCeffDLXf/+tBlWOBi6zmZfv/AdHLBOMrn/z+1ioczRnKi1btDaMhl++vqTZTGl3M5baNYJgM2gTKN34NLKZ5ACogqq/AlXOhVtZJti/xi1IfbcJbq5NadnDZy6XZs4U7kmLpZlMcC9ba8c9b6U0uGH0ANEUZ+KmgVlZQeAOG4iL4oa2m2w2Qz/E7N/ZZOAunLlCmjBN3DCnGPGNQSe0iQGOm78yGD1nZbxmb41OrzfyDDQoJ9fb7Lmhl+W1RKPoB+MXpnSLwP36qPkxbZVmXVuDNWJzSl+HmomIm62Bk6bZcM02SjPzZuNLcqip6CclmxltuJMNlzQ0m+PuwU3TsdJWaZr9YcFqK4NCx6nz/88np3HTmE1DYfjZIW6TMsvnJ9lMr1lw8+ekn6CPY467Zz0QAlTaKutlawxHO0ppyaz7Z5H4a9K4Tyryyv2D1WHi5n7TWJ1sWDd7nNYZjaLoEZl6S5wWtotSq0fP/VHut2n4xawIt0tLin2hIq/sF5qxbbiTLCzW1exxYp+CG//H2A+mUCunhcSgoyfGJGJZSvspoveCG6aT2d4B+w9GpuJ+Y+T8FEWZuEBDuBr7j/iRNOIizdmKmxgMRdzETZzVUQjEhDHz0o3hX09bKiwjjDg+dOLiFG7i53czt+LGd03c5I8ke+y1kfNSwqGCu3BuPGKCNTKlAQR3Qv9vfCKWJe2bGcuFFIBBdf90Ynq9afRVcVryGGuZwr12Q6nrLGFlk32LYWxMWAQ2Q9iM7nmc995P7FRQihcYDwSJa4eMt+pekBDv/TiiX783yUoFJdBd/9YE+fmpL2c6mUQ3vztRnB8Hh9JrM5RoKS6YG6B0XtMIcq9GG+aaIeOtFD8C7b0J+rWt0Y1Ad/3bIe6nv/Lh/kEC3edTlsomtBmKriQ7ZuVAh7UZyfTlKEC5cJMQY/r1+5OsTZoEjOsi1fNnvp7pZEDd8t5ECRhfTl3mZJyxjgRfmu/u/MCOm2SKECS48RObYByJBbVuwf3BJGtzHc17qtYO/RJqv4uCT7PzV9OWCsPFZvgtNE/u620OCitMJfzJh5t5N9CuMejMtiZcwT0kxI04HcnOjnuS0Dy/nb6syINE0igmvpm+TI5TOq9prIuK4OEntiZ71heaOwZl2ja3h+u9DpX5LaFAoxaRpnEemiV5KEg+SCSNIuWrqUuFfssYBptRuCit9rohE6xsSfxZ6dd3fTjFqreUxM14ARdz667ouokHLkYOSYyij4RP/LEZ7ChVYr/uLTtu/IxxCNg9H0226i2xn68dMiF8wBw+Jy7GTEP9m/lF0MIRhrQZLDKKPOIO8cdmxKunI0Vz/NNGaiBeq58RD4nnphH3+ffg5v67GGf8e4oKHlxdIo3ko6GTF0shfuM7PzgZUuQJXW8bqYGGaqV4k79ss2DAjZ/Iw9aIeU7G2f2fTo0fakvLygqZYlgWpYzgw0b2CYoNGTVfNpxvaJA+afkUbXmKofL3UYY5B09ztjkFJibowD5BMT5n5JwVXkExjuEJmrkcLiP4UtnzVsNlPKF+lAf36PnytOVStJVjRoH7R+uQr+R9ZeCYbV5JMojxBOjDTYDgHHnWm8DpUrSVY0bPlwSuT3c2E8r8ho3yZsdlkxetkcTh810CMvRk37Upbtbbx6YDN/d4ugf3u+MWCu7kk7JpzMXhwcC3luCgQPftAcXEWxDfWASOmRD5psveF9ybnMU1xnWzN4eUIG4fC5B7whsVkpXLOAeDJt8Z6/485p9QiHpxb9osb23z+PdHExZ5WYCcA3o9vukyYgC4fX7JvmZ/+44hPhDf8sQTHlZ9bDqOgaZve/ulxrwmeQPqeCjAiP+Fs1d4MRGPZc5MRt4ZMirEbb6xKYp7ntD0XQ8FGOegkPNhojDjgcaHifxXpn79Gzbb1MSk4UhVK/mXlIm7WeehGGADZylSM4kx61y8RvU5eF5M/N43hwMjcPF5mbjXb8zExNCoPJiyz5N9bSQKgpevkMt7LsFkmQpa3GvL81kkZoo+XyGnmMzX6bbPK4m1XPPzL5nn2RDh9hVyee/v2lyYOM+m7PNk3DfwsjezxiLkW6eSWW8wZ50H/2BaeNZYhDzxZHVOTHn8O+uesB85V9ZYhDy+y/4uiXiSx982Rbh1Qrv//mb7ZZ5YuSbXevuPIfxRqGeNcwgxZV9baVrZG5liWC9LU1rSYAjxn/ccLWpLw6+PLtmzRW1pvPSJgNG4Bn2vpDDlOQ+NaS7xMm24o1nYxcZRthHskSxMNNj2znNtLbKP6dKkppcuSVMqDaEuNo7grlwg7J6SwpR9njpB5yY1nWwzjObluhk0TxoyoV72yoHJ1nRpHpPlJ31a1pFmRh/NEzYLuH1sHBpgOzapke27OdayT6sce6BlbcHjYpth/B7cNJm6jPvVuXHNEsEU+kkd/zEtQtwu1payu/Dvbpbm6yRu/CnP/S2peILfuthPGHEEmr6PjUM8olm5pDDl8RNo6i72EwaLkibjnj7cFcpLc3hJxZM+Oe4b8c0naAxrlbxjaxpXYzwBeSAPptK0skKmGAbNE0VSF1UO5Wtoni76HsFdaZ6H9XbTDunWh2Vxxu5pETQ1zoOgGIwE18wOhNbg+0ObdSlb0/EO5RSap41lokGOz+McKGW7cbcW3Mo2sOLeqZW8tUJg0IUbRhPMKNS/XcrWsIT6d28qNE/YOTajeIEhA0vIpxCtLAMf7uN2ahlUq1wgzBXXrBGowHTzQ83kHtsM1swhPZsIu8cVfMANowdWlk8hWnHr/624f9dSktwpu7ZyFs8IIpIsYBC5ZhfBEoIqS4CCSeRKKifv2kqKbJ9C9JmRKKEPNyw42BpQ413FMzhIUAN7NXPOLoJtg2AeRbaNrSG4I8oprEOf0rLiRsTQZVw39w3KsAs37D0KFNbTpcgdxohm8tDjUm7HD/kc/NKntKx42Z8uw89gI+F3rqKfBMeaI5zomrnEfmXfUoS7lNvBfdqu20scON4zYgL2I3a2RcQyGZOJS2E8tOPm3sPag8HlmrkE24Y4yUwWm7AmRrw6bbftRRDRN6pB47fPvw/v00yKYpiHrqKfwhOWJHnFNdKjThTb2jas7lRAD3FvJ/mC+OsyRE7D+N3aO/aDGAFt3FX0U+i77v2vZWWFTDFMaJ7HpxVdqb6fOLGvKMPiCNAlTeVfnPXvR3aPZ55AcTQTAg4HBU4VhKHuMdsgme/5cZ9ODWLlUTbpNQd3TgVNntLuOaan/Ewif/i4tKIrQeeJk/qIg2Mu3Hcc3l2Gk2F8lpkQoAie0691PKvlqL4thL5n4t67YwNRmMao6qFHm0GTp7T7ItwkhIeP75PCTdCBUqkKq48c1zv19grcKDajaItBVzcTArgJOihDY8z1gIpt4oa6qIq2FCrQ0U3cPPWiNi64q1QMHjuhtyiQm7hZb/36EV/arl5R3ARjFJsJTEqXpEAycVPAMmsFI1Ezd8bE3a99faG6YiSWGwamcbepv23w4LHhepPIodWaT211qkJb7SsJE3vo2F6pt27gvuXQrvHguSsP7JAKZuAOqeJhEc/cJRKnqf7MrBqoxRhvd6B5mkmKWSz4dDz+4MS+qYcM/sz16NsKKPHmcDXWA8q0jhS4bP8OksiSiMDHvJaBPcMinoRIYjApytynKw/sKD8zVOzWQ7ulcDOLRccL4Af4g/mQwfo/fiJxJrweRhCYbwvBjR/ij9il+3WQB5dy5hylnVrGs0NIiPi7iXuX1nXFzzD2C6MhTNzsLx0vwL6DxlzXxF2lYvAI+zW6D/f/sVfqbSG4iX06huLifdsHe3VokMJN/IAGjO3fpbEo2Zu4KcB1DAXrQ5wyi4KWCdzEucdP6pN6OGK/Psx+jaZt3/fHnqmBb4pbqfkX7t0u2KdjGjcFuI7PII4Tz03cKJJfe3A4FgGl8DuO7JbCTRx+9Pg+MW6o2CZu8hCU6zrRfbjn6B6pt5zkBcYA8JYfu2CvtsF+nRumcENvh+auyu2D9myTetCkAIfiHq5rNclnZjED/Zu9WNqDcssKmWIY343TGW6O+obid1Oi0x1Whtlcyve8sCyUvgfrxuz65jth2Dw0lWI0VUFxS7Zu8CM6JlCOMdhG930yJfW9Pc2pD38WCheis3LjuyGjxmRi8PdqsGBsuGGXwJ5Q1s0305envhOGhYA2EAYrh+tL4Z64OG7whEVAd7zZgElz6j+GJnC/MyGFGyYG6610ybs/npIS1xTc70+O1bbRKzGp1eCG9UGTJzZi9gphOZm4YQVogycsKQQKTdxQ6R8YGrLNUCS+4Z0fYoXyJG7+XnFznqRaMEYfw50fhmwcDPFIWCAm7ue/hYUUNu4pG8PEDQtD2VOwg+7+cHIK99Qla4L7P50Wnxf/NkfCI0bI3yvNEyHG6YZIpeD+YHLMVoP9ZIqZcn7YF7AwMNhyL3w3O6X+DFtNm05h98C2Mfs7aAYGBwauG96ZkGL48WfWW3u2uE5TXJP1gK2n7CmaGFm3JCLwvfT9VhYS6/78N7NTvWDcJxX7ZB24jyZumoGV3Rfi/iHF8PvRwP3Ap1NTTcjgxn+UPcUog6EGbv55yEJaEVNvn/1mVgr3l9OWxbpX7Bfuo4mb/cU+w/Dfm96dmGL44e83vvtDrMj94NCpsp9N3Pd9PFX2P/beuAXBJ5OKUpSBh+aTspBCltPMFG5GPCjri/gEe8/sp0Ht+q6PtuLGj02GH/GFv1dF7oeGTkuNagA3901VoWnW/sigVgOPMQWw0TDOQTw3cUNhJs7oZxOnTNzE4aSgKOtq4iYPEb83RHsa4UuTCcrv7vt0aqweDssJQoKJG1ai5qMpEcvJ7BmEdYs/hZ8NO2tSqp8G+reKq5amlRUyxTC6/l1ieMw++XraMgk4JHGbwUBB9ZXZAX933GyapDTQQZu0NRbiXxRFbMzHhk1PzSJRe/TzGZII6Ngn2dmMeSTMmmCGgIuaSBAj4YDlTg9uAhRGILThJl9B9QU3qq02Kij2+BfTJUBTrOlcDtNIkvyHkCPYbEYwgBYPltvfn+xsAtT1/vsH6USvuG9/f6Iknie/nJma6aH2xBczJEATKFyUSoopEg7Cc0qdNY35KvyOwOpS6yWAqOIzAc/WyBniniS4CUw2Kij21FczJdDBEnFRKkkaFHTM3CGpuJgY/G6jBzcBGzqs0nldDaj8exLA01/PcjL8nol+B9vCLK7VuJ5wnsk6uU4n7ijhKOXXNHAq3R38rgZUgjjX/+zXs5wMP4oJ7j8Fk21ukSYN/Ij7gs/ZDD986qsZcn9JKjYdHfxZEyJjBlyNnBQB+Bt+52L4UYQi9Ahus7hWo/ggWbIP2A82g0r9xJczc+AO7wX708UkIh6xv5/7dpYULTajCIWxA2azuFaDcs5DFnHnsWF23MRZ4hbxC4q1DXcYI8P15kHN1fSK7zOLBZq+i5n4cuEcYUhBw2eEhs0ort8bt0Di/MOfT7ceE17T9Bi3jdNAI7sWIDwguPTEwj27Kfjnd3OczEQedmGklaaVsZaKYT56rtIcdRqn85jxi+Q1v20+zNbzLJInDB0+ZDOcn6cd11wbdU4KLJRR/ZgWBk1rV/EKinFt3ZvX9IrhccyqdcwjcSvDEmwYlOZbS1gWDKXyKbXq56F74sU9fqH0ovhEA0ngq5n/4vk8igvmx/hw8wTDW6fvPfctxLQomNFgrTWgqL0/YaF8r+8qUjGhXP78SzDMMpwtmaQZ3uXDTQJnDXzKz4Jp3CJZBy/u8Yukx8k290ONsQLgtg1nSyZp3thk4Wa8gL6ZcmNaKHh8bDr2ETIdrmJPi35w68BGm1GcM5wuOfTONGCw3vrm1Y1pobyt8bHp8KUDujT2jnMggcNIwjddRrLj/vviCTDA5BsJEGJaKDReH5uO8/AVnW8sAnGE8/h8gLcUFE++Y4gP/H5ONPjSjWmRJGkfm45ro5fMfANsFv28afkwMUDQNOIoQzrz4Na3KW5Mi4KNm7Z42XTEE3ppfGMRKPp5I/ehx3fJW3xTkJULiQP6tX5pWNkbmWJYFs2VQKmvVV1GUNJXmC7jScV83W4/12ZxYD+m7GNCTNnXlkWrDo/xHhIf98vm7HXKvrYtmZTpjXlwb+E8m70FUbHub+Y6bc7ExLVnXZus46YtmbhDTJtz3Lsc9yTHtWXdN07BeTaXxHrnXKc89w0fyIM7z73Ls1cy96VcW/Z9y4on+AfnMac6/3vxZEuJxZOsawtxZ8fCPOfKh2lzrniSdf1yrk2bM3H/ksMv813b5mx/y7FPwnPl8O+c8aQ0rayQKYbRhOiz3drWD3ZzdLwnzwHzwyXOh6FDQgOXqQ2UNNgO0IF3b+fGRK8WXe+7tcvG7erU33pMPWGI+Gieu7atL43FPponLBKUWvlMH24aJ7M63zkH4ntZx/RoUUto3y7bpXW9oHa1yl6aJywSGk99uOlv2y0n7qx7wv2gsdBH86TZkfX20SVpyIRFsHsW7rbgzvDddvUy9wCfw/330TxpcqexkuZBl9GoSyNrPkzZx2Sdh+vn81ysRIw3e+CmWdNlNI7iR1k+wFurzFjRrr7sA1/fJJ/DG16z8TZpsPrAjb+4DD/r2bx2pl+GuLN9AFxZuNlPLnYfBouydtVKqWb3pEHf7tWyVq77myd+81ke4XY5hoZaUyMtafh/nW0re3ETR8kDmf4ta5kd43Zp68fNfaMB3cWSw4gT9TJw09zLPsiz3qVpZYVMMQx2iEshGuel+57kA3vAZnSdQ+OFHXJqJORmoyaeF4l3nb9nW2cwOJeu8grlhb3iKi5gK6CwCs3TNZOGYgmlUoI4rCKbESRRO4W1ogJ0ptHhrrjpjHfi3qNNUDHC7ZohATsEyXnYLbA8XLNI9u3UUNgm/N9mIS0TmmCBk1otuPcMccMEcwUDWFkwAGCruIqiQ3o0DVrVqyavzE12jBpBEHYX7B4Uh21GMlV6/Vn97FRImBCD9or8xIP77H6thU0HW8hVFB3crYmwJw7q3ljYVzajaOYrDNhUsF9sRvGCerLg/r0bN36dhZt/z3mgz7uUfxEW5PU1Qn2uWTpcD7+H1eJStmZdoF+zTuf0C9fUNHCCV3G7lH+haIMblWRXMXdg10aSVLj/rlk64OX6uC8DHLjxw1N33V788pw9snEP2rOtc+QBFG3YSLCzXMUcbBeKj/06N5L/2ww2W/8eTYTV4lK2Zt9DvyYOnLeH3U+IHxfsHeImrrhwn757SOOGVuwq5lCQJr4R51wzgGCTsn8RBoZibDPi7OmMjahQXlg9Ltzq3xzjGtXAfuR8sMpcIyagU8PuAr9rpAf5aGDPpkIrhz5uMx6aoY0nY4YVd+Qn52XgJn/BKnMVoTyEKUuqtKyskCmGkcjvOqpHii7JTIV7j+4pyrDYHUd0TyVggs4th3aLe2j+tFcbmTmTdBecZ9AebUU5V+l7OHoyaPIjgVAVmwl0fz2oY1DFoEt2aVIjVmxmo9/twa3nv11o1kVxs9luPLRLrGg7aM/W4VOigZtgo3Ryeg1OjqTsk7j379wonr9A4AhxF30z1blxjVixmcB699E9UgGKmSH3HtMjVliFrtymgYm7gqiNq6ItBRRP5iZuEr0qH+/RoYHMLUkGTTY4hRLzOjACNNRJk3bYsXH1GDeJ7J6je6YCFE9xrDcBHIOuzFDDpKHMi/IziuUYiRUadRI3+M7afXuZ/aMK6AQqE/c+HRvK32MEaOjuJm4SqSo2k8ihcNa34L7nmB4xxf/mgV2D9gZuznt9/85SOGshskeHNG4KWFU+5qmO2RVFcEcBXGefgPtvA9K4+fybBoaKzeC695ieqRk4/Pneo3vIdWHQuM3CQXAP6CKfo4mRgj5ZiCtunmox3nKeacHNfdJCiMRywyFdUm9eKbhYPww/wB/Mp3v8hvugYxHwh44W3PghBb8mGPzUxE2BpsrH9FxRGCeTVLko8ajyMfvlxoFdUwrRFFa3HdYtgbtH0NCG+6ieW3EP6CIPHCZuFK8p+DEKPuJCEjdxg/ixZ4fwAYVZUefukcbNU78WFI1qbiNxynyoa1O/WnD74SHuggi3+VaC+EJ81HEOxE2z4CG+Eq+It9jxO7WSOFzewH3iTi2FvowRx4nnJm7i5wVRQdGgxjbixyZu8ofi5rz4tzm7h3hOPqoW/dtrDu6UKnjAfdVBHWP6PhRrCmQTN/mEAhVjxtGgvdK4GV9xYVRcksduPaxr6qGOuK4K2aVpZYVMMYwO9AteGpmiS9KYeN6LI+LvBS96eXSqqYrx/pe9NiamHUIJRFww+U0i3+HS6a7MEbroYWYkv2/kR1RRlTkCSwoByXUG+2Pc/FXB1W+Oj0dKn//SKDvuF0bG39Ne/MroFD2Va75y8Li44eyej6dK86CJG6EwxPswGsGeNGiH/Ahl8ckvQ0YALCmbgNn4BauCv74xTn5mXPb5L45MNRjTUJnEfcmrY4Kpi03cm4IrXx8bi5fd98lUUVo2cT84dJqIJWI0jj7x5Ywi3yXzNTdNgHT9YzQ6Iixosj9oYL4qwk3DILhNuiSNu4NeHBn3NFz62phgikFPZWT5X14fFzdvQr01lX/B99Dn02PFaxqjHx02PYUbtedHPg+p1bC7rrbghq55xeCxMW7wLbHg5nq0mfDywWOCSQZuzsv1w8ZR6q2poAs+8NA0i9HsC2W0CO6oiVkp+JyP85q4+XxwYLA/Br0wMiXkyJ8HvTQqVpy/fPDYFD2V8/71zXHCxsEYWYBWWLK9AXysrzbNfzFlafDQZ9NSuLlP3C8Mdhf30WTb0KB/2WvherOerLfZ0I3f8Peq3M55frDgRngQNg6Gf+KnJu7Hv5wRfDIxbMyE/cK6JntFlKZ/X8SAY7+wb8zR+cSZP78arjf+C75FFtznvzQyVm7nvpkCq+Bm32vDMMwm4kISN3GD+IFeE4boJ9R5EzcMJGXuIdZ7xWtjUyyhqUvWBn9+ZXS4Hps2B+e9OCrViE58AbcqtxM3TS0l4itxVmnw0KqJw8lWEGXZqfYZcZx4buImfqpAL3Ru/NLETf4gHut5z3thRIotSTz/00ujYskE4pKpJA7uv739Q8wigjHHSAYTN3kGHS0M+vi9H6Vx03x9Z8SAYwzFpa+OScnWcF/Jf6VtZYVMMYxZJLA2XAq6JEJmNrjYGGwYHIlOfGh8NiP4aDCEdujqF+MYNiYBzEVNDPH+FLw+cp6THUCggUEBQ4QEYjM2DIUTm82H+/4cuCkcCISPDpvhxP36qHmSWN4YNc/JDiAh0RkPYwX8rg77p7+eKRv9UQc1cVPO9SZxkXighrsolcw+ESHPUfOd7ADE/RCMZDYG+G0G44FASULQWUA23MwPEtyf+HBPl0ROwnBpZRHYCND83yxkkwkYmiezMQjgNmOuBRRnEvDDn9nXmwB6fzT/heTp6gl8+PNpch4KS3Nukxo4mHnBeAHm+NiM60LAjkDuErJjXfgcPo/77MJNMazr7cT92TS5b9DdzflHaiRu1lHW08FcYk4P4n3Qb10CfVBkwc391cLPNPzi3mgsAvhdTZiPDJsuiRy/M+cIqfGAwswlHrBcyvWhkG0oUMj+tRn7h7jFfnrQhzvy7/s9uB8njqwH9ywnExS2FnGCQs8lUgmb8o2R8yXuvD7SPj6DeMX+J35prPPiJka7cH8xQ9aBuGo+YKpRGEOvZt1dIpXE9cEj50nhDO3ZZhSPjOIgX9wfYbMZD6lZuBkFwAyZ576e5WSwUmAyk6s0rYx+XQxzzSBI/t7XBKbDvmjy8glzUbEvXf1z6mnGfCtBMPFhwhd5aucJMguTa3S3Gp/Dq2mfGBiftXzN+tRTgfmUTDD5YqqbwkowGDZ1SfDV1GUZmJYEc1ZU8x8zeak0zLnmIgTRk8aKtdBm3bh52uR++NYS3F9MWRJ8N9O/iYdNXhIsXOmXueetBV8JuJI4xuwUBuf5aNMESYrsYY65H2rgds0aUqNAN9962HDzitqVxLHvZoY0T9esHYxkih/l8d3xGfRrMPnwqC8d3L2xdywCNF9wu2btYNwv6NdZsQJMPsXqENNSeWPpI79wDMWFbywC9xX//maGez9RzI2a/aOspxf3lCXBDEexu/WYpZlsOnAzQNM3FgGl5uVrNnjHIrCvSZq+eKK4XQ+hWzEtka+4fIQb3upShPr2AfuNuS76xtRVFOFPWf4NJt8oAzlm8pKgcoXyftxTlsjDiGt2F0Zc5rp8uMlb0Maz4glxN0vfrSSt7I1MMczVAKVWUKFc3LfhPEf5cnGPhPM8coyb1aRGb0BBJqbsY0JMOa6tfBbu8LOyplNz/RUzzsXvC3Jhyri2HMcwgh5MWbg5T9b95fesZ9YxWWspa5Rx/Xy3XTHXepfLXO/QT/zHoEmU5bv8Puu+sTwcU74E1lvub5Z/57g2OSZjjQR3+XLORt/iYSqpPZcdT/AP4okpBZHCVJDtcxVLMZ4I7oI8ezzHfiqffW3hvvzP760cV1A+209yxpM8saIgx33Luv7wuGz/LsgVT8okCn6ztm8nO8tEjSfRfTs3zDwG5VuXiKN8TudGolfiErlTdgCMDG3QchU6MKhUu8mHaZ9ORRvubMfwJsnVYY/t07lhUKNKJafIHQZ7ioZLjnXirlBeGm9zrXcGbq4dxVqXGKLg7tQw2Habil7aIdonypTyBQGYa9k+0FA+0xcvOAYGnEsMEeOzwO2jH/OmDfVvHyaCN8wI37WFmBpJI6Mv0HFM92a1vDRPmnm3rVxRmpRdhigoelw+TBUi3L49EOPu2MCLGz+B2eJ7M0lTLOutzbM247q5fh8mYOwjsSIb914dG3iTK8fgly5RQW2q3nabAjmXy3iTjFpzFm7uRx7c7F9f4gyZT9VT2m7mWAQYMuwVl8GcIS75/Fsa9jvj31m4Gwpul7iq4obBp5p5NiP+oZPl810ajGkG9h2jRIOseLJv54ayl1wipSHuhsI4dLEpMcYKQNP3rROMNkgdefJcaVpZIVMMg8bpUlomUMJ+QVwRoUeb4URH79BcWBQqQmgaXeDnR534l+zXwapES0BB3A5hrtN23c6ZNGCOIHQJzdMlq06hs3OberIxETyzGR30qPqyUVSEMIW7coHQrjGuLQs3LAuXgi5MFgoPNp9r1ghJhcID1oYyuEzjmo7bsaU8jVzqwA1bQGmeCNjZFHTLRbhhpcFqciU7GEKwECgKXQrRMC3ADksGSruLUolqNU9jiAHaDDbMn/YOBTgv3redVUFXcB8Q4oZW68LNvYD1AdvMVTyz1uDmHJzLpQCvLLvLDmhvLTCrJnBftE87q4Iu/+7S/TuELJCdW8l5bQazBXYXhQUMQJsxO4XCCTYO12kzigDYJnzepfvbcbO+F+0T+tCF+7R1zoHi33PfWAdXkj5p59CH+jGTxTFvg6RCkQZb8NTd7LjlXuzSSu4vIps23PjzxZFQK+vuGtXAeoOb/eIa1YC/4rfMY1EGl2k7tKojhQesFteoBopU2FTEAXCXd+HeN8R9wV7tnKMa2Nfsb9g4rlENXBNsQ3wEZpnNmI1C8qUwUpVz04iz+BC4JR5YcBP3iCMh7rbOUQ1/3q+9xNNjdmyREmBVI+bCkoKdyEOLzZghdWDXxvJgjLCmzXgYUvbi5Qd0tOJOxvbzPbi5NvIXU4JNIVO1oz2/+7WsrJAphnGzL9u/feom85aCQKCGA6MCaguEPGFgjLnewUjSPHkRAFX5mOKDGQGmqvFeHRpKkMNInDLjxHiK4KlBAzcb/bL9OqTmiNQ1cDNjoIWRNAgof9qnXTzLA8VicyAYCYDEy2wMjBkCh/cqihsj4ejTHIHuXAtu3jJpACSwEjBqmrirVYoLIgzqd0sjaYCb+6BKvMykMQeC8cCIwrgqNvMG5PBezVK4SeAUVRgFFlTVlIp0g23jWTWsx+XgNuaf1KlaSf5ecUMpNZPGNgXlZZ6NKvEy+wR1YhM3QU4Vm3lzcUSfNG7e1BwYzaqhoKVANnFTXOvMF8F9QIfU/BOewiThRB+Av5lJg/Oy3gzow1Dm5onaxE2QU8Vm/s/sCxM3RZPOqiFAM5fDxM3n6+wUcOEP5vwTruPyA9vHuAn0ZtLgvARu1gcjKTDUMGn88yP7NosVmxlAx/qbLxy4T6pIzv27YO/0eqN2fk6/0E8kkVtw4zest75BOmv31lb1a+Z96CwPKMzmmzn+OX6hgx6Z/WLDvfP2dWX2kXx21YpS8OCHSWN/4a9bcbcXfy6Ku0AKWP265MzdW6fmEoGb/aNvSCke+rVrkMJ9WK+m8SwSlKiP/V2L1Bu1321XJxjQM8JdpaLEKfNBhHh23p5bceMn5jgH4gt/r1/RkfTNuUTEqXP2aC3xFqNY27N9Wv2aeK0PjcRxc3yGFnvEf4w3NxT05oMIxbs+0GqBTLxOGvGcv68Y4abgTalfg7tf63h8BgUR+cPEfUiPJvHYD3yNBwjzTSDFniqpk8cutuDmoUAfDEvTygqZYhiNaWc9NyLF/qAR9OQnvxfWA8Jcpz49XFRAk0bT3sWvjBLaMQZ10mwKDRlL02KFaATcbKrG0GpVeI9Gt+venpDSB6GREMqsNnye+dzwVOPosjUbglOfCnFjpz9dGMw2GuIQy7vkldEx7RDqpKkBBaPgH59NC96LFKIRQnv+u6K4lT2gopM0IF77Vho37BOo7BiNlWc8WxisNHGv3RCc+vT3Mc3z9GcLg1kGKwvc0N1htWDXvz1eNFCK4N4SKsYqm+Xl7+cEz307O4Ub9gCiehjsrqvfHJdWkV68Jjjn+RA3jaWnPzM81WC6/KcNwSlPfx/TJc98tjDFyvp54+bgssFjY/Vd1L9RJzZxP/bFjFghGrYC9EkTN825t/4rVDeHtXGVBTcspbOeK5SfYSOc9nRhirVCA+wpT30fN3qD22RlcV5o+soKQZ08pdq9JRCxQFWIhlUHy8nETSPozZEqO42s0I9N3Hz+mc8Ol59hAbLnzEZdroPr4feC+7nClGo35/3L62NFGRq79b2JqYZX8MGKeS1ihbw5ap6svzmpnvvEdWM0sl7xWho3audnPhf6CX6AP5i4Tf/Br2zq1/ih6kwhsmmyJcH97NezY6VlWFDQyE3cX01fJurhGPpPjAXAD5PG/jr9mdBPYDed8tRw8eeiuDcGZzxTKDpx2LkvjEixycANTViVxBEqRP3axP38t3NEYBeDlQb7zmQufTNjuVCiMVhpxClThJR4BiaMeIEfm43RxBd8QxXnoZabqt3EKT5LlcQRtLSpXxOvEdfEiOPEcxM3ze7EfwxWGvRwcwwFjcmnPTNc8gnxmfUmXieNeE4+WhY1TF/w4si0+jW43/4hVhInb5A/TNwIHcOoxaCPwxQzmUs05+Nzyk678OVRKdwIpZ76VIi7NK2skCmGIWHuoiYy94OESPB2UeXYZCQcOsNVft5mzNrAEUiyLlN6LvRDFzWRwEZAJZC52BiI5JEQmTHhYhsRfPg8NsyrDmVvjNkmWbhRBSYQQj90UfxIZCSWV4bPdVITmalAQmHGhAZFG27mUXCOl324I8otlF+XPf/NbEk8T3hww34aO3elFBYuFgmsAWipMF9cyt7QUpm3QyHnUiQXvIrbQRnGCKokcmi6Lq0ZClMKy8GFc50sEmadvD5iblA4a7mTbUTQZH1IwBSzWevt8xP+PedhHVwifihEE6AZL+BikcheK5wrCcjFNmJdnvgipJW6lNST/uGilqvSMon8yS9mOnGDGeE9cLtYJDwcgZvC2SzAk7iVxutSUk+us2+9iW0kcui1LvFBfIT99uao+U4mDX7/SuEcKbBcCtky3+aLkDYNjdeHm3ji8+9X2Gtr1ktBbFOux2AjMiuKQs6lXB/GiDlSiOucIxtuClji1zNe3GH89sWT1wrnyV5Ddd2lAA/7iVljjEVwiYKSj/45fI48+LjETMkP0N0piFwK8IobnT+fn+CzzJCBNu7CDbszi/32X1XIfP7558HBBx8cNGnSRF77vfHGG0V+jzNcffXVQePGjYMqVaoEe++9dzBlipsH/2ubVuMu4+3IiFk/Zh7DJvcJmBEwCMA+ZViqcZ7Ssvj64BnhobnqdWWeZ/YKKXR8yrAUFARgnzoudEmedrIwkeTzYMq+/hVSFPmUYbkugoprhgpGsuAtl6v4KB6mfNfG2whXcMYomAnirhkqSvMkyGUpW7NOhZnXhi9lXz/JwBXkMJ4awe2aRYLxpDdxwarMdRLfzeVLP2aeh3XyjUXAb8HtG4vAdY9fsDKXX+by78xrC3G7ZjJhxImlGWMR8DP8KV+Myz4mz3nwW99YBN66gds3FoF9zfDPLL8cWULxZOSsFbKerplMGG9Zl6xZ7x1nQBzlfpRmPJm6eI13nANvgVhv37nIWzysZeLO8JH/qkJm7dq1Qffu3YMHHnjA+vvbbrstuPfee4OHHnoo+Pbbb4Nq1aoF++23X/Dzz35e/a9lPsFE+f02BfJf1jmyjqlWqSCoWrkgkwYnn1dSmLLOU7kg7u9xGQ2QjDbPojCG5/J/XvVcmCo6mwDj8+RYI77nBXsWPTEfpoISwZTHT+g3oFnWx7Iojp9k3ZM8mGD1ZH1WJcXtYVkoJs73n2PKvid51oh1Ru7D1sietOqVK5YIpuo5rz/rvuHX+Letkb24ayB7oCT8JMdeIo6wx20N4b/G5/FZueJpxjHE7WqVCuS/0oon1XNcf9Yx4EamoaQw/c8UMgcccEBwww03BAMHDkz9jrcxd999d3DVVVcFAwYMCLp16xY888wzwfz581NvbkrLEEPz2YDuTYM/dG3sTeQDejQJereo7aV58jk4C2wLlyFSCStHm/Rsxjlo7vIdE2JqKk2OftxNhZ7pYpAobgK9NiK7RCp9An4YQReab+Z692gS7N+lsbcA6d+jqTTxusQ+MQahValU4KUd0ihJ854PEwEXWnnWenMOmGS+AoT1RjfFxcQIcTcR3Ps5xCe16ZtmZh8mEtx+nRrl8JMm0lTqS+QIHNLE66N5HtQ1XG9tRLYZTaI01fowgQMBzv7d7eKESUzQRX24+RzusUt8EjugayMJ9C7RTIxmYpqCfbgp4BDgzPJvroumUhsjLXlPaLJ3iU9qQy3rjTioy4glqE37MOGvB3RtnCueEAN8BQjHEAdMLaakcc9Ybx9umGEwd3yYiA/EtzzxBOZetQzcMIlcIo7KYEX/yBfjaIplYJwPE/EYX/OdB+vfo4nkCl9xAW6YW9xjl0HG4GHVh4m81bdVHe96UxD59sj/VI/MjBkzgoULF8rXSWo1a9YMdtxxx+Drr792/rv169cHq1atKvJfSRnd9S7FYrrTYZFAY/2To2sbSi6sH1gUCAzaEjCOgkotBnPBNm+GAIFAGAb90qZECzHmqj90lA0F64YCy2bH7thCEg/d+BdFdEfToEDTZS+4+3ex4oZSqeqpUH5tSrQE5GsODoUV6Yrv5MB95R86ShEGewWBM5tBcYeNAfvBRWWny/6I3s3ka0sEE22FAxRwpQNDP7TNySHRXxutN1RvijGbXXEAzLCKQmcnKNrsyD7NJIDBkoFxYDMCM/RGwT2gs/XNBVRQ9bM/79vOqkRL4r6mf4gb1gfFrx13x2huUd3gUIdiMWwFWA2wkmB42IyCEVYMdl3/LlbczCu5MKIDQ+W0TcIGtwqeMhJAWTemgQN2EPvKpViM3yI6yHHcH5sR3GGvYXyureDBzy6O6NewTGzzfbhe/AxjHVyjGqAMs68R58MfbAaLhEnasHGuONCOm2QK7Vhx29644M+6P2D12EY1sC/49/gbLDLXqIY/7xf6GWwi2Gc2I+kyR4WEeOWBHa3HIMh4/E5+3MQPxk+EuNtKfLHhZn+AG/90jWqALcr9g92n99k0Ei9UeOLOVQd1slLZibPEeYz4ayswua/KBIXFZ3tgJX4S/4mnwl51jGpgn8A2Ij67RkyQj/q1qy8PkH914KbIJU8IbotwbJKZiJF/XLi5X+Amj7lGNXDdKtYb/K8XMhQxWMOGRZ/u+bP+zmY333yzFDz6X/Pm9g337xg3cGCPpkElI5FvW6lCkQqVOSImNZEqleSmSrwkM9vTNpuJYghrVbeadXNSMHVqHCYlAsb+nYvS6TA2vqoMs9EJjGaA5smDSj3G3bFhqgABN9emirYE5zaRAmwR3O3qxc7LU5Jtc4JbVWUJGAd0SQ+FI9AqjRTcA3s1TeGuaqw3T1FmAcIUU6iwW3HXts422LVN3XieDbh3tOFuXCOmDFMYEjxSuGtWDn6foJGy0U3cPF0mCxyGb9U3ChATN0m8nQU3MzE02DSvXTXYyRJUGDhG8A7XrCCl1ouRkJOzNaCzmtRbAvZAA7dZgHBeik5VEO7WvGZKIRsjyenwNvCTrG1vkbTokjcgFtx8fvKN5cCeTVKJhetgv6oxNMwsQEI1+cayPloc2N5usL5J3La5NdwnLbq4f9xHc5pufQM3/qBrpobfDEgUlDyINLLg5g2RKh/jnzpGIGn4s86zCWNCGjcK7D2K4G6cws3+UjVqjP1nw31Iz7DfUXE3rmlZ7y6N4q8viAe2B5odEriJCRrLkta6QbWgV/PaMW7e3JhfxxPP9um0db37d+Nep3Hj34qbByhzxhW/Ic7q1+vJWJY04jVxW3DX3MY6J4hZYzq+n3zAG0MTN/kjOQiQtyTmm6JKkX+Xi3Dv0rZe0NSKu5E8YGEdG9UIulhx14lHQVA8/b5dPetbOx4O9bP7W3BTEGUNy/ufKmT+XbviiiuClStXxv/NmeNmfRTXEGA876WRwQajUXfNhk1C/4QdgjAXFD+TmkjnOKrOsBBUsdlUEMZgqSjjAzFDm7Dg8JkrguvfDmmHn05aLEraZuvwvB9/Ds6OaJ50vJ/34shU4ygNgtCYYYeADyqoybbh76FLauMalGZTiRf75/dzY+YErBSEEW1sjeuGTIgZVXd+mBbfg1UAvTf8eV1w7vMjUrhpyIRSCasHfFyDqTS9acuW4Lq3x8e0wysGj7E2ab5SOC+mHT70+bTgHYsgIo1tSpdEG+X29yencC9cuT44I6IDo2h7znNp3LDMznx2hDAkYAec9vRwaQo0cf/tnQmiQItdOXisNDOa9tqIecIkw6DUvmURRBw1Z2VMl4SVdst7k1K4Yc1A9eWrXNgI+IxJvaXxFho8ja4h7u9Tis2c98Z3f4gV0K96fVwwdl4a9xuj5gsFG4NJBQPGtDHzVsYK6LBkbnp3Ygo3n6/0VBoU8RmTCsp1QKulcZ7juE6TJcR5b35vYvB1RHFH+djWXDpk9IJYMBVmz+ARadzjIqo4BkMKSjP3M2lLItyso4xFeHZEPEZADb/Bfxav+llw4+sLLbhv+9ekWBfnmje37tGk4c8IQmIwbV4tTAs50uSLn2Gw0ogtJm72F/cd3LCb8AcbbvbrwogZxDELVqZx3/7B5JgZdN1b462No8QPZbcxEsHGOkRxnniE0aB6zVvjUwxO4hnUZf4eNhmjGn6y4X5hpCh/Y2c/XxjM/7FoHyZnJc4Sb7G/vT3Byt4jXj8YCUrCGLSxDmlyRzlaCRKor5u4ZVTDU99LPoFNx5gMs6GbRmfy0dwVISnk7OcKg7kW3Hd/PCVWQMcnbVpwCGqqECa09xe+m2Ntdr/k1VDZmoZf1M1N3LBjoV8jrFma9pstZBo1Cr/CWbSoaCLnz/o7m1WuXDmoUaNGkf9KyqBmutgvFANQ01AqdVHluOcEEwqijyPHshnKuTiwj+KHQmtIT3XT6eiKJzC9+O1sJ/uF7nvmeaAg7RJVE9xfzZQNw/U5cX81M5Sy91D8ULamAHnqS7uKNkbBQSJ48bs5TvYLbAdozp9OXCzKtTYjFkMTJEDpbB4r7i9nSoB+5iv3er85er4knqe+cuMmQJEQX/puTiqpJtlPrxbOCYZOXuxkd4GbtSQhvOfD/dVMSXQ+P3l79IKYnuoyAhTUcebouFg7BFGSCeJzLnYXuFEbJwEz+8ONO1xDH6Z3xi6QwsrnS7AwoOpDHXaxdrgeaLVQgX3sLj6Hguhth9J0cr19uJmlRCHL+VyjNJhl89mUJYLLJcKK/3Bd+JNPXBIs+CXUYpexd/FvH24UuXlweOqrWU7csHFI5Ow7F272KxR0ClCX0jTG+lAQUdg6cX8d4oaC77IPJiyUeMs1unDD/vxk4uLg1RFznWwj4iMJHFo8tGcfbgqiwSPmuXF/M0vioA93GG9/kv3iEntkJstHPyyWsQguthH56MXvZssDGyKbLiNPkC98Yz94ECXv+PyEWWAohD/jwc398OWJ/yn16+22204Klo8//jjo0aOH/B39LrCXzj777P8TTJM9dFFNZMuru1VoMaiSUxav9irDTl68WoKTTxmWgDFr2dpcmLJUdsG0xkPL0/OQCHwKqyQWkqb5tG5uPBK4OXAqjWlV5rWB20dP1mOmZuBWmqdPZVZxZ6/lKhkqlrWWWQ8s4GZYlmtGkCYWcLsKZ8G9abNcXx5MPjp0iGlVkEGQknNQ6Lhm7WAUzEtW/yyB2kfzJOHn8d0815bFNOJz+DzfWATWmfX2jUXguqctXpMPd9beXbQ6k43DeWYsXeMdi8CsqGUZYxHwM/ZJnnjiO49i8mnJ6XlmLlvrHYvA27Ola9enhhgmDTdj6KXt7XZRTKsy1a/BpJN73ecJcfviDm/d8BNf4QxuWe8cfpKlfj1p4eqgaa2qmcdQOPnGIvDWjTdYPt8lb4E5z57jK9v/iTcya9asCUaNGiX/aYMvP8+ePVu+9/vTn/4krKYhQ4YEY8eODU444QSZOXPIIYf8n+C1NVQmjX6HzGOqZx9Tt1rloEaVit7gy9eiNIzWq16pZDBVzz7G7OcwjeAF7iyaJ3h84pNbMVX6jzHlWW8aKmkG9bFD8q/lNvmuLdcx/s9iRHmtKhW9LIut653j/ubwgTx7oH7GfYNdUatKpUyaZ17c+TDl2bt+3OBlvbOopbnur+zd0okn9ITUqlYxJZnx7+65ErknOY5hP4Z7MwfuEooneXCbUgGmEf/AbSM8/Fv7Mse11a+eD7dPYJe+F3ppSur+lqb9nxYyw4cPD3r27Cn/YRdddJH8zBA87NJLLw0GDRoUnHHGGUHfvn2l8PnXv/4VbLONv2r+tQzdEpeF+iDNpOHMl8jprqcBk4ZG3zHaLOgydGxoOjyit7uZmc1Ng6MPd7kIN137ProkmGgotDGk1I6IcPuoeegdITx3eB83bgIADaW+axPcvZuFDY8ZuF2NeUnclaJGRZdJ82Hdql5MNLqhMHyE59r086Cx+hI59wyNGRfTCOP6KxZUkMZil9GcR5OezwcIuqjs+q4NO7x3c6E7+xI5196mQfW4edRmMDUqFpSP9WZsJk3lDbaVtXIZOKAW+64txN1MqPWm1ph5DLRaF2MHwz9YbxdDShlQ0PR9a0khxzr6rk0x0fDpS+QcA60W/R6X0dCPHo/q5NgsbHKu4cXNPuMp23cexcQ+8L2V4RjigIv5ghFHaIb1rRONwtD0fXuuaoSb++ZL5GCiEdtXFHFMs9pVpWndZWEOqBAc7vFLGsqh6fvWm0KOuMw+z8Ldr319b3HBGkLGoJHZZdqs71tvxhPQ0O7bczyAH/y/RL/u16+ffOds/vfUU0/J73krc/311wtLiSF4H330UdCunZ0iXBoG/fR0hxItVEMSHTTWmw/tmur6xxAUU/r2bYd3swbWbk1rihgcBh3OJhdPtfu3Q7rIz9AJbYquONMdR3SXBE2HvEvRFUpqq3rVpBIX3JZZMgQUpUHfdlg365Nd16Y1YtzQD21zRHjCvGFgiBv6JsrbNkoluAlgbBgEz2yGKjTd/7AIbjmsmxU3mHUGxa0O3BQ458c05vYpkTuMwHZThBu6LHMibLhvP7y7BDAKvkEJwbekQfEm0VPE4AO22T1Q5ZlJhN1yaDdrIoORtFX9ur2V2URBeNOhXeVngniSBZGkVN5+eDfBTcGnCuamIRBHYQW753YHbnwbHxfch3VNiSFqAFf69UXROU0jAeKL2KG9mgnrwjQ+n/Um8JKAOZfNoKhzXRx3+xHdraMDKOJIFthNA7taEzABXOnXF+7dzsps4j7hixjFJSwxG27uO2wjCh6XmjyCgfgR94XrtOFmVosmnRsHdrG+AcCfk6rGNoZQiLtraq8njf116+HdxG8pMF2jAxCW5EGN/Yuf2EYeUCwoffuGQ7paCweYkfoZg/Zqa2XasJ9ZS51NZHuAAjf3hDhBoeoaHYBwKsxG4iV+YnsbTpzV8QI3HNLF+tYBJirjJ1TMlnhuGnFfceMjMEpTuMuVkz3ANVKoXnmAncp+xu7bC42fQvXOI+24YY8dG9G3/zagi3XkAXlG6deIsdoeoELc3eVnHiBsoxoUt4reBv/rzb6/VaMaN429qpRpVXZ2zVpRqlxtvsqwvEng9Z86I08StmSQnORIYLTNtOAcfEUV465VJUXRDnFv5fuzMStZElSTWltxE/RsuOtUqxxTy+VVtsWRt92mQoybjdfQMhuicsXyRRJJ09oW3OXC+S9FcFsCJrhV+RjcTB1O464UbBPjLrAWDSQdpS+i7KtKskkjACa/KmhSKxs3T1D22TaVY9w1nbgrx2/+xE8sSYx/l8RtUkoFd4WiuHnLZ7oAf26cmCshuB2zbbSg5HOVGlwUd6WYWs7/zTEFiluLTs7X0KDwCu6C8kW+wuLabLibmLgt683eVdx87rYOP1G/N300ibtGAnfjHH4CbjNU8MeiuIkJaUxQ/lVpms+ttk36GNmv8XrbceM/ut74nW1mS+UK5Yt8jevCnezVYL1ZK9OIV1tx26fyglsp8exPVScvgrtyUdwu/07hLm/BHVHrBbfEMgfuyE8ojKpb1pu4rm+28W/b11ASZ6qEf09cJU6ZRv5IFhyhj6YOKzLvpW5ib7lwuyZ4s47VovU2c4dalUQ+AndTJ+7S/8akrJAphtGFf+1bIQ03afTZXfTyaGFZQElErdaksGIPDJ0WDJsS0g4venmUVTAO4S8V7UIZ1kZNpPlN6akIEEJ9No0ud9Rn6fqnMevqIeNTFG1w//nl0cKyQFAM6uQ6C26UZ4dGtMOLXxkd0yuTBp0a0THs7x9MjmnPpvIvtFwMwUfYPabBKmD9tPmQ60zh3gJ9fbSwLGLcFpbQI5/PiGmHl7wyJkWpxGC9/GNoiPuujyaLEKFpsKKufD2kp8IOeT5St00aLI5znisU3Cico6hsww3tkqbR9RtDP/nJgvuxL2YGH0Vd/5dx/Io0bmi3KOtid380JaVIrsq/0M4xWEQ2dhNsH6i+sBVoHr/i9bGpxmj+fPlrY6RZkOZMwW1hCSHQ+f74kGUFLdbWzAs7CmVd7L5PplgFEWnKvOy1cL1hm6E8bRqfD1Ucmie4Lh9sx33F4LFyXRx3zvOFVnYT66LK7ZcPHpNSgMe+mb48uOfjUOcNei3XYRr3ifuFwdp43MIoBDfrxzrCAsQfzP5i/oi/0VTLfeF4G0vouW9mxywr6NOzl6Vx488oHmP4uU3IkX2hdGD2yyPD0mwb/JR4gt/CAmQ/2XBf9cbYuEkd3DaWEGxE9j8GXX3m0nTzNNTmOyPFeUQjTWVvbMGPP4tyNAab6mGL2OG6CDdxgrjF8WZfNLiveXOcNA0TL895odDKEiLOEm8x4tL0JWnchbNXBHe8H643cdwm5Ejz7sWvhH2h0NAfHJrGTf44J8INC/Dil9O4MfLRpIUhbq5TFdOTBttQWVbQ9G2sQ6j7KKhjjw2bEdPMk0a+uvCfo+L4c18Uf1K4n4fi7iePlLSVFTLFMOh5LrYRgQlFU2ijNmdSgypHYeFSENZjOJ9PaRreP93xqDK7DHYFgetFH+5Nm4VO+d64BU6FbMVEYeFSENa5CSQMaKU++h4b01YMqJHoofmy3i7yC+wS1LFJnC6l6RDTHCksXArCcsx3Ie3Qhxv6JoGQa/SxQyj4oM26cMNqgeb8wfhFXlYaVH8SsEtBWO8JCeOf37sxkQBIPD7cBFauj5kXLpaU4B4+R2ijPlYan0Nh4cMNPXfTJuiu7vWm4Oc8PjVqcHz8w6LwfA7c4frMCT7+YbFTaVpwfzdb/M6WMNXkvm7eYp2xofbltKVCT33+Wzclnn1LoYMfuNhd/DWfRyJ0KTarD1DQ2xJPjHt4eF99iuQUZhROvngCq4U5KfhBFu7PJi/2sunAwgMU98+nbE088cUKCnjiks+/YYASJ14ZPsfJSgM3/k/c8bGbXvx2jjywfujFPUfitw8TBSaFk+8YlK15AGEdXKw04vqL380Wv3ONoVD/Jt7og4bNUFunUCUeuowHawonH26KwHcsc63+J+nXv0Wb46GLhr+H3rbJf8zydRKgfcaT7Iq1673KsAQmAhifmYUpi3YIHh/NN8ad8VkkcoKGT2GVzyHAzc1ag+U/ZV/b8p8yhTV56s26byQ4iiECh8tYHnDnwZTnntheuafOk3HfSIjQ3VeUBO4V2X7J77OYRuJvK37yjhcgITLwy1eA8u/z+Em4n7L25bpMOjB7js/y4daRCL4ClH8vPpeFO4dfcg5bP0PRY9YF81as844XwK+Xr9ngLeS27pUc/p0jnvi05GLcP/px80DImmfRj3Otd854kifG8wbLFy95C7Xipw3eQk7PlY1pXbBw1boc178u4zw/yRss31gE8g2+4huLoOfKE09K08reyBTDdGS27/clcQzCjLWrVfayQ/jOky70kvm8ksFN8CJh+GieFB4c17yEMJXEeejt4PtlHzuEeokR9ZmY6mZjyusnPoFOjCRH74AvSYOb9S4t3xXctat6WRb0TrDePnZIuWi9S8ZP8p2nWR0/7hCzn+rKvy8p38WX8pyHvj1fPU9fQ51tK1l76ZLGfStNP6Fvz/cgwn5kzW29L0Vwl2KM4zxNM3DTFEuvTFYxl2ud6pZcrGxSaxuvMLCMRahaUfygJGJcaVpZIVMMo2PdFeho4lMasy8hwjKCreASOJNjdmgp5/NR89CzIKCqaJzNUHyGpo3Aost/aYaD+QAd1JcQwQ1LyKZFlDyGJl6XEB4G44ehUy7xNowEjt7S0Tu0cOKmqQzK5X6d0zpLJiY68n10SY6h+fAoD4UTPaeGGbgJXOgtHd23hTPQgRthPujAvoTI58BWsGm1JI/hcxCY9Cna0jiK+KLLSBQwyHy4CYBH9m0uquS+hMjnEOR2i/Sy7Mc0D8qXLy+f5zKYFiRo33qDA5ov1+8K0Pz9UX1aiAq8TTAxiZv7hwCfy44W3OVi5orNoLdy/b59SQEK4wjcLuV2ua99mssYAlvzbYx7xxbSCJrUbzLtqOi+EldchnYU7EUfboo44s6RfZv5cfdtHuwu96+KFzdxgPviMvYJ+xJhW5dB3yYu+fyEYiik6Td3Ks7jPtzf3drU8yZhsLBvYbq5TD6noLwItfrGOcBe9OGmAEUlHXq1rblecR+zQ4vw/kVaSTbjc3jo2c+jOA9zj6ZyHybGOaC2fqxnD5D/XCLFv5aVFTLFMKii1w/okipmCJb3HNVDHJyu8QeP7WUdrgalcpeIx//3I3tYnzQIzErxRm1WRbqSBv0RGp3SPClUTGNw1wN/7CWBl8IJurYN911H9ZCAorhts2SgERKYMCh+ti77PTrUFyqgqs3aCjUo2TcO7BrPtrAFKN7mPPjH3oKbAAUd1sxRBMs7j+whAZyN9+Cxva2zZM7+fWtJ5BiUSltgJWGeHVG8oQXbCjUKIeitGLN9VAHXfAr7x3G9BBvH32zDXa6cUMspLAhM/zi2l/WrmjN3314KJwyaZnMLbgqcc/qFFG8o07Z5HAQ2pTEzt+aknUMF3KTx1u8fx/WWhMGTFjR1G+7bj+gmhQWFKsfbcJ+223bBvhFVGpq+LSEQcM+NqOmD9mpjLTBb1qkqtHOMBHTqrumRB3w+OMBD4cA6mSMP+DPXw3VxfdwfG+6Td2klhTwGVZcHANv8I1Wlh2JsKzC5T0qrpeDT/ZDG3UvuP4UT1GoTN+vPfaOwwJ+4Ttvb2RN3ahlPT2Wf2BIZ/qwq6fg5/m4a+wIcGIXTWZZRDewvcLPfeBOMH5tFL39kTAE0Z8F9bG/riInjdmwhKtkY8cAmnkv8UEr9mbKP07hZP3BgzMs61zKqgXhGXCO+8SDy96PSuFl+aOAUFsQdjre9VSbOqsgu8dQmQku8VrXx03djH6cLNeL+nRFuCv5Be6RHNZA/iGvghgV091E9UsU6uK8b0EUKC1hEDxzby/oQDdWdMQaCe0AX64iJXi1qxXT303bdTgptG27yFrZzm3rBnyyjGqpULB88+MdeVmbrr2llhUwxbcaStanv0fneMTm2nO8iaZqyjZSnWRDje3ZEJk2jAU6ZLMgG2L6PR6vox6ihOGQ/pL+PXLthozSlxZ+9NAfuiAWUxr02xs2o89WWZuZFK3+OmUMwLJauduCOxDRp4rPh/mn9RlkDtRl8toGb76fnGLhtrCWuTXHTI7BqnWO9N2zFzeh801YK7vDfKkvGNNhqSTbXTBvuLVuKNOTRxLnO0t3PMZsS641onGk0TCszYK3gXm/tMdD+mY1O3BuDhSu33odZOXAvdOCencBNb8PKdRvsuNeH6712/Sb7eq/bID0GitsmCfDzL+D+ueiaGQ4e4t7K0AjZeWncrAufg/G5Nj8Bp/oJ9xp/N437xHXLZ28u+tlqrFuyeZdrM3GzhMl/S4+Ibb3pQ9iK+xcnbmU8hT6a3nP8uyRu+3pvKoo7ca+TuGEmFsWd3pdzf1wXiwoSD2x+EsbHEDfrbmNKrlq3IcbNPp+ZA3dyb6mx/OzXojEhvd7EK5VUIB6gFWXFvT68D8Qk23oT95dl4CZ/ENfUuCcbbbgTchGLV6+XWGAavTpbcW/dW0mj105lasCdjMEx7nW/iGRE+NlbiqyZGhIIWb1Bv4aVFTLFMBg7KPba7JZ/TRSnwlGgTtp6qoaMnh+8Oy7s5obuuCYK6ElDsOyBiJ4q57R0otMsqfTrF76dJRRi0+jOhyKJAyMc+aiFUond9v5EYfWQ9K4cPM6K++0xC4K3IpontNrVFtwTFqwO7ovoqbf9a2Iww4J72dpfYnVgOu1tDJFfNm8RajUBaOTsFcHDn6WpiRhUwamLV0vygGJrww2D7M3R82LctiZkNEHu+SjEffu/JgXTLVTQ5T+BO6QDK5PEjnuM4Ebh/MGI0m3a3z+cLKw1kguUZhuJAgG/N0aGuLm2levSuNGWgXaN3fHBZCulkuSm9GuYDzDGTCO+4YsknHHzVgb3Rb5nGp81ceEqCZRQjG24YdKpKB2fa8M9ZfFaWYNwLSbJn037cd1GoVNj0EZtAnTgBgcJZ8L8VTE12rR7P5kajJ+/Uo7j/tgkchDmg7kX4h5rbZ6eumStjEPA7uIeWnR0uN7LI9o4ArI25XrWjWNYR9gfuhamQa1HYRh/utSBG6YZjCQM/8RPTcOf74hotXd/PNmqScS+UBXpIaPnBe9aFODBfQV7/+dfhG1zpwM3itVQecHNPmZfmDZ0UshIFNxvjJO4YBoFEXEEI678YNGAIg4pbZz4ZGPKKAWfOAEtXCnGpkGVZmQEBQR+YmM3EWeJtxjx19asTry+9b3wM4jj4+encRP3laZPjLIJfoKbPIJAJWyyW6O1MA1F9u9nLpc4f8kro524EYRUdXfyh2mzlq8TFfjY9+alBSjXbNi63ojZ2gQ/Qwr+OGuR92taWSFTDEO12GVUx6hIvzVmgVdQjICJdLtPUIxjSCwUED66JJUvCcplbDRRffUcA26SD0HApdismEh0PmFBjiGAadHjokvyBOzDRCLJwh1+3jyZ/+FSbFZMJDIUtd3HhHRJCk0fXZKnZB8mikGSbjbuuUKrdCk26zEUDraAosZ927BxUzyTw0WXpFD1YSKRoSKciXv4XJnr4mPTcQ4S3WiPEi9J/peNm4PXPQrC7BEKVR8mcIAnz3pDd3cpH+sxJLqRlrlNam+OnBds+GWTV/mY+0WBAtXXZRSxJAJfPAkxzZHi0DfOAdw8QPnGObw5ar68AYFe67Lx81fJnCxGGrgMf31v7EJRkc7CDd3dxwIEN291fOMciCMUFr7PIx4Rl3w+QFwjvvmuXzF9OnFx/JbHesyIuRK/fOMcmO1DHPTFZoQZeeDx4ebtBmtAXvGx6V4dPlfGPtgKlPiYwrkyhgGatssoqij4fZiguvOA6TuG/OfLAb+GldGvi2G85vfZ0rUb4omsvnMsi17PuQxqKk8+PmXY8FzrMzHxWT4HV0w63dZ3zBIP7TT5etunsKqvXzNx5zwmS8BP1jvjPCRy3qT5Crmt6rDr/2PcXD+shqxjss5DYibJ+Qo5wbSWNVifeW0+WnGMKeP6Q3qyHzeJ/Md1G7yFXIwpc72z70meawvXyI8bvCt//sVbyIWYQjq/H1MOP8lx3/JcP37949pfvGMR8mJakmtf5rsnWccQR/BvX0EUnitPjMsXT/LESl+ho4lcqeNZ58qOJ/jufx7jl65ZL3h8BRH5hpiyPM+eyxFPStPK3sgUw2y6MEnr2Ki6VYMlafy+LU1lnnoHQUk6zH2sFsaNw2rJwoQOTR5MmedpXF2ayny4aSIDt4/VwvhrmmGzP69GrmNyrXfDsPnQZdvXryaMDB/Nk+ZMmhLbN6zxH+PumOeeNK4hzYQ+uiTrCG4fzROWhuDO4bs+QVDF1L5Rjcxra92gmhc3TcCohPvo5bBiaPbOXqccviv7MuPaGlUXP3CxcbQplvW2NQOrcd3ctzyY8tyTPOfZrt62TjYOBusJ5WdbU60a+4O4lImpcZ4YV8MriqvnwX9tUgBqsMyQC7DptqnhZsSlXJhKKJ60quvHDSsNP0Gfy4ebuJQdT/JdW4fG2ddG07uNhGKORWA9XUaDcfucvluaVlbIFMOgubkcmG5xGER0e7tohwSLE3ZqJSwLW1e4GuwSjoWV4DKo3nTWw7jwKfGi5gtulyI3rIJDRa22oTNAs+lO3KmVJExYJC47eZftQtwWdowaisfoMNkYNGpdmtYI+raqI7hdG483MYf3aiasJJuwpuI+YedWwrJQVooLd/kM3Ai7oWfkW28Kgd9tX1dYAi4lcWY1QKeEPULidAWLk3ZuKSwLZaXYjDWEreBbS9ghFJcn7bydc3QASWen1nWF7upSEodtw+93b1vPytaIce/SSlgWNuHBJO7w/3YBVmWHUcj7cFM4Q3eGpuwa1Mf1QAeGLeVKLJyfe08gVzaNb71P9qw39wsWIMe4cJOYGS8ATRd/sBn+A91959b1vIkMTIxNGGARHlQ7UXF7fBfBT1iA3D9XDUoh1K9dA/FfF272KzTmHbevaxWo3Ip7O4kDKjLqws2+PMXCWlNjX8MClGMduGFzwcaCXuxSQCc+wkpCGBglcCfuXbYT/TMVGXXhJg6esosbNwKusABP3LmlEzeFPnliYK+mztlc5KNjdmwhwsCI7LqMe4/+mU+5HDYm7D4f7r06NJT8RR5zPRySJ2wCtb+mlRUyxTBu4P3H9EwVMwTRx0/oI0JiOMKTJ/VNiYXxpHbjIV1Euh2DpmlWrbgFlGTmp2Bn92sTHGhJwMwg+OtBnWLa4cX7tkttBoopaJsYG/2BY3pZcT9xUl9xcJzy8RP7pmaygBvKnm4S6KmoCZu4mcOh8wfO2r21dY4AlMqrD+osP0PnhqZo4mYTPBThJrCG1MnyKXG+x0/sIwGFQPfYiX2KCMNhXM91/TvLBsegs1IgmbiZeXN8pAx7xm7bW+Xne7eoHVzbP8QNff6y/dO4eep95PgQN4kMarVZhJGcHjmhtxRE5aP1Nie3gvuagzqJoi0G7dumoEtAUho49GRbIuvZolZw/YAQN4UKSufljezKW6hHT+gjiY7CgbW34j6+tyRMjmPtzbdu4P7rHzpJAar0VAppWyGrCfWUXVrJn03r0bxWrO6Or//lwI6poMnnc9/BQ6H2sAU3f374+N5SoHDcYyf0Tc2SYT04PwUoxngFPt9WyCoNnERFEW0a90lp+iTEqw/qlMLN/ea+c/9ZT/zBLHrBzX1Q8T3uj/m2kNOiVgwNFsM/odCahiI0NGDsuN+1tM54InGrSjr7hXPZcLPe4KYA4Wez6GWfQtFWUVWuzRzVwGlR4941oq9ffXAn64gJCmHGEGDMtuHhoJxFuf7miKbPPbtuQOfUm0DiwuMn9ZXroRjAd00RVuIiVGceeLCHju8tw/pM3MRZpa/j6ztEvm4WsihpY0dHMbGc5YHntsNC+jVK4Tce0jWFm/zxZISb+PzEiX1SxTq4yUdNI6wPHdcrNaqB0160d7t4DMVf/oCvp3Hv37lhcG5EA6eAPu53adwU1HccEa43yuxQ7VO4q1UKnjy5bywKWlpWVsgUw6DK0cBlNvPynf/giGWC0fVvfh8LdY7mTKVli9aG0fDL15c0myntbsZSu0YQbAZtAqUbn0Y2kxwAVVD1V6DKuXArywT717gFqe82wc21KS17+Mzl0syZwj1psTSTCe5la+24562UBjeMHiCa4kzcNDArKwjcYQNxUdzQdpPNZuiHmP07mwzchTNXSBOmiRvmFCO+MeiENjHAcfNXBqPnrIzX7K3R6fVGnoEG5eR6mz039LK8lmgU/WD8wpRuEbhfHzU/pq3SrGtrsEZsTunrUDMRcbM1cNI0G67ZRmlm3mx8SQ41Ff2kZDOjDXey4ZKGZnPcPbhpOlbaKk2zPyxYbWVQ6Dh1/v/55DRuGrNpKAw/O8RtUmb5/CSb6TULbv6c9BP0ccxx96wHQoBKW2W9bI3haEcpLZl1/ywSf00a90lFXrl/sDpM3NxvGquTDetmj9M6o1EUPSJTb4nTwnZRavXouT/K/TYNv5gV4XZpSbEvVOSV/UIztg13koXFupo9TuxTcOP/GPvBFGrltJAYdPTEmEQsS2k/RfRecMN0Mts7YP/ByFTcb4ycn6IoExdoCFdj/xE/kkZcpDlbcRODoYibuImzOgqBmDBmXrox/OtpS4VlhBHHh05cnMJN/Pxu5lbc+K6Jm/yRZI+9NnJeSjhUcBfOjUdMsEamNIDgTuj/jU/EsqR9M2O5kAIwqO6fTkyvN42+Kk5LHmMtU7jXbih1nSWsrJAphrExYRHYDGEzuudx3ns/sVNBKV5gPBAkrh0y3qp7QUK89+OIfv3eJCsVlEB3/VsT5OenvpzpZBLd/O5EcX4cHEqvzVCipbhgboDSeU0jyL0abZhrhoy3UvwItPcm6Ne2RjcC3fVvh7if/sqH+wcJdJ9PWSqb0GYoupLsmJUDHdZmJNOXowDlwk1CjOnX70+yNmkSMK6LVM+f+XqmkwF1y3sTJWB8OXWZk3HGOhJ8ab678wM7bpIpQpDgxk9sgnEkFtS6BfcHk6zNdTTvqVo79Euo/S4KPs3OX01bKgwXm+G30Dy5r7c5KKwwlfAnH27m3UC7xqAz25pwBfeQEDfidCQ7O+5JQvP8dvqyIg8SSaOY+Gb6MjlO6bymsS4qgoef2JrsWV9o7hiUadvcHq73OlTmt4QCjVpEmsZ5aJbkoSD5IJE0ipSvpi4V+i1jGGxG4aK02uuGTLCyJfFnpV/f9eEUq95SEjfjBVzMrbui6yYeuBg5JDGKPhI+8cdmsKNUif26t+y48TPGIWD3fDTZqrfEfr52yITwAXP4nLgYMw31b+YXQQtHGNJmsMgo8og7xB+bEa+ejhTN8U8bqYF4rX5GPCSem0bc59+Dm/vvYpzx7ykqeHB1iTSSj4ZOXiyF+I3v/OBkSJEndL1tpAYaqpXiTf6yzYIBN34iD1sj5jkZZ/d/OjV+qC0tKytkimFZlDKCDxvZJyg2ZNR82XC+oUH6pOVTtOUphsrfRxnmHDzN2eYUmJigA/sExfickXNWeAXFOIYnaOZyuIzgS2XPWw2X8YT6UR7co+fL05ZL0VaOGQXuH61DvpL3lYFjtnklySDGE6APNwGCc+RZbwKnS9FWjhk9XxK4Pt3ZTCjzGzbKmx2XTV60RhKHz3cJyNCTfdemuFlvH5sO3Nzj6R7c745bKLiTT8qmMReHBwPfWoKDAt23BxQTb0F8YxE4ZkLkmy57X3BvchbXGNfN3hxSgrh9LEDuCW9USFYu4xwMmnxnrPvzmH9CIerFvWmzvLXN498fTVjkZQFyDuj1+KbLiAHg9vkl+5r97TuG+EB8yxNPeFj1sek4Bpq+7e2XGvOa5A2o46EAI/4Xzl7hxUQ8ljkzGXlnyKgQt/nGpijueULTdz0UYJyDQs6HicKMBxofJvJfmfr1b9hsUxOThiNVreRfUibuZp2HYoANnKVIzSTGrHPxGtXn4Hkx8XvfHA6MwMXnZeJevzETE0Oj8mDKPk/2tZEoCF6+Qi7vuQSTZSpoca8tz2eRmCn6fIWcYjJfp9s+ryTWcs3Pv2SeZ0OE21fI5b2/a3Nh4jybss+Tcd/Ay97MGouQb51KZr3BnHUe/INp4VljEfLEk9U5MeXx76x7wn7kXFljEfL4Lvu7JOJJHn/bFOHWCe3++5vtl3li5Zpc6+0/hvBHoZ41ziHElH1tpWllb2SKYb0sTWlJgyHEf95ztKgtDb8+umTPFrWl8dInAkbjGvS9ksKU5zw0prnEy7ThjmZhFxtH2UawR7Iw0WDbO8+1tcg+pkuTml66JE2pNIS62DiCu3KBsHtKClP2eeoEnZvUdLLNMJqX62bQPGnIhHrZKwcmW9OleUyWn/RpWUeaGX00T9gs4PaxcWiA7dikRrbv5ljLPq1y7IGWtQWPi22G8Xtw02TqMu5X58Y1SwRT6Cd1/Me0CHG7WFvK7sK/u1mar5O48ac897ek4gl+62I/YcQRaPo+Ng7xiGblksKUx0+gqbvYTxgsSpqMe/pwVygvzeElFU/65LhvxDefoDGsVfKOrWlcjfEE5IE8mErTygqZYhg0TxRJXVQ5lK+hebroewR3pXke1ttNO6RbH5bFGbunRdDUOA+CYjASXDM7EFqD7w9t1qVsTcc7lFNonjaWiQY5Po9zoJTtxt1acCvbwIp7p1by1gqBQRduGE0wo1D/dilbwxLq372p0Dxh59iM4gWGDCwhn0K0sgx8uI/bqWVQrXKBMFdcs0agAtPNDzWTe2wzWDOH9Gwi7B5X8AE3jB5YWT6FaMWt/7fi/l1LSXKn7NrKWTwjiEiygEHkml0ESwiqLAEKJpErqZy8ayspsn0K0WdGooQ+3LDgYGtAjXcVz+AgQQ3s1cw5uwi2DYJ5FNk2tobgjiinsA59SsuKGxFDl3Hd3Dcowy7csPcoUFhPlyJ3GCOayUOPS7kdP+Rz8Euf0rLiZX+6DD+DjYTfuYp+EhxrjnCia+YS+5V9SxHuUm4H92m7bi9x4HjPiAnYj9jZFhHLZEwmLoXx0I6bew9rDwaXa+YSbBviJDNZbMKaGPHqtN22F0FE36gGjd8+/z68TzMpimEeuop+Ck9YkuQV10iPOlFsa9uwulMBPcS9neQL4q/LEDkN43dr79gPYgS0cVfRT6Hvuve/lpUVMsUwoXken1Z0pfp+4sS+ogyLI0CXNJV/cda/H9k9nnkCxdFMCDgcFDhVEIa6x2yDZL7nx306NYiVR9mk1xzcORU0eUq755ie8jOJ/OHj0oquBJ0nTuojDo65cN9xeHcZTobxWWZCgCJ4Tr/W8ayWo/q2EPqeiXvvjg1EYRqjqocebQZNntLui3CTEB4+vk8KN0EHSqUqrD5yXO/U2ytwo9iMoi0GXd1MCOAm6KAMjTHXAyq2iRvqoiraUqhARzdx89SL2rjgrlIxeOyE3qJAbuJmvfXrR3xpu3pFcROMUWwmMCldkgLJxE0By6wVjETN3BkTd7/29YXqipFYbhiYxt2m/rbBg8eG600ih1ZrPrXVqQptta8kTOyhY3ul3rqB+5ZDu8aD5648sEMqmIE7pIqHRTxzl0icpvozs2qgFmO83YHmaSYpZrHg0/H4gxP7ph4y+DPXo28roMSbw9VYDyjTOlLgsv07SCJLIgIf81oG9gyLeBIiicGkKHOfrjywo/zMULFbD+2Wws0sFh0vgB/gD+ZDBuv/+InEmfB6GEFgvi0EN36IP2KX7tdBHlzKmXOUdmoZzw4hIeLvJu5dWtcVP8PYL4yGMHGzv3S8APsOGnNdE3eVisEj7NfoPtz/x16pt4XgJvbpGIqL920f7NWhQQo38QMaMLZ/l8aiZG/ipgDXMRSsD3HKLApaJnAT5x4/qU/q4Yj9+jD7NZq2fd8fe6YGvilupeZfuHe7YJ+OadwU4Do+gzhOPDdxo0h+7cHhWASUwu84slsKN3H40eP7xLihYpu4yUNQrutE9+Geo3uk3nKSFxgDwFt+7IK92gb7dW6Ywg29HZq7KrcP2rNN6kGTAhyKe7iu1SSfmcUM9G/2InmwNK2skCmG8d04neHmqG8ofjclOt1hZZjNpXzPC8tC6Xuwbsyub74Ths1DUylGUxUUt2TrBj+iYwLlGINtdN8nU1Lf29Oc+vBnoXAhOis3vhsyakwmBn+vBgvGhht2CewJZd18M3156jthWAhoA2Gwcri+FO6Ji+MGT1gEdMebDZg0p/5jaAL3OxNSuGFisN5Kl7z74ykpcU3B/f7kWG0bvRKTWg1uWB80eWIjZq8QlpOJG1aANnjCkkKg0MQNlf6BoSHbDEXiG975IVYoT+Lm7xU350mqBWP0Mdz5YcjGwRCPhAVi4n7+W1hIYeOesjFM3LAwlD0FO+juDyencE9dsia4/9Np8Xnxb3MkPGKE/L3SPBFinG6IVAruDybHbDXYT6aYKeeHfQELA4Mt98J3s1Pqz7DVtOkUdg9sG7O/g2ZgcGDguuGdCSmGH39mvbVni+s0xTVZD9h6yp6iiZF1SyIC30vfb2Uhse7PfzM71QvGfVKxT9aB+2jiphlY2X0h7h9SDL8fDdwPfDo11YQMbvxH2VOMMhhq4OafhyykFTH19tlvZqVwfzltWax7xX7hPpq42V/sMwz/vendiSmGH/5+47s/xIrcDw6dKvvZxH3fx1Nl/2PvjVsQfDKpKEUZeGg+KQspZDnNTOFmxIOyvohPsPfMfhrUru/6aCtu/Nhk+BFf+HtV5H5o6LTUqAZwc99UFZpm7Y8MajXwGFMAGw3jHMRzEzcUZuKMfjZxysRNHE4KirKuJm7yEPF7Q7SnEb40maD87r5Pp8bq4bCcICSYuGElaj6aErGczJ5BWLf4U/jZsLMmpfppoH+ruGppWlkhUwyj698lhsfsk6+nLZOAQxK3GQwUVF+ZHfB3x82mSUoDHbRJW2Mh/kVRxMZ8bNj01CwStUc/nyGJgI59kp3NmEfCrAlmCLioiQQxEg5Y7vTgJkBhBEIbbvIVVF9wo9pqo4Jij38xXQI0xZrO5TCNJMl/CDmCzWYEA2jxYLn9/cnOJkBd779/kE70ivv29ydK4nnyy5mpmR5qT3wxQwI0gcJFqaSYIuEgPKfUWdOYr8LvCKwutV4CiCo+E/BsjZwh7kmCm8Bko4JiT301UwIdLBEXpZKkQUHHzB2SiouJwe82enATsKHDKp3X1YDKvycBPP31LCfD75nod7AtzOJajesJ55msk+t04o4SjlJ+TQOn0t3B72pAJYhz/c9+PcvJ8KOY4P5TMNnmFmnSwI+4L/iczfDDp76aIfeXpGLT0cGfNSEyZsDVyEkRgL/hdy6GH0UoQo/gNotrNYoPkiX7gP1gM6jUT3w5Mwfu8F6wP11MIuIR+/u5b2dJ0WIzilAYO2A2i2s1KOc8ZBF3Hhtmx02cJW4Rv6BY23CHMTJcbx7UXE2v+D6zWKDpu5iJLxfOEYYUNHxGaNiM4vq9cQskzj/8+XTrMeE1TY9x2zgNNLJrAcIDgktPLNyzm4J/fjfHyUzkYRdGWmlaGWupGOaj5yrNUadxOo8Zv0he89vmw2w9zyJ5wtDhQzbD+Xnacc21UeekwEIZ1Y9pYdC0dhWvoBjX1r15Ta8YHsesWsc8ErcyLMGGQWm+tYRlwVAqn1Krfh66J17c4xdKL4pPNJAEvpr5L57Po7hgfowPN08wvHX63nPfQkyLghkN1loDitr7ExbK9/quIhUTyuXPvwTDLMPZkkma4V0+3CRw1sCn/CyYxi2SdfDiHr9Iepxscz/UGCsAbttwtmSS5o1NFm7GC+ibKTemhYLHx6ZjHyHT4Sr2tOgHtw5stBnFOcPpkkPvTAMG661vXt2YFsrbGh+bDl86oEtj7zgHEjiMJHzTZSQ77r8vngADTL6RACGmhULj9bHpOA9f0fnGIhBHOI/PB3hLQfHkO4b4wO/nRIMv3ZgWSZL2sem4NnrJzDfAZtHPm5YPEwMETSOOMqQzD259m+LGtCjYuGmLl01HPKGXxjcWgaKfN3IfenyXvMU3BVm5kDigX+uXhpW9kSmGZdFcCZT6WtVlBCV9hekynlTM1+32c20WB/Zjyj4mxJR9bVm06vAY7yHxcb9szl6n7GvbkkmZ3pgH9xbOs9lbEBXr/mau0+ZMTFx71rXJOm7akok7xLQ5x73LcU9yXFvWfeMUnGdzSax3znXKc9/wgTy489y7PHslc1/KtWXft6x4gn9wHnOq878XT7aUWDzJurYQd3YszHOufJg254onWdcv59q0ORP3Lzn8Mt+1bc72txz7JDxXDv/OGU9K08oKmWIYTYg+261t/WA3R8d78hwwP1zifBg6JDRwmdpASYPtAB1493ZuTPRq0fW+W7ts3K5O/a3H1BOGiI/muWvb+tJY7KN5wiJBqZXP9OGmcTKr851zIL6XdUyPFrWE9u2yXVrXC2pXq+ylecIiofHUh5v+tt1y4s66J9wPGgt9NE+aHVlvH12ShkxYBLtn4W4L7gzfbVcvcw/wOdx/H82TJncaK2kedBmNujSy5sOUfUzWebh+Ps/FSsR4swdumjVdRuMofpTlA7y1yowV7erLPvD1TfI5vOE1G2+TBqsP3PiLy/Czns1rZ/pliDvbB8CVhZv95GL3YbAoa1etlGp2Txr07V4ta+W6v3niN5/lEW6XY2ioNTXSkob/19m2shc3cZQ8kOnfspbZMW6Xtn7c3Dca0F0sOYw4US8DN8297IM8612aVlbIFMNgh7gUonFeuu9JPrAHbEbXOTRe2CGnRkJuNmrieZF41/l7tnUGg3PpKq9QXtgrruICtgIKq9A8XTNpKJZQKiWIwyqyGUEStVNYKypAZxod7oqbzngn7j3aBBUj3K4ZErBDkJyH3QLLwzWLZN9ODYVtwv9tFtIyoQkWOKnVgnvPEDdMMFcwgJUFAwC2iqsoOqRH06BVvWryytxkx6gRBGF3we5BcdhmJFOl15/Vz06FhAkxaK/ITzy4z+7XWth0sIVcRdHB3ZoIe+Kg7o2FfWUzima+woBNBfvFZhQvqCcL7t+7cePXWbj595wH+rxL+RdhQV5fI9TnmqXD9fB7WC0uZWvWBfo163ROv3BNTQMneBW3S/kXija4UUl2FXMHdm0kSYX775qlA16uj/sywIEbPzx11+3FL8/ZIxv3oD3bOkceQNGGjQQ7y1XMwXah+NivcyP5v81gs/Xv0URYLS5la/Y99GviwHl72P2E+HHB3iFu4ooL9+m7hzRuaMWuYg4FaeIbcc41Awg2KfsXYWAoxjYjzp7O2IgK5YXV48Kt/s0xrlEN7EfOB6vMNWICOjXsLvC7RnqQjwb2bCq0cujjNuOhGdp4MmZYcUd+cl4GbvIXrDJXEcpDmLKkSsvKCpliGIn8rqN6pOiSzFS49+ieogyL3XFE91QCJujccmi3uIfmT3u1kZkzSXfBeQbt0VaUc5W+h6MngyY/EghVsZlA99eDOgZVDLpklyY1YsVmNvrdHtx6/tuFZl0UN5vtxkO7xIq2g/ZsHT4lGrgJNkonp9fg5EjKPol7/86N4vkLBI4Qd9E3U50b14gVmwmsdx/dIxWgmBly7zE9YoVV6MptGpi4K4jauCraUkDxZG7iJtGr8vEeHRrI3JJk0GSDUygxrwMjQEOdNGmHHRtXj3GTyO45umcqQPEUx3oTwDHoygw1TBrKvCg/o1iOkVihUSdxg++s3beX2T+qgE6gMnHv07Gh/D1GgIbubuImkapiM4kcCmd9C+57jukRU/xvHtg1aG/g5rzX9+8shbMWInt0SOOmgFXlY57qmF1RBHcUwHX2Cbj/NiCNm8+/aWCo2Ayue4/pmZqBw5/vPbqHXBcGjdssHAT3gC7yOZoYKeiThbji5qkW4y3nmRbc3CcthEgsNxzSJfXmlYKL9cPwA/zBfLrHb7gPOhYBf+howY0fUvBrgsFPTdwUaKp8TM8VhXEySZWLEo8qH7NfbhzYNaUQTWF122HdErh7BA1tuI/quRX3gC7ywGHiRvGagh+j4CMuJHETN4gfe3YIH1CYFXXuHmncPPVrQdGo5jYSp8yHujb1qwW3Hx7iLohwm28liC/ERx3nQNw0Cx7iK/GKeIsdv1MricPlDdwn7tRS6MsYcZx4buImfl4QFRQNamwjfmziJn8obs6Lf5uze4jn5KNq0b+95uBOqYIH3Fcd1DGm70OxpkA2cZNPKFAxZhwN2iuNm/EVF0bFJXns1sO6ph7qiOuqkF2aVlbIFMPoQL/gpZEpuiSNiee9OCL+XvCil0enmqoY73/Za2Ni2iGUQMQFk98k8h0une7KHKGLHmZG8vtGfkQVVZkjsKQQkFxnsD/GzV8VXP3m+Hik9PkvjbLjfmFk/D3txa+MTtFTueYrB4+LG87u+XiqNA+auBEKQ7wPoxHsSYN2yI9QFp/8MmQEwJKyCZiNX7Aq+Osb4+RnxmWf/+LIVIMxDZVJ3Je8OiaYutjEvSm48vWxsXjZfZ9MFaVlE/eDQ6eJWCJG4+gTX84o8l0yX3PTBEjXP0ajI8KCJvuDBuarItw0DILbpEvSuDvoxZFxT8Olr40Jphj0VEaW/+X1cXHzJtRbU/kXfA99Pj1WvKYx+tFh01O4UXt+5POQWg2762oLbuiaVwweG+MG3xILbq5HmwkvHzwmmGTg5rxcP2wcpd6aCrrgAw9NsxjNvlBGi+COmpiVgs/5OK+Jm88HBwb7Y9ALI1NCjvx50EujYsX5ywePTdFTOe9f3xwnbByMkQVohSXbG8DH+mrT/BdTlgYPfTYthZv7xP3CYHdxH022DQ36l70WrjfryXqbDd34DX+vyu2c5wcLboQHYeNg+Cd+auJ+/MsZwScTw8ZM2C+sa7JXRGn690UMOPYL+8YcnU+c+fOr4Xrjv+BbZMF9/ksjY+V27pspsApu9r02DMNsIi4kcRM3iB/oNWGIfkKdN3HDQFLmHmK9V7w2NsUSmrpkbfDnV0aH67Fpc3Dei6NSjejEF3Crcjtx09RSIr4SZ5UGD62aOJxsBVGWnWqfEceJ5yZu4qcK9ELnxi9N3OQP4rGe97wXRqTYksTzP700KpZMIC6ZSuLg/tvbP8QsIhhzjGQwcZNn0NHCoI/f+1EaN83Xd0YMOMZQXPrqmJRsDfeV/FfaVlbIFMOYRQJrw6WgSyJkZoOLjcGGwZHoxIfGZzOCjwZDaIeufjGOYWMSwFzUxBDvT8HrI+c52QEEGhgUMERIIDZjw1A4sdl8uO/PgZvCgUD46LAZTtyvj5onieWNUfOc7AASEp3xMFbA7+qwf/rrmbLRH3VQEzflXG8SF4kHariLUsnsExHyHDXfyQ5A3A/BSGZjgN9mMB4IlCQEnQVkw838IMH9iQ/3dEnkJAyXVhaBjQDN/81CNpmAoXkyG4MAbjPmWkBxJgE//Jl9vQmg90fzX0ierp7Ahz+fJuehsDTnNqmBg5kXjBdgjo/NuC4E7AjkLiE71oXP4fO4zy7cFMO63k7cn02T+wbd3Zx/pEbiZh1lPR3MJeb0IN4H/dYl0AdFFtzcXy38TMMv7o3GIoDf1YT5yLDpksjxO3OOkBoPKMxc4gHLpVwfCtmGAoXsX5uxf4hb7KcHfbgj/77fg/tx4sh6cM9yMkFhaxEnKPRcIpWwKd8YOV/izusj7eMziFfsf+KXxjovbmK0C/cXM2QdiKvmA6YahTH0atbdJVJJXB88cp4UztCebUbxyCgO8sX9ETab8ZCahZtRAMyQee7rWU4GKwUmM7lK08ro18Uw1wyC5O99TWA67IsmL58wFxX70tU/p55mzLcSBBMfJnyRp3aeILMwuUZ3q/E5vJr2iYHxWcvXrE89FZhPyQSTL6a6KawEg2FTlwRfTV2WgWlJMGdFNf8xk5dKw5xrLkIQPWmsWAtt1o2bp03uh28twf3FlCXBdzP9m3jY5CXBwpV+mXveWvCVgCuJY8xOYXCejzZNkKTIHuaY+6EGbtesITUKdPOthw03r6hdSRz7bmZI83TN2sFIpvhRHt8dn0G/BpMPj/rSwd0be8ciQPMFt2vWDsb9gn6dFSvA5FOsDjEtlTeWPvILx1Bc+MYicF/x729muPcTxdyo2T/KenpxT1kSzHAUu1uPWZrJpgM3AzR9YxFQal6+ZoN3LAL7mqTpiyeK2/UQuhXTEvmKy0e44a0uRahvH7DfmOuib0xdRRH+lOXfYPKNMpBjJi8JKlco78c9ZYk8jLhmd2HEZa7Lh5u8BW08K54Qd7P03UrSyt7IFMNcDVBqBRXKxX0bznOULxf3SDjPI8e4WU1q9AYUZGLKPibElOPaymfhDj8razo1118x41z8viAXpoxry3EMI+jBlIWb82TdX37PemYdk7WWskYZ18932xVzrXe5zPUO/cR/DJpEWb7L77PuG8vDMeVLYL3l/mb5d45rk2My1khwly/nbPQtHqaS2nPZ8QT/IJ6YUhApTAXZPlexFOOJ4C7Is8dz7Kfy2dcW7sv//N7KcQXls/0kZzzJEysKcty3rOsPj8v274Jc8aRMouA3a/t2srNM1HgS3bdzw8xjUL51iTjK53RuJHolLpE7ZQfAyNAGLVehA4NKtZt8mPbpVLThznYMb5JcHfbYPp0bBjWqVHKK3GGwp2i45Fgn7grlpfE213pn4ObaUax1iSEK7k4Ng223qeilHaJ9okwpXxCAuZbtAw3lM33xgmNgwLnEEDE+C9w++jFv2lD/9mEieMOM8F1biKmRNDL6Ah3HdG9Wy0vzpJl328oVpUnZZYiCosflw1Qhwu3bAzHujg28uPETmC2+N5M0xbLe2jxrM66b6/dhAsY+Eiuyce/VsYE3uXIMfukSFdSm6m23KZBzuYw3yag1Z+HmfuTBzf71Jc6Q+VQ9pe1mjkWAIcNecRnMGeKSz7+lYb8z/p2Fu6HgdomrKm4YfKqZZzPiHzpZPt+lwZhmYN8xSjTIiif7dm4oe8klUhribiiMQxebEmOsADR93zrBaIPUkSfPlaaVFTLFMGicLqVlAiXsF8QVEXq0GU509A7NhUWhIoSm0QV+ftSJf8l+HaxKtAQUxO0Q5jpt1+2cSQPmCEKX0DxdsuoUOju3qScbE8Ezm9FBj6ovG0VFCFO4KxcI7Rrj2rJww7JwKejCZKHwYPO5Zo2QVCg8YG0og8s0rum4HVvK08ilDtywBZTmiYCdTUG3XIQbVhqsJleygyEEC4Gi0KUQDdMC7LBkoLS7KJWoVvM0hhigzWDD/GnvUIDz4n3bWRV0BfcBIW5otS7c3AtYH7DNXMUzaw1uzsG5XArwyrK77ID21gKzagL3Rfu0syro8u8u3b9DyALZuZWc12YwW2B3UVjAALQZs1MonGDjcJ02owiAbcLnXbq/HTfre9E+oQ9duE9b5xwo/j33jXVwJemTdg59qB8zWRzzNkgqFGmwBU/dzY5b7sUureT+IrJpw40/XxwJtbLurlENrDe42S+uUQ34K37LPBZlcJm2Q6s6UnjAanGNaqBIhU1FHAB3eRfufUPcF+zVzjmqgX3N/oaN4xrVwDXBNsRHYJbZjNkoJF8KI1U5N404iw+BW+KBBTdxjzgS4m7rHNXw5/3aSzw9ZscWKQFWNWIuLCnYiTy02IwZUgd2bSwPxghr2oyHIWUvXn5ARyvuZGw/34ObayN/MSXYFDJVO9rzu1/LygqZYhg3+7L926duMm8pCARqODAqoLZAyBMGxpjrHYwkzZMXAVCVjyk+mBFgqhrv1aGhBDmMxCkzToynCJ4aNHCz0S/br0NqjkhdAzczBloYSYOA8qd92sWzPFAsNgeCkQBIvMzGwJghcHivorgxEo4+zRHozrXg5i2TBkACKwGjpom7WqW4IMKgfrc0kga4uQ+qxMtMGnMgGA+MKIyrYjNvQA7v1SyFmwROUYVRYEFVTalIN9g2nlXDelwObmP+SZ2qleTvFTeUUjNpbFNQXubZqBIvs09QJzZxE+RUsZk3F0f0SePmTc2B0awaCloKZBM3xbXOfBHcB3RIzT/hKUwSTvQB+JuZNDgv682APgxlbp6oTdwEOVVs5v/MvjBxUzTprBoCNHM5TNx8vs5OARf+YM4/4TouP7B9jJtAbyYNzkvgZn0wkgJDDZPGPz+yb7NYsZkBdKy/+cKB+6SK5Ny/C/ZOrzdq5+f0C/1EErkFN37DeusbpLN2b21Vv2beh87ygMJsvpnjn+MXOuiR2S823DtvX1dmH8lnV60oBQ9+mDT2F/66FXd78eeiuAukgNWvS87cvXVqLhG42T/6hpTioV+7Binch/VqGs8iQYn62N+1SL1R+912dYIBPSPcVSpKnDIfRIhn5+25FTd+Yo5zIL7w9/oVHUnfnEtEnDpnj9YSbzGKtT3bp9Wvidf60EgcN8dnaLFH/Md4c0NBbz6IULzrA60WyMTrpBHP+fuKEW4K3pT6Nbj7tY7HZ1AQkT9M3If0aBKP/cDXeIAw3wRS7KmSOnnsYgtuHgr0wbA0rayQKYbRmHbWcyNS7A8aQU9+8nthPSDMderTw0UFNGk07V38yiihHWNQJ82m0JCxNC1WiEbAzaZqDK1WhfdodLvu7QkpfRAaCaHMasPnmc8NTzWOLluzITj1qRA3dvrThcFsoyEOsbxLXhkd0w6hTpoaUDAK/vHZtOC9SCEaIbTnvyuKW9kDKjpJA+K1b6Vxwz6Byo7RWHnGs4XBShP32g3BqU9/H9M8T3+2MJhlsLLADd0dVgt2/dvjRQOlCO4toWKsslle/n5O8Ny3s1O4YQ8gqofB7rr6zXFpFenFa4Jzng9x01h6+jPDUw2my3/aEJzy9PcxXfLMZwtTrKyfN24OLhs8NlbfRf0bdWIT92NfzIgVomErQJ80cdOce+u/QnVzWBtXWXDDUjrruUL5GTbCaU8XplgrNMCe8tT3caM3uE1WFueFpq+sENTJU6rdWwIRC1SFaFh1sJxM3DSC3hypstPICv3YxM3nn/nscPkZFiB7zmzU5Tq4Hn4vuJ8rTKl2c96/vD5WlKGxW9+bmGp4BR+smNciVsibo+bJ+puT6rlPXDdGI+sVr6Vxo3Z+5nOhn+AH+IOJ2/Qf/Mqmfo0fqs4UIpsmWxLcz349O1ZahgUFjdzE/dX0ZaIejqH/xFgA/DBp7K/Tnwn9BHbTKU8NF38uintjcMYzhaITh537wogUmwzc0IRVSRyhQtSvTdzPfztHBHYxWGmw70zm0jczlgslGoOVRpwyRUiJZ2DCiBf4sdkYTXzBN1RxHmq5qdpNnOKzVEkcQUub+jXxGnFNjDhOPDdx0+xO/MdgpUEPN8dQ0Jh82jPDJZ8Qn1lv4nXSiOfko2VRw/QFL45Mq1+D++0fYiVx8gb5w8SN0DGMWgz6OEwxk7lEcz4+p+y0C18elcKNUOqpT4W4S9PKCpliGBLmLmoicz9IiARvF1WOTUbCoTNc5edtxqwNHIEk6zKl50I/dFETCWwEVAKZi42BSB4JkRkTLrYRwYfPY8O86lD2xphtkoUbVWACIfRDF8WPREZieWX4XCc1kZkKJBRmTGhQtOFmHgXneNmHO6LcQvl12fPfzJbE84QHN+ynsXNXSmHhYpHAGoCWCvPFpewNLZV5OxRyLkVywau4HZRhjKBKIoem69KaoTClsBxcONfJImHWyesj5gaFs5Y72UYETdaHBEwxm7XePj/h33Me1sEl4odCNAGa8QIuFonstcK5koBcbCPW5YkvQlqpS0k96R8uarkqLZPIn/xiphM3mBHeA7eLRcLDEbgpnM0CPIlbabwuJfXkOvvWm9hGIode6xIfxEfYb2+Omu9k0uD3rxTOkQLLpZAt822+CGnT0Hh9uIknPv9+hb22Zr0UxDblegw2IrOiKORcyvVhjJgjhbjOObLhpoAlfj3jxR3Gb188ea1wnuw1VNddCvCwn5g1xlgElygo+eifw+fIg49LzJT8AN2dgsilAK+40fnz+Qk+ywwZaOMu3LA7s9hvJW1l9OtimFbjLuPtSJb6NcewyX0CZgQMArBPGZZqnKe0LL7+iFk/BiM8NFe9Lh3U58NNoeNThqWgIAD71HGhS/K0k4WJJJ95bbNXpJ4KU8fMWiFFkU8ZlusiqLhmqGAkC95yuYqPJKY898Q10yV5Ht5GuIIzRsFMEHfNUFGaJ0EuS9madRqZQb/m2l3BK4mbZOA7jqdGcLtmkWA86U1csCpzLfHdLPVrcGfp/HEe1sk3FgG/BbdvLALXPX7Byhw+sCKTfs05sphdIyLcrplMGHFiacZYBPwMf8oT47Lo1xxj65Ezj8FvfWMReOsGbt9YBPY1wz/ZUz7D/3VYow8TTdHe88xaIevp27+8ZV2yZr13nAFxlPuRJ55k0a9HzPpRNKmyzgNu3zgH3gKx3j7fJW/xsJaJe9aKTP2+krSyNzLFMJ9govx+m4LMjcA5so6pVqkgqFq5IJMGJ59XUpiyzlO5IO7vcRkNkIw2z6Iwhufyf171XJgqOpsA4/PkWCO+5wV7Fj0xH6aCEsGUx09IFjTL+lgWxfGTrHuSBxOsnqzPqqS4M5Jd6LsVSwBT9j3Js0asM3IfWUm6euWKJYKpes7rz7pv+DX+bWtkL+4ayB4oCT/JsZeII+xxW0P4r/F5fFaueJpxDHG7WqUC+a+04kn1HNefdQy4kWkoKUylaWWFTDEMMTSfDejeNPhD18beRD6gR5Ogd4vaXponn4OzwLZwGSKVsHK0Sc9mnIPmLt8xIaam0uTox91U6JkuBoniJtBrI7JLpNIn4IcRdKH5Zq53jybB/l0aewuQ/j2aShOvS+wTYxBalUoFXtohjZI07/kwEXChlWetN+eASeYrQFhvdFNcTIwQdxPBvZ9DfFKbvmlm9mEiwe3XqVEOP2kiTaW+RI7AIU28PprnQV3D9dZGZJvRJEpTrQ8TOBDg7N/dLk6YxARd1Iebz+Eeu8QnsQO6NpJA7xLNxGgmpinYh5sCDgHOLP/mumgqtTHSkveEJnuX+KQ21LLeiIO6jFiC2rQPE/56QNfGueIJMcBXgHAMccDUYkoa94z19uGGGQZzx4eJ+EB8yxNPYO5Vy8ANk8gl4qgMVvSPfDGOplgGxvkwEY/xNd95sP49mkiu8BUX4Ia5xT12GWQMHlZ9mMhbfVvV8a43BZFvj/waVlbIFMPorncpFtOdDosEGuufHF3bUHJh/cCiQGDQloBxFFRqMZgLtnkzBAgEwjDolzYlWogxV/2ho2woXvFRYNns2B1bSOKhG/+iiO5oGhRouuwFd/8uVtxQKlU9FcqvTYmWgHzNwaGwIl3xnRy4r/xDRynCYK8gcGYzKO6wMWA/uKjsdNkf0buZsBUQTLQVDlDAlQ4M/dA2J4dEf2203lC9KcZsdsUBMMMqCp2doGizI/s0kwAGSwbGgc0IzNAbBfeAztY3F1BB1c/+vG87qxItifua/iFuWB8Uv3bcHaO5RXWDQx2KxbAVYDXASoLhYTMKRlgx2HX9u1hxM6/kwogODJXTNgkb3Cp4ykgAZd2YBg7YQewrl2IxfovoIMdxf2xGcIe9hvG5toIHP7s4ol/DMrHN9+F68TOMdXCNaoAyzL5GnA9/sBksEiZpw8a54kA7bpIptGPFbXvjgj/r/oDVYxvVwL7g3+NvsMhcoxr+vF/oZ7CJYJ/ZjKTLHBUS4pUHdrQegyDj8Tv5cRM/GD8R4m4r8cWGm/0BbvzTNaoBtij3D3af3mfTSLxQ4Yk7Vx3UyUplJ84S5zHir63A5L4qExQWn+2BlfhJ/CeeCnvVMaqBfQLbiPjsGjFBPurXrr48QP7VgZsilzwhuC3CsUlmIkb+ceHmfoGbPOYa1cB1q1hvaVlZIVMM4wYO7NE0qGQk8m0rVShSoTJHxKQmUqWS3FSJl2Rme9pmM1EMYa3qVrNuTgqmTo3DpETA2L9zUTodxsZXlWE2OoHRDNA8eVCpx7g7NkwVIODm2lTRluDcJlKALYK7Xb3YeXlKsm1OcKuqLAHjgC7poXAEWqWRgntgr6Yp3FWN9eYpyixAmGIKFXYr7trW2Qa7tqkbz7MB94423I1rxJRhCkOCRwp3zcrB7xM0Uja6iZuny2SBw/Ct+kYBYuImibez4GYmhgab5rWrBjtZggoDxwje4ZoVpNR6MRJycrYGdFaTekvAHmjgNgsQzkvRqQrC3ZrXTClkYyQ5Hd4GfpK17S2SFl3yBsSCm89PvrEc2LNJKrFwHexXNYaGmQVIqCbfWNZHiwPb2w3WN4nbNreG+6RFF/eP+2hO061v4MYfdM3U8JsBiYKSB5FGFty8IVLlY/xTxwgkDX/WeTZhTEjjRoG9RxHcjVO42V+qRo2x/2y4D+nZJB4vAO7GNS3r3aVR/PUF8cD2QLNDAjcxQWNZ0lo3qBb0al47xs2bG/PreOLZPp22rnf/btzrNG78W3HzAGXOuOI3xFn9ej0Zy5JGvCZuC+6a21jnBDFrTMf3kw94Y2jiJn8kBwHylsR8U1Qp8u9yEe5d2tYLmlpxN5IHLKxjoxpBFyvuOvEoCIqn37erZ31rx8OhfnZ/C24Koqxheb+GlRUyxTCaxc57aWSwwegcXLNhk9A/YYcgzAXFz2xCpXMcVWdYCKrYbCoIY7BUlPGBmKFNWHD4zBXB9W+HtMNPJy0WJW2zl3Hejz8HZ0c0Tzrez3txZKpxlAZBaMywQ8AHFdRk2/D30CW1cQ1Ks6nEi/3z+7kxcwJWCsKINrbGdUMmxIyqOz9Mi+/BKoDeG/68Ljj3+REp3DRkQqmE1QM+rsFUmt60ZUtw3dvjY9rhFYPHWJs0XymcF9MOH/p8WvCORRCRxjalS6KNcvv7k1O4F65cH5wR0YFRtD3nuTRuWGZnPjtCGBKwA057erg0BZq4//bOBFGgxa4cPFaaGU17bcQ8YZJhUGrfsggijpqzMqZLwkq75b1JKdywZqD6wrKAjYDPmNRbGm+hwdPoGuL+PqXYzHlvfPeHWAH9qtfHBWPnpXG/MWq+ULAxmFQwYEwbM29lrIAOS+amdyemcPP5Sk+lQRGfMamgXAe0WhrnOY7rNFlCnPfm9yYGX0cUd5SPbc2lQ0YviAVTYfYMHpHGPS6iimMwpKA0cz+TtiTCzTrKWIRnR8RjBNTwG/yHBnxw4+sLLbhv+9ekWBfnmje37tGk4c8IQmIwbV4tTAs50uSLn2Gw0ogtJm72F/cd3LCb8AcbbvbrwogZxDELVqZx3/7B5JgZdN1b462No8QPZbcxEsHGOkRxnniE0aB6zVvjUwxO4hnUZf4eNhmjGn6y4X5hpCh/Y2c/XxjM/7Fogy1nJc4Sb7G/vT3Byt4jXj8YCUrCGLSxDmlyRzlaCRKor5u4ZVTDU99LPoFNx5gMs6GbRmfy0dwVYRPz2c8VBnMtuO/+eEqsgI5P2rTgENRUIUxo7y98N8fa7H7Jq6GyNQ2/qJubuGHHQr9GWLM0rayQKYZBzXSxXygGoKahVOqiynHPCSYURB9HjmUzlHNxYB/FD4XWkJ7qptPRFU9gevHb2U72C933zPNAQdolqia4v5opG4brc+L+amYoZe+h+KFsTQHy1Jd2FW2MgoNE8OJ3c5zsF9gO0Jw/nbhYlGttRiyGJkiA0tk8VtxfzpQA/cxX7vV+c/R8STxPfeXGTYAiIb703ZxUUk2yn14tnBMMnbzYye4CN2tJQnjPh/urmZLofH7y9ugFMT3VZQQoqOPM0XGxdgiiJBPE51zsLnCjNk4CZvaHG3e4hj5M74xdIIWVz5dgYUDVhzrsYu1wPdBqoQL72F18DgXR2w6l6eR6+3AzS4lClvO5Rmkwy+azKUsEl0uEFf/huvAnH7sJLPgl1GKXsXfxbx9uFLl5cHjqq1lO3LBxSOTsOxdu9isUdApQl9I0xvpQEFHYOnF/HeKGgu+yDyYslHjLNbpww/78ZOLi4NURc51sI+IjCRxaPLRnH24KosEj5rlxfzNL4qAPdxhvf5L94hJ7ZCbLRz8slrEILrYR+ejF72bLAxsimy4jT5AvfGM/eBAl7/j8hFlgKIQ/48HN/fDliV/DyujXxbDJHrqoJrLl1f10YKiSUxav9irDTl68WoKTTxmWgDFr2dpcmLJonmBak0EH5jwkAp/CKomFpGk+rZsbjwRuDpxKY1qVeW3g9tGT9ZipGbiV5umjOSru7LVcJUPFstYy64EF3AzLcs0I0sQCblfhLLg3bZbry4PJR4cOMa0KMghScg4KHdesHYyCecnqnyVQ+2ieJPw8vpvn2rKYRnwOn+cbi8A6s96+sQhc97TFa/Lhztq7i1ZnsnE4z4yla7xjEZgVtSxjLAJ+xj7JE09851FMPi05Pc/MZWu9YxF4e7Z07frUEMOk4WYMvbS93S6KaVWm+jWYdHKv+zwhbl/c4a0bfuIrnMEt653DT7Lo15MWrg6a1qqaeQyFk28sAm/deIPl813yFpjz7Dm+si0tK3sjUwyzNVQmjX6HzGOqZx9Tt1rloEaVit7gy9eiNIzWq16pZDBVzz7G7OcwjeAF7iyaJ3h84pNbMVX6jzHlWW8aKmkG9bFD8q/lNvmuLdcx/s9iRHmtKhW9LIut653j/ubwgTx7oH7GfYNdUatKpUyaZ17c+TDl2bt+3OBlvbOopbnur+zd0okn9ITUqlYxJZnx7+65ErknOY5hP4Z7MwfuEooneXCbUgGmEf/AbSM8/Fv7Mse11a+eD7dPYJe+F3ppSur+lqaVFTLFMHRLXBbqgzSThjNfIqe7ngZMGhp9x2izoMvQsaHp8IjedvYAxuamwdGHu1yEm659H10STDQU2hhSakdEuH3UPPSOEJ47vI8bNwGAhlLftQnu3s3ChscM3K7GvCTuSlGjosuk+bBuVS8mGt1QGD7Cc236edBYfYmce4bGjItphHH9FQsqSGOxy2jOo0nP5wMEXVR2fdeGHd67udCdfYmca2/ToHrcPGozmBoVC8rHejM2k6byBtvKWrkMHFCLfdcW4m4m1HpTa8w8Blqti7GD4R+st4shpQwoaPq+taSQYx1916aYaPj0JXKOgVaLfo/LaOhHj0d1cmwWNjnX8OJmn/GU7TuPYmIf+N7KcAxxwMV8wYgjNMP61olGYWj6vj1XNcLNffMlcjDRiO0rijimWe2q0rTusjAHVAgO9/glDeXQ9H3rTSFHXGafZ+Hu176+t7hgDSFj0MjsMm3W96034wloaPftOR7ADy6jX/92Dfrp6Q4lWqiGJDporDcf2jXV9Y8hKKb07dsO72YNrN2a1hQxOAw6nE0unmr3b4d0kZ+hE9oUXXGmO47oLgmaDnmXoiuU1Fb1qkklLrgts2QIKEqDvu2wbtYnu65Na8S4oR/a5ojwhHnDwBA39E2Ut22USnATwNgwCJ7ZDFVouv9hEdxyWDcrbjDrDIpbHbgpcM6PacztUyJ3GIHtpgg3dFnmRNhw3354dwlgFHyDEoJvSYPiTaKniMEHbLN7oMozkwi75dBu1kQGI2mr+nV7K7OJgvCmQ7vKzwTxJAsiSam8/fBugpuCTxXMTUMgjsIKds/tDtz4Nj4uuA/rmhJD1ACu9OuLonOaRgLEF7FDezUT1oVpfD7rTeAlAXMum0FR57o47vYjultHB1DEkSywmwZ2tSZgArjSry/cu52V2cR9whcxiktYYjbc3HfYRhQ8LjV5BAPxI+4L12nDzawWTTo3DuxifQOAPydVjW0MoRB319ReTxr769bDu4nfUmC6RgcgLMmDGvsXP7GNPKBYUPr2DYd0tRYOMCP1Mwbt1dbKtGE/s5Y6m8j2AAVu7glxgkLVNToA4VSYjcRL/MT2Npw4q+MFbjiki/WtA0xUxk+omC3x3DTivuLGR2CUpnCXKyd7gGukUL3yADuV/YzdtxcaP4XqnUfaccMeOzaib/9tQBfryAPyjNKvEWO1PUCFuLvLzzxA2EY1KG4VvS0tKytkimlU46axV5UyjSFT4Jq1olQ5Rkqb9EWM13/qjDxJ2JJBcpIjgdE204Jz8BVVjLtWlRRFO8S9le/PxqxkSVBNam3FTdCz4a5TrXJMLZdX2RZH3nabCjFuNl5Dy2yIyhXLF0kkTWtbcJcL578UwW0JmOBW5WNwM3U4jbtSsE2Mu8BaNJB0lL6Isq8qySaNAJj8qqBJrWzcPEHZZ9tUjnHXdOKuHL/5Ez+xJDH+XRK3SSkV3BWK4uYtn+kC/LlxYq6E4HbMttGCks9VanBR3JViajn/N8cUKG4tOjlfQ4PCK7gLyhf5Cotrs+FuYuK2rDd7V3Hzuds6/ET93vTRJO4aCdyNc/gJuM1QwR+L4iYmpDFB+VelaT632jbpY2S/xuttx43/6Hrjd7aZLZUrlC/yNa4Ld7JXg/VmrUwjXm3FbZ/KC26lxLM/VZ28CO7KRXG7/DuFu7wFd0StF9wSyxy4Iz+hMKpuWW/iur7Zxr9tX0NJnKkS/j1xlThlGvkjWXCEPpo6rMi8l7qJveXC7ZrgzTpWi9bbzB1qVRL5CNxNnbj9fUa/hpUVMsUwuvCvfSuk4SaNPruLXh4tLAsoiajVmhRW7IGh04JhU0La4UUvj7IKxiH8paJdKMPaqIk0vyk9FQFCqM+m0eWO+ixd/zRmXT1kfIqiDe4/vzxaWBYIikGdXGfBjfLs0Ih2ePEro2N6ZdKgUyM6hv39g8kx7dlU/oWWiyH4CLvHNFgFrJ82H3KdKdxboK+PFpZFjNvCEnrk8xkx7fCSV8akKJUYrJd/DA1x3/XRZBEiNA1W1JWvh/RU2CHPR+q2SYPFcc5zhYIbhXMUlW24oV3SNLp+Y+gnP1lwP/bFzOCjqOv/Mo5fkcYN7RZlXezuj6akFMlV+RfaOQaLyMZugu0D1Re2As3jV7w+NtUYzZ8vf22MNAvSnCm4LSwhBDrfHx+yrKDF2pp5YUehrIvd98kUqyAiTZmXvRauN2wzlKdN4/OhikPzBNflg+24rxg8Vq6L4855vtDKbmJdVLn98sFjUgrw2DfTlwf3fDxFfoZey3WYxn3ifmGwNh63MArBzfqxjrAA8Qezv5g/4m801XJfON7GEnrum9kxywr69Oxladz4M4rHGH5uE3JkXygdmP3yyLA02wY/JZ7gt7AA2U823Fe9MTZuUge3jSUEG5H9j0FXn7k03TwNtfnOSHEe0UhT2Rtb8OPPohyNwaZ62CJ2uC7CTZwgbnG82RcN7mveHCdNw8TLc14otLKEiLPEW4y4NH1JGnfh7BXBHe+H600ctwk50rx78Suj5Gdo6A8OTeMmf5wT4YYFePHLadwY+WjSwhA316mK6UmDbagsK2j6NtYh1H0U1LHHhs2IaeZJI19d+M9Rcfy5L4o/KdzPQ3H3k0dK2soKmWIY9DwX24jAhKIptFGbM6lBlaOwcCkI6zGcz6c0De+f7nhUmV0Gu4LA9aIP96bNQqd8b9wCp0K2YqKw+H/tnQe4F8XVxpdLVRSl96JI701jjYqKHTHWoKJGY+xGE1s+W6KxGxUbGnvvXWMXu0iV3sul9yrSv+d3dmfZOzszuzdeLl4y7/OgwF32/+7szJmz+z/veQdZHIRV3wQ2DGSlLvkeC9OUDCiw0SPzZbxt4hfUJbhjs3HanKZDToWSWNgchOWYQaHs0MUb+SaBkGt0qUNI+JDN2nijakHm/OHoeU5VGlJ/NmCbg7C6J2wYL/5g58QGwMbj4k1g5froeWFTSQnvwYUiG3Wp0vgcEgsXb+S5GzYgd7WPNwk/53G5UcPjk7HzwvNZeIfjUxh8Mna+1WlaeA+aIfPOtGEqyH3duMnYY0Ph68kLRZ767Pd2STzrlkSHeWBTd/HXfB4boc2xWc0BEnrTxhPzHhzeV5cjOYkZiZMrnqBqoU8K8yCL98AJ851qOrjwAMX9czlbE09csYIEnrjkmt8oQIkTLw8utKrS4M38J+641E3Pf18oD6wfOXkXSvx2cSLBJHFyHYOzNQ8gjINNlUZcf37QDJl3tjYUan4Tb9SDhgm4rZOoEg9t4MGaxMnFmyTwXUNfqy0JL78uBgodctHw58jbNriPWbw604WVJ9klq9Y4nWEJTAQwPjOLU5bsED4umW/MO+Oz2MgJGi6HVT6HADczawwW/5R9bYt/yjTW5Kk3676xwZEMEThsYHjgnYdTnntieuWeOk/GfWNDRO6+pCR4L8mel/w8S2kk823JT872AmyINPxyJaD8+zzzJFxPWetydaYcmDXHZ7l4q5YIrgSUfy9zLot3jnnJOUz1DEWPWR3MWrLa2V6Aeb145VpnIrd5reSY3zniictLLua91M2bB0LGPEt+nGu8c8aTPDGeN1iueMlbqCU/rXUmcupc2ZxWB3OXr85x/aszzvOTvMFytUVgv2GuuNoiqHPliSelCf9GphhQLbNdPy+JYzBmrF61slMdwneeVKGXzOeVDG+CFxuGS+ZJ4sFxjUuIU0mch9oOvl92qUPIl2hRn8mpZjanvPPEZdAJ2OSoHXBt0vBmvEtr7grv6ts7VRbUTjDeLnVIuWi8S2ae5DtPoxpu3iFnt9SVf19Sc5e5lOc81O258nnqGmrsUMlYS5cE96005wl1e64HEdYjY26qfSnCuxRjHOdpmMGbolhqZbKSuVzjVLPkYmWDnas4jYGlLcL2FWUelESMK034RKYYoGLdFugo4lMyZteGiMoItYLN4EyO2b2pnM8lzcPPgoCqTONMwPEZmTYGi7b5SzEcygfkoK4NEd6ohExeRMljKOK1GeEBFD80nbKZtwE2cPyWTtq9iZU3RWVILnu1S/ss6ZyoyHfJJTmG4sMTHRJO/JzqZvAmcOG3dFKPJtZAB2+M+ZADuzZEPge1gsmrJXkMn4PBpMvRlsJRzBdtYKNAQebiTQA8oUdjcSV3bYh8DkFu38gvy3xM46CgoEA+zwaUFmzQrvGGBzJfrt8WoPn7E7s3ERd4k2Fikjf3DwM+G04S3uVi5YoJyFu5fte6JAFFcQRvm3O73NfujaUNgan4Nua9RxMpBE36N+k4MbqvxBUb8I5CvejiTRJH3DmhRyM37x6Ng/3k/m3n5E0c4L7YwDphXWJsawPybeKSa56QDIUy/cZWx3mmD/d3391qOTdhuLBuUbrZIJ9ToUCMWl3tHFAvuniTgOKSjrzaVFyveJ+8e5Pw/kVeSSbwOTz09HI4zqPco6jcxYl2Drit93WsAfY/m0nxloJPZIoBpKJ/790+lcwQLO85sbNMcKrGH+jb1dhcDUnl3pGO/64TOhufNAjMSuKN26wy6UoC+SMyOiXzJFHRQeOu+3/fVQIviRNybRPvf53YWQKK4m3qJYOMkMAEkPiZquwPaF1bpIDKbdaUqCHJvqlPh7i3hSlA8Tbngd93E94EKOSw+h5FsLzzhM4SwFl4D/TtZuwlc+5vm8tGDpBUmgIrG+a5kcQbWbApUSMRQt4K6O2jHHD1p7AHT+kq3Dj+ZhPvcuVEWk5iQWB6sG9X41c15+y3qyROAJlmYwNvEpzz9g8l3kimTf04CGxKxkzfmtP3Ch1wk+Ct34OndJMNgyctZOom3rcf31ESCxJVjjfxPmvfXYJDIqk0Mn3ThkDAPT+Spl/Yczdjgtm0xvYiOwdsQH/YJ93ygM+HB3xIHBgnveUBf+Z6uC6uj/tj4n3G3s0kkQdIdXkAMPU/Uq70SIxNCSb3SclqSfjUekjz7ir3n8QJabXOm/HnvpFYMJ+4TtPb2X57No27p7JOTBsZ81m5pDPPme86WBfwACROfzK0amB9wZv1xptg5rGe9PJH2hQgcxbefbsZW0ycskcTcckGxAOTeS7xQ0nqz5F1nObN+MED0C/rfEOrBuIZcY34xoPIXSemeTP8yMBJLIg7HG96q0ycVSa7xFOTCS3xWrmNn70v6zidqBH374x4k/BfeEC6VQP7B3EN3qiA7j6xcypZh/cNvdtLYoGK6P6+XY0P0UjdaWMgvHu3N7aY6Npk51juftY+u0iibeLNvgX22q1WcImhVcN2FQuCB37f1ahs3ZLwiUwxMXXBqtT36HzvmGxbzneRFE2ZWspTLAj4nh2TSR0UwCklC7YBpu/j8SpaGhUUh+qH9PeRq9aul6K0+LMX5uAdqYDSvFfFvGl1vsJQzDxv2c+xcgiFxcIVFt6RmSZFfCbeP61ZL2OgMJXP1njz/XShxtukWuLaFG9qBJavtoz32s28aZ2vY5nwDv+tUsnoQK2WVHNNM/HetKlIQR5FnKsN1f0csyEx3pjG6aBgWikDVgnvNcYaA1U/s97Ke30wd9nm+zA9B++5Ft4zErypbVi2eq2Z95pwvFet2WAe79VrpcZA8TZZAvy8Dt4/Fx0zbYKHvDcrNEJ1Xpo348LnAD7XNE/gqeYJ95r5roP7xHXLZ28s+tkKjFuyeJdr03kzhMl/S42IabypQ9jMe52Vt1I8hXM0veb4d0ne5vHeUJR34l4neaNMLMo7vS5nLl0dmwoSD0zzJIyPIW/G3aSUXL56bcybdT4tB+/k2lJg+FmvRWNCeryJV8pSgXiAV5SR95rwPhCTTONN3F+UwZv9g7imwD1Zb+KdsIuYv2KNxAId1Ops5r15bSVBrZ2yqYF3MgbHvFevE8uI8LM3FRkzBSwQsmqD/ucSmeuvv14yzeSv1q3NDY1KAyh2cOw14Zb/jJNJxURBOmmqqXprxOzgvVFhNTdyx5VRQE8Cw7L7I3mqnNNQiU6xpJJfP/f9dJEQ66A6H4kkExjjyEcMkkpw2wfjRNXDpnf1a6OMvN/5cU7wdiTzRFa7wsB7zJwVQf9Innrbf8YFUw28F61aF7sDU2lvUois27hJpNUEoGEzlgQDBqaliQCp4KT5K2TzQGJr4o2C7M0Rs2LepiJkPEHu+Tjkfft/xgdTDFLQxT/BO5QDKyWJmfePwhuH8wciSbeOuz6aIKo1NhckzSYRBQZ+bwwLeXNty1aneeMtg+wa3PHhBKOkks1Nya9RPqAY00F8Yy6y4YyatSzoH809HXzWuLnLJVAiMTbxRkmnTOn4XBPvifNXyRiEYzFe/qxj6er1IqcGyEZNBnTwhgcbzpjZy2NptI57P50UjJ69TI7j/pgscjDmQ7kX8h5pLJ6etGCVtEMA/+IeGnx0uN4rI9k4BrIm53rGjWMYR9Qfaix0IK3HYZj5dLmFN0ozFEmA+ck81cF8viOS1d79yQSjJxHrQrlIvzViVvCewQEe3lex9n9eJ2qbOy28caxGygtv1jHrQsfn40NFovB+Y5TEBR0kRMQRQFwZa/CAIg4p2TjxyaSUURJ84gSycCUx1oFUmpYRJBDME5O6iThLvAXEX1OxOvH61vfDzyCOj56d5k3cVzJ9YpTJ8BPe7CMYVKImuzUaCx04sv8wbbHE+b++PMLKG0NI5e7O/qFj+uLV4gIfz71ZaQPKlWs3jzdmtibDz1CCP8qY5P3PJjKgXbt2wZw5c+JfX3311VbjgmuxDWTHuEi//eMcp6EYARPrdpehGMewsZBAuOSSZL5sUDaw0MT11XEMvNl8CAI2x2bFiY3OZSzIMQQwlfTY5JI8Abs4sZFk8Q4/b5b0/7A5NitObGQ4atuPCeWSJJouuSRPyS5OJINsutm8Z4qs0ubYrI4hcTAFFAXu29r1G+KeHDa5JImqixMbGS7CmbwHz5S+Li41HedgoxvhcOJlk1+3fmPwusNBmDVCouriBA/45Blv5O4252N1DBvdMEPfJoU3h80K1q7b4HQ+5n6RoCD1tYEklo3AFU9CToWSHLraOcCbByhXO4c3h8+WNyDIa20YPXu59MmipYENzNf3R84VF+ks3sjdXSpAePNWx9XOgThCYuH6POIRcck1B4hrxDfX9StOn42bH7/lMR4zdKbEL1c7B3r7EAddsRljRh54XLx5u8EYsK+41HSvDJ4pbR9MCUp8zJCZ0oYBmbYNJFUk/C5OSN15wHQdw/7n2gP+J+XXFSpUCOrVsxcolSZ4ze/CwlVr446srnMsil7P2YA0lScflzNseK41mZz4LNcEV5xUd1vXMQscstPk622Xw6p6/ZrJO+cxWQZ+Mt4Z52Ej502aK5Hb7A675hfz5vpRNWQdk3UeNmY2OVciJ5xWMQZrMq/NJSuOOWVcfyhPdvNmI1+6eq0zkYs5ZY539j3Jc23hGLl5w3fZz+uciVzIKZTzuznlmCc57lue62deL121ztkWIS+nBbnWZb57knUMcYT57UqIwnPliXH54kmeWOlKdNRGrqTjWefKjifM3V8e4xeuXCN8XAkR+w0xZXGeNZcjnpQmfvVvZCZOnBg0aNAg2HXXXYO+ffsGM2bYG/GANWvWBMuXLy/yq6Rg8oVJok29HY0eLEnw8xYUlTnyHQwlqTB3qVpoN46qJYsTPjR5OGWep/6OUlTm4k0RGbxdqhbaX1MMm/151XIdk2u864bFhzbsWruqKDJcMk+KMylKbFW32i/m3SbPPalfTYoJXXJJxhHeLpknKg3hnWPuugxBFadW9aplXlvzOlWdvCkCxiXcJS9HFUOxd/Y45Zi7si4zrq3ejjIPbGocVRTLeJuKgRW4bu5bHk557kme8+xSawerGgegesL52VRUq8D6IC5lcqqfJ8ZVc5riqvMwf01WAAqozLALMPm2KTDNiEu5OJVQPGlW080bVRrzBH8uF2/iUnY8yXdtretnXxtF7yYRit4WgfG0gQLjVjnnbmniV53I7LHHHsETTzwR/Oc//wkefPDBYOrUqcG+++4brFhh/3rj5ptvDnbaaaf4V+PGbkff4gCZm20CUy2Ogohqb5vskGBx2p7NRGVhqgpXQF3CsagSbEDqTWU9iguXEy9uvvC2OXKjKjhW3GrrWgM0i67fns1kw0RFYsMZe+8S8jaoYxRwPMaHyaSgUWjfsFrQo1kN4W1beLyJOa5rI1ElmYw1Fe/T9momKgulSrHxLsjgjbEbfkau8SYR+M2uNUUlYHMSp1cDckrUI2yctmBx+l5NRWWhVCkmMIbUjbnGEnUIyeXpe+1ibR3AprNn85oid7U5iaO24ef7tahlVGvEvPduJioLk/Fgknf4f7MBq1KHkci7eJM4I3dGpmxr1Mf1IAdGLWXbWDg/955ArtQ0rvE+wzHe3C9UgBxj483GTHsBZLrMBxOYP8jd92pey7mRwYm2Cb0NxoMK/RRvx9zF8BMVIPfPloOSCO3fso7MXxtv1isy5j12rWk0qNzMexeJA8pk1MabdXmmQbWmwLpGBSjHWnij5kKNhbzY5oBOfESVhDEwTuBW3nvvIv5nymTUxps4eObedt4YuKIC7LdXUytvEn32iT5dG1p7c7EfnbxHEzEGxmTXBu49/mcu53LUmKj7XLx7tq4r+xf7mO3hkH3CZFD7P5vIHHbYYcHxxx8fdOzYMejVq1fw3nvvBUuXLg1eeukl67+56qqrgmXLlsW/Cgvd30MXB9zA+07ukkpmCKKPntZdjMSYCI+f3iNlFsaT2k3HtBfrdoBMU89amRZIkumfAs7df7fgcMMGTA+Ca45sG8sOLzukZWoxkEwh2wQs9PtP7mrk/djpPWSCMykf7dcj1ZMF3kj21CJBnoqbsM6bPhyq/8Cf9mtu7COApPLaI9vJ75FzI1PUebMIHop4E1hD6WRBypzv0X7dJaAQ6P7dr3sRYzjA9dxwdDtZ4AA5KwmSzpueN6dGzrB/3HdXo/18tybVg+uPDnkjn7/i0DRvnnofPjXkzUaGtFpPwticHj6tmyREBdF4651b4X3dkW3F0RYg+zY56BKQlAwcebJpI+vSZOfg771D3iQqOJ0XaLsrb6EeOa27bHQkDoy9kfep3WTD5DjGXn/rBu9rjmgrCaiSp5JImxJZtaGeuXcz+bOOzo13jt3dmet/O7xNKmjy+dx3+JCoDTDw5s8DTu0mCQrH/fu0HqleMowH5ycBBbRX4PNNiaySgbNRkUTr4D4pmT4b4rVHtk3x5n5z37n/jCfzQU964c19UOZ73B/9bSGnxa0YGSxgfiKh1YEjNDJgcMpvmhp7PLFxK5d01gvnMvFmvOFNAsLv9aSXdYpEW5mqcm16qwZOixv3PpF8/dqj2hpbTJAI04YA0NuGh4NyBuf6myOZPvfsht7tUm8CiQuPnt5DrodkgLmrm7ASF5E688ADHjq1mzTr03kTZ5V8nbm+ezTX9UQWJ21wUhQTyxkeeG77XSi/xin8pmM6pHizfzwe8SY+P9aveypZhzf7UcOI60OndE21auC0lx7UMm5D8bcjmOtp3oe2qxucH8nASaBP+U2aNwn1HceH440zO1L7FO+qlYLHz+gRm4KWFn7ViYyOnXfeOWjZsmUwaZJZWQEqV64cVKtWrcivkgJSOQq49GJevvN/LVKZAKr+9e9jkc5RnKlk2eK1oRX88vUlxWZKdjd1odkjCDWDKgKlGp9CNl0cgFRQ+a8glbPxVioT8J9Rc1LfbcKba1Oy7MHTFksxZ4r3+PlSTCa8F60y8561TArcADVAFMXpvClgVqogeIcFxEV5I9tNFpvhH6LX72zQeA+ZtkSKMHXeKKdo8Q2QE5rMAEfNXhaMKFwWj9nbI9LjjT0DBcrJ8dZrbqhleTVRKPrh6Lkp3yJ4vz58dixbpVjXVGCN2ZySryPNxMTNVMBJ0Ww4ZuulmHmj9iU50lT8k5LFjCbeyYJLCpr1dvfwpuhYyVYpmh07Z4VRQaHaqfP/LyakeVOYTUFh+Nkhb10yy+cn1UyvGnjz5+Q8wR9Hb3fPeGAEqGSrjJepMBzvKCVLZtwHRuavSXCflMkr9w9Vh86b+01hdbJgXa9xWq0ViuJHpPstcVrULkpaPWLmUrnfOpgX0yPeNi8p1oUyeWW9UIxt4p1UYTGueo0T6xTezH/AetCNWjktIgbVeuLHRCxLeT9F8l54o3TSyztQ/6HIVLzfGDY7JVEmLlAQrsD6I34kQVykOFvxJgYjEdd5E2dVKwRiwo+z0oXh305eKCojQBz/fNz8FG/i56Bpm3kzd3Xe7B9J9dirw2aljEOF95CZcYsJxki3BhDeCf+/0YlYlsR3UxeLKAAgdf9sXHq8KfRV5rTsY4xliveqtaXus1TmEpmVK1cGkydPDurXL92ugQosTFQEJmBsRvU8k/feT81SUJIXFA8EievfGm30vWBDvPeTSH79/nijFJRA9/e3x8jvn/h6mlVJdPN742TyM8GR9JqAEy3JBX0DlJxXB0HulWjBXPfWaKPEj0B7b0J+bSp0I9D9/Z2Q95PfuHiPlUD3xcSFsghNwNGVzY5eOchhTWAzfSkKUDbebIix/PqD8cYiTQLGDZHr+VPfTrMqoG55f5wEjK8nLbIqzhhHgi/Fd3d+aObNZooRJLyZJybDODYW3LqF94fjjcV1FO8pt3bkl0j7bRJ8ip2/mbxQFC4mMG+ReXJfb7NIWFEqMZ9cvOl3g+waIGc2FeEK77dC3pjTsdmZeY8Xmef3UxYVeZBIgmTiuymL5Dgl59XBuCgTPOaJqcie8UXmDpBMm/r2cL034DK/KTRoVEmkDs5DsSQPBckHiSRIUr6ZtFDkt7RhMIHERclqb3hrjFEtyXxW8ut/fTTR6LeU5E17AZty61/RdRMPbIocNjGSPjZ84o8JqKOUE/sNb5t5M89ohwDu+XiC0W+J9Xz9W2PCB8zBhXEypgP3b/oXIQvHGNIEVGQkecQd4o8JxKsnI0dz5qdJ1EC8VvOMeEg810Hc59/Dm/tvU5zx70kqeHC1mTSyH30+Yb4k4je9O9aqkGKfUONtEjVQUK0k3uxfpl4w8GaeyMPW0FlWxdl9n02KH2pLC7/qROYvf/lLMHDgwGDatGnBN998E/Tp0ycoX758cPLJJ28VPlmSMoIPC9llKPbW8Nmy4FxNg9STlsvRlqcYMn+XZJhz8DRn6lOgc0IO7DIU43OGFS5xGopxDE/Q9OWwgeBLZs9bDRt4Qv04D+8Rs+Vpy+ZoK8cMh/dSY5Ov5H2l4ZipX0kyiPEE6OJNgOAcecabwGlztJVjRsyWDVw93Zkgkvm16+XNjg0T5q2UjcM1dwnIyJNd16Z4M94uNR28ucdTHLzfGzVXeCeflHXQF4cHA9dYwoME3bUGFCfegrjaInDMmGhu2vCB8N5gTa4B183afKsEebtUgNwT3qiwWdnAOWg0+e5I++fR/4RE1Ml7w0Z5a5tnfn88Zp5TBcg5kNczN20gBsDbNS9Z16xv1zHEB+JbnnjCw6pLTccxyPRNb78U6Nckb0AtDwWA+D9kxhInJ+Kx9JnJ2HfeGh7y1t/YFOU9S2T6tocCwDlI5FycSMx4oHFxYv/z7tcJzJw5U5KWRYsWBbVr1w722Wef4LvvvpPfbw2YuiYmwUTavpJ7SOm4m3UekgEWcJYjNZ0Ys87Fa1TXBM/LiZ+7+nAAAhefl8l7zfpMTjSNysMp+zzZ18ZGQfByJXJ5zyWcDF1Bi3tteT6LjZmkz5XIKU7663TT55XEWK78eV3medZGvF2JXN77uyoXJ86zIfs8GfcNvqzNrLYI+capZMYbzlnnYX7QLTyrLUKeeLIiJ6c88zvrnrAeOVdWW4Q8c5f1XRLxJM982xDxVh3a3fc3e17miZUrc423+xjCH4l6VjuHkFP2tZUmftVvZF544YVg9uzZIqkmqeHPzZun/TRKC10NRWlJoBDil/McTapLwa9LLtmlSXUpvHSZgFG4hnyvpDjlOQ+FaTbzMlVwR7GwTY2j1EaoR7I4UWDbLc+1Nck+pn2DnZxySYpSKQi1qXGEd+UKou4pKU7Z56kRtGuwk1VtBiherpkh86QgE+ll1xycTEWX+jFZ86R70xpSzOiSeaJmgbdLjUMBbJsG1bLnbo6x7N4sxxpoWl342NRmgJ/DmyJTG7hf7ervVCKcwnlSw31Mk5C3TbWl1F3M746G4uskb+ZTnvtbUvGEeWtTPwHiCDJ9lxqHeESxcklxyjNPkKnb1E8AFSVFxl1cvMsXSHF4ScWT7jnuG/HNZWiMapV9x1Q0rkB7AvaBPJxKE7/qRObXBmSeOJLapHI4XyPztMn3CO5K5vm7bnbZIdX6qCz+uJ89aeM8GIqhSLD17MBoDb0/slmbszUV70hOkXmaVCYqyPF5nAOnbDvv5sJbqQ2MvPdsJm+tMBi08UbRhDIK92+bszUqoaM7NRSZJ+ocE0heUMigEnI5RCuVgYv3KXs2DapWriDKFVuvEaTAVPMjzeQem4Bq5pguDUTdYws+8EbRgyrL5RCteKv/G3n/pqlscmfu08yaPGOIyGaBgsjWuwiVEFJZAhRKItumcsY+zSTJdjlEnxOZErp4o4JDrYE03pY8w4MNqk/XRtbeRahtMMwjyTapNYR3JDlFdehyWla8MTG0gevmviEZtvFGvUeCwnjaHLnDGNFIHnpszu3MQz6HeelyWlZ8WZ82MM9QIzHvbEk/GxxjjnGirecS65V1SxJuc26H91n77Cpx4FRHiwnUj+Bcg4llMiYTl8J4aObNvUe1h4LL1nMJtQ1xkp4sJmNNQLw6a99dxRDR1apBxW/X/D6ueyNJilEe2pJ+Ek9UkuwrtpYeNaLY1qLujlYH9JD3LrJfEH9twOQ0jN/NnW0/iBHIxm1JP4m+7d5vKfhEphgQmeepaUdXsu/H+vUQZ1gmAnJJ3fmXyXrXCZ3inidIHPUNgQmHBE45CCPdo7dBcr/ntwe3rRM7j7JIrzuqXSpo8pR2z8ld5Pds5ANOSTu6EnQeO727THBg433HcZ2kORngs/QNAYngefs3j3u1nNijicj3dN4HtakjDtOArB55tB40eUrrH/FmQxhwavcUb4IOkkrlsPrwKd1Sb6/gjWMzjrYAubq+IcCboIMzNKCvB1JsnTfSReVoS6KCHF3nzVMvbuPCe7uKwb9P6yYO5Dpvxlt9/chc2qVWUd4EYxybCUxKLkmCpPMmgaXXCmCjpu+Mznv/VrVF6grYWG7sk+a9W+0dggf6huPNRo6sVn9qq7E9stUesmGCh/p2Tb11g/ctx3aIG89dfXjrVDCDdygVD5N4+i6xceruz/SqQVoMeLuDzFPfpOjFwpyO2x/065F6yODPXI96W4EkXm+uxnggmVYtBa44tLVsZElG8KNfS58uYRLPhsjGoEuUuU9XH95Gfk9TsVuP7ZjiTS8W1V6AecB80B8yGP9H+xFnwuuhBYH+thDezEPmI7i8V2t5cCmn91Has2ncO4QNkfmu8967eU2ZZ4D1QmsInTfrS7UXYN0hY66p896uYvAw6zW6D/f9vmvqbSG8iX2qDcVlh7QKerauk+JN/EAGDA5tX1+c7HXeJOCqDQXjQ5zSk4KmCd7EuUdP7556OGK9DmC9Rt22+/++S6rhm+KtpPl/PqhlcHCbNG8ScNU+gzhOPNd540h+/VFhWwScwu84oWOKN3H4kVO7x7yRYuu82YeQXNeI7sM9J3VOveVkX6ANAG/5wcU9WwS92tVN8UbejsxdObdfeOBuqQdNEnAk7uG4VpX9TE9mkH+zFtkHSxM+kSkG+G6cynC91TcSv38mKt1RZejFpXzPi8pCyfdQ3ehV33wnjJqHolJAURUSt2TpBr/FxwTJMUBt1P/Tianv7SlOHTAwNC7EZ+Wm90JFja7E4O8VUMGYeKMuQT2hVDffTVmc+k4YFQLeQABVDteX4j1uflzgiYqA6ni9AJPi1Ac/T/B+d0yKN0oMxlvJJe/+ZGLKXFN4fzAhdtvGr0SXVsMb1QdFnmDojCWictJ5owpQBZ6opDAo1Hkjpb//81BthiPxje+OjR3Kk7z5e8Wb8yTdggF1DHd+FKpxAOaRqEB03s9+jwopLNxTagydNyoMpZ5CHXT3RxNSvCctWBnc99nk+LzMb70lPGaE/L2SeWLEOEUzqRTeH06I1Wqon3QzU86P+gIVBkAt99ygGSn3Z9RqqugUdQ9qG72+g2JgeAB43fjumJTCjz8z3qpmi+vUzTUZD9R6Sj1FESPjlmQEvxd+2KxCYtyf/W5GqhaM+6TMPhkH7qPOm2Jgpe4LeY9NKfyWarzv/2xSqggZ3swfpZ6ilcHnGm/+eahCWhJLb5/+bnqK99eTF8W+V6wX7qPOm/XFOgPM33++Ny6l8GO+3/Te2NiR+4HPJ8l61nn3/2SSrH/w/qg5wafji0qUoYfnk1IhhSqnaSnetHhQqi/iE+o9vZ4Gt+t/fbyZN/NYV/gRX/h75cj90OeTU60a4M19U67QFGt/rEmroUebAtRogHMQz3XeSJiJM+qziVM6b+Jw0lCUcdV5sw8Rv9dGaxrjS10Jys/6fzYpdg9H5YQgQeeNKlHtRxMjlZNeM4jqlvkUfjbqrPGpehrk38pctTThE5ligKp/mxkevU++nbxIAg6buAkoUHB9pXfAXZabTZGUCnTIJk2FhcwvkiIW5r+/nJLqRaLwyBdTZSOgYp/NzgT6kdBrgh4CNmkiQYwNBy53OngToACB0MSb/QqpL7xxbTVJQcGjX02RAE2ypvpy6GCT5BdGjnAzgWCALB4ut38wwVoEqMb7rg/TG73iffsH42TjefzraameHgqPfTVVAjSBwiapJJliw8F4TklnddBfhZ8RWG1uvQQQ5fhMwDMVcoa8xwtvApNJCgqe+GaaBDpUIjZJJZsGCR09d9hUbEoMfrbewZuAjRxWyXltBaj8ezaAJ7+dblX4PRX9DLWFnlwrcD1hP5PVcp1W3tGGoyS/OuCp5O7wtxWgEsS5/qe/nW5V+JFMcP9JmEx9i9SmwTzivjDnTGAePvHNVLm/bComHx3ms9oQaTNgK+QkCWC+Me9sCj+SUIwe4a0n1wokH2yWrAPWgwlIqR/7eloO3uG9YH3alETEI9b3M99Pl6TFBJJQFDtw1pNrBSTnPGQRd/79pZk3cZa4RfxCYm3iHcbIcLx5ULMVvTL36cWCTN+mTHxpSKEopJDh00LDBJLr90fNkTg/4IspxmPCa5oS8zZpGihkVwkIDwg2P7FwzW4IXhxUaFUm8rCLIq008atWLf3a4JLnKpmj6sZpPWb0PHnNb+oPs/k88+QJQzUfMoHJz9OOra+NmpwkWDijujnNDRpW385pKMa1dWq8k9MMj2OWr6Yfid0ZlmBDozTXWKKyoCmVy6lVfR6+J07eo+dKLYrLNJANfAX9XxyfR3JB/xgXb55geOv0g+O+hZzmBVPrrDIGFIUPxsyV7/VtSSoQyeXP64IvDc3Zkps0zbtcvNnAGQOX87NwGjVPxsHJe/Q8qXEy9f1QoK0AvE3N2ZKbNG9ssnjTXkC9mbJzmit8XGo61hE2HbZkTyX98FYNG00gOac5XbLpnQ5oMN7qzaud01x5W+NS0zGXDmtf39nOgQ0cRRJz0wY2O+6/K55AA06ulgAhp7ki43Wp6TgPX9G52iIQRziPaw7wloLkyXUM8YGfF0aNL+2c5skm7VLTcW3UkulvgPWknzctHyUaCOogjtKkMw9v9TbFzmlesH7DJqeajnhCLY2rLQJJP2/kPnLMXfYtvinI2guJA+pr/dKAfyNTDGTJXAmU6rWqDQQl9QrTBp5U9Nft5nNtlAns5pR9TMgp+9qyZNXhMc5D4uPWbcwep+xr25QpmV6fh/cmzrPRmRAV6/5mjtPGTE5ce9a1yThu2JTJO+S0Mce9y3FPclxb1n3jFJxnY0mMd85xynPfmAN5eOe5d3nWSua6lGvLvm9Z8YT5wXn0rs7/XTzZVGLxJOvaQt7ZsTDPufJx2pgrnmRdv5xrw8ZM3utyzMt817Yxe77lWCfhuXLM75zxpDThE5ligCJEF/ZtUTvY11LxnjwHyg+bOR/Ah4QCLt0bKAnUDsiB92tp50StFlXv+7bM5m2r1N98TC1RiLhknvu0qC2FxS6ZJyoSnFr5TBdvCiezKt85B+Z7Wcd0brKzyL5t2Lt5raB61cpOmScqEgpPXbypb9s3J++se8L9oLDQJfOk2JHxdsklKchERbBfFu8W8M6Yuy1rZa4BPof775J5UuROYSXFgzZQqEshaz5O2cdknYfr5/NsqkTAmz14U6xpA4WjzKOsOcBbq8xY0bK2rANX3SSfwxtevfA2CVR98Ga+2MA869K4eua8DHlnzwF4ZfFmPdnUfQAVZfXtK6WK3ZNAvt216c657m+e+M1nOYzb5RgKanWPtCSY/zV2qOzkTRxlH8ic3zKW2TFu7xZu3tw3CtBtKjlAnKiVwZviXtZBnvEuTfhEphhAHWJziGbyUn3P5oN6wASqzpHxog75Q2TkZpImXhCZd110YAtrMDifqvLyBaJesSUXqBVwWEXmaetJQ7KEUylBHFWRCQRJ3E5RrSgDOh1UuCveVMZbeR+wW1Ax4m3rIYE6BMt51C2oPGy9SA5pW1fUJvzfhFCWiUywglVaLbwPDHmjBLMFA1RZKABQq9iSomM6Nwya1aoqr8x1dYwCQRB1F+oeHIdNYDNV8vo/7W+WQqKEuLBnNE8cvM/dv7mo6VAL2ZKiozo2EPXEkZ3qi/rKBJJmvsJATYX6xQSSF9yThfdv7byZ11m8+fecB/m8zfkXY0FeX2PUZ+ulw/Xwc1QtNmdrxgX5NeN03v7hmOqAJ3wVb5vzLxJteOOSbEvmDu9QTzYV7r+tlw58uT7uS28Lb+bhH/bZVebleQdk877wwBbWlgdItFEjoc6yJXOoXUg+erWrJ/83ATXb0Z0biKrF5mzNukd+TRy44ADzPCF+XHxQyJu4YuN99n6hjBtZsS2Zw0Ga+Eacs/UAQk3K+sUYGImxCcTZs2kbUb5AVD023mp+c4ytVQPrkfOhKrO1mEBOjboL/raWHuxHfbo0FFk58nETeGhGNp6MGUbe0Ty5IIM3+xeqMlsSykOYUkmVFnwiUwywkf/rxM4puSQ9Fe49qYs4w4I7ju+U2oAJOrcc2zGuobmk527ScyY5XZg8Fx7QQpxzlXyPiZ4MmvyWQKgcmwl01xzZJthOk0u2b1Atdmxmod/t4K3Of7vIrIvyZrHddGz72NH2wgObh0+JGm+CjZKTU2twRmRln+R9aLt6cf8FAkfIu+ibqXb1q8WOzQTWu0/qnApQ9Ay59+TOscMqcuXd6ui8y4vbuHK0JYHiyVznzUavnI8PaF1H+pYkgyYLnESJfh2AAI10Upcdtqm/Y8ybjeyek7qkAhRPcYw3ARwgV6apYRI48+L8jGM5YGNFRp3kDb8/7ber9P5RDugEKp33wW3qyt8DAjRyd503G6lybGYjR8JZ28D7npM7xxL/m/t0CFppvDnv349uJ4mzSkQOaJ3mTQKrnI95qqN3RRHeUQBXvU/g/Y/ead58/j/7hI7N8Lr35C6pHjj8+d6TOst1AWTceuIgvHu3l89RGyMJfTIRV7x5qgW85TzHwJv7pBIhNpYbj2mfevNKwsX4AeYB80F/umfecB9UWwTmQxsDb+YhCb/aYJinOm8SNOV8TM0ViXFykyoXbTzK+Zj1clOfDimHaBKr237XMcG7c1DXxPvELpt5924vDxw6bxyvSfgBCR9xIcmbuEH8OLB1+IBCr6jzD0jz5qlfJRT1dqoicUp/qNutdtXg9uNC3hUi3vpbCeIL8VG1cyBu6gkP8ZV4RbwFp+7ZTOJwgca7355NRb4MiOPEc5038fPiKKGoU62KzGOdN/uH4s15md967x7iOftR1ejfXndU21TCA+//O7JNLN9HYk2CrPNmPyFBBfQ4urBnmjftK/4cJZfsY7f+rkPqoY64rhyySxM+kSkGqEC/+IVhKbkkhYkXPD80/l7w0pdGpIqqaO9/xas/xrJDJIGYCya/SeQ7XCrdlXKEKnqUGcnvG/ktrqhKOYJKCgPJ1Zr6Y9Ts5cG1b46OW0pf9MJwM+/nhsXf01728oiUPJVrvvq1UXHB2T2fTJLiQZ03RmGY9wEKwR7XZIf8Fsni41+HigBUUiYDs9FzlgfXvDFKfk+77IueH5YqMKagMsn7r6/8GEyar/PeEFz9+sjYvKz/p5PEaVnn/cDnk8UsEVA4+tjXU4t8l8zX3BQBUvUPKHTEWFBXf1DA/H8RbwoG4a3LJSncvfD5YXFNw+Wv/hhM1OSptCz/2+uj4uJNpLe68y/8HvpiSux4TWH0I19OSfHG7fnhL0JpNequaw28kWte9drImDf8Fhh4cz2qmPDK134Mxmu8OS/XjxpHSW91B134wYeiWUCxL5LRIryjImYlwed8nFfnzefDA6D+uPC5YSkjR/584QvDY8f5K18bmZKnct5r3hwlahxAywK8wpLlDfBjfFXR/FcTFwYPDZyc4s194n4B1F3cR11tQ4H+Fa+G4814Mt56QTfzhr9Xzu2cZ6yBN8aDqHEA85N5qvN+9OupwafjwsJM1C+Ma7JWRMn0+0cKONYL60ZvnU+c+csr4Xgzf+E3z8D7oheGxc7t3DfdYBXerHtVMIyyibiQ5E3cIH7g1wQw/UQ6r/NGgaSUe5j1XvXqyJRKaNKCVcEqu/0JAABoaElEQVRfXh4RjseGjcEFzw9PFaITX+CtnNuJm7qXEvGVOKtk8MiqicPJUhClslPeZ8Rx4rnOm/ipDHqRczMvdd7sH8Rjdd4LnhuaUksSzy95YXhsmUBc0p3E4f2Pd8bGKiIUc7Rk0Hmzz+CjBZCP3/txmjfF13dGCjjaUFz+yo8p2xruK/tfacMnMsUAvUhQbdgcdNkI6dlgU2OwYJhIVOIj4zOB4KOCIbJDW70Yx7AwCWA2aWLI96fg9WGzrOoAAg0KChQibCAmsGBInFhsLt735eBN4kAgfOTLqVberw+fJRvLG8NnWdUBbEhUxqNYgb+twv7Jb6fJQn/EIk3ckHO82bjYeJCG2ySV9D4RI8/hs63qAMz9MIykNwb8TUDxQKBkQ1C9gEy86R8kvD918Z4iGzkbhs0ri8BGgOb/eiKb3ICRedIbgwBuAn0tkDizAQ8YaB5vAuh9Uf8XNk9bTeCALybLeUgs9b5NCvCg5wXtBejjYwLXhYEdgdxmZMe48Dl8HvfZxptkWI23lffAyXLfkLvr/Y8U2LgZRxlPi3KJPj2Y9yG/tRn0IZGFN/dXJX46mBf3Rm0R4G8rwnz4yymykTPv9D5CCjyg0HOJByybc31oZBsaFLJ+TWD9ELdYTw+4eEfz+z4H70eJI2vgPd2qBEWtRZwg0bOZVKKmfGPYbIk7rw8zt88gXrH+iV8q1jl5E6NtvL+aKuNAXNUfMBVIjJFXM+42k0ri+mvDZknijOzZBJJHWnGwX9wXcTOBh9Qs3rQCoIfMM99OtypYSTDpyVWa8PLrYsDWgyD5c1cRmGr2RZGXy5iLjH3hip9TTzP6WwmCiYsTc5Gndp4gszjZWncr8Dm8mnaZgfFZi1euST0V6E/JBJOvJtklrASDLyctCL6ZtCiD04KgcElV9zETFkrBnK0vQhA9aSxZhWzWzpunTe6Hayzh/dXEBcGgae5F/OWEBcHcZW6be95a8JWAbRMH9E6hcZ5LNk2QJMn+0tL3QwHetl5DCiTo+lsPE29eUds2cTBoWijztPXaAWymzKM8c3d0hvwaTi4+ai4d1am+sy0CMl9423rtAO4X8uusWAEnl2N1yGmhvLF0iV84huTC1RaB+8r8/m6qfT2RzA2fsVTG08l74oJgqiXZ3XzMwkw1HbxpoOlqi4BT8+KVa51tEVjXbJqueKJ42x5CN3NaIF9xuQQ3vNUlCXWtA9YbfV3UG1NbUsR8yprfcHK1MpBjJiwIKpcvcPOeuEAeRmy9uwBxmety8WbfQjaeFU+Iu1n+biUJ/0amGLAVQClUKF8urtuwnqOgXFwjYT2PHGNXNSlQG1Ahk1P2MSGnHNdWkMU7/Kys7tRcf8WMc/HzCrk4ZVxbjmNoQQ+nLN6cJ+v+8nPGM+uYrLGUMcq4fr7brphrvMtljnc4T9zH4EmUNXf5edZ9Y3g4pqAExlvub9b8znFtckzGGAnvgnLWQt/icSqpNZcdT5gfxBPdCiLFqUL2nKtYivFEeFfIs8ZzrKeC7GsL1+Uvv7dyXIWC7HmSM57kiRUVcty3rOsPj8ue3xVyxRNvUfCrxSFtzSoTBZ5ED2lXN/MYnG9tJo7yOe3qiV+JzeROqQNQZKgCLVuig4JKeTe5OB3ctmjBnekY3iTZKuzBwe3qBtW2q2Q1uQOopyi45Fgr7/IFUniba7wzeHPtONbazBCFd9u6wQ5VKjplh3ifKKWUKwigXMueA3XlM13xgmNQwNnMEAGfBW+X/Jg3bbh/uzgRvFFGuK4t5FRPChldgY5jOjXa2SnzpJh3h8oVpUjZBkxB8eNycSof8XatgZh3mzpO3swTlC2uN5MUxTLeqnjWBK6b63dxgsbBEiuyefdsU8e5uXIM89JmKqiKqneoUkHOZQNvknFrzuLN/cjDm/Xr2jhD5dOOKW83vS0CChnWig0oZ4hLrvktBfvtmN9ZvOsKb5u5quKNgk955plA/MMnyzV3KTCmGNh1jBIaZMWTQ9rVlbVkMykNedcVxaFNTQloK4BM3zVOKNoQdeTZ50oTPpEpBpBx2pyWCZSoXzBXxOjRBCbRSbs3FhWFMiHUQRX4RVEl/l97tTY60RJQMLfDmOusfXaxbhooRzC6ROZps1Un0dlrt1qyMDE8M4EKelx9WSjKhDDFu3IFkV0Dri2LNyoLm4MuShYSDxafrdcImwqJB6oNpeDSwTWdskdTeRq53MIbtYCSeWJgZ3LQLRfxRpWGqsm22aEQQoVAUmhziEZpAXdUMkjabZJKXKt5GsMM0ATUMJccFBpwXnZIS6ODrvA+LOSNrNbGm3uB6gO1mS15ZqzhzTk4l80BXqnsrjislTHB3D7B+9KDWxoddPl3lx/aOlSB7NVMzmsCyhbUXSQWKABNoHcKiRNqHK7TBJIA1CZ83uWHmnkzvpceHM6hPx/cwtoHin/PfWMcbJv06XuFc2h/erJY+m2wqZCkoRb8w75m3nIv9m4m9xeTTRNv5vNlkVEr425r1cB4w5v1YmvVwHxl3tKPRSm4dOzerIYkHqhabK0aSFJRUxEH4F1g431IyPvini2trRpY16xv1Di2Vg1cE2pD5gjKMhPojcLmS2KkXM51EGeZQ/CWeGDgTdwjjoS8W1hbNfylVyuJpyfv0SRlwKpAzEUlhTqRhxYT6CF1eIf68mCMsaYJPAwp9eKVh7Ux8k7G9oscvLk29i+6BOtGpgonOX62peATmWKAm33Foa1SN5m3FAQCBSYwLqCmQMgTBqDN9e7aJs2TFwFQOR+TfNAjQHc17tm6rgQ5wMYpPU60pwieGlTgZqFf0at1qo9ITY03PQaaaJsGAeWSg1vGvTxwLNYbgrEBsPHSGwPQQ+C4rkV5AzYc9TRHoDvfwJu3TCoAElgJGDvpvKtWihMigPS7qbZpwJv7oJx46UmjNwTjgRGHceXYzBuQ47o2SvFmAyepAiRYSFVTLtJ1doh71TAeV8Jb639SY/tK8veKN5JSfdOoUqFA+tkoJ156n+BOrPMmyCnHZt5cHN89zZs3NYdHvWpIaEmQdd4k16rni/A+rHWq/wlPYbLhRB/AfNM3Dc7LeNOgD+DMzRO1zpsgpxyb+T+9L3TeJE2qVw0Bmr4cOm8+X/VOgRfzQe9/wnVceXirmDeBXt80OC+Bm/EBbAo0NUyCf35Cj0axYzMN6Bh//YUD90k5knP/Lj4oPd64nZ+3fzhPZCM38GbeMN7qDdKf9mtudL+m34fq5YGEWX8zxz9nXqhGj/R+MfHea9ea0vtIPnv7ipLwMA+TYH0xXzfzbiXzuSjvCpLAqq9LztmveaovEbxZP+oNKcnD/i3rpHj/rmvDuBcJTtR9f9Mk9UbtN7vUCHp3iXhvV1HilP4gQjy74MDNvJknejsH4gt/r76iY9PX+xIRp847oLnEW0CydmCrtPs18Vo9NBLH9fYZKtkj/gPe3JDQ6w8iJO/qgVYlyMTrJIjn/H3FiDcJb8r9Gt77N4/bZ5AQsX/ovI/p3CBu+8Fc4wFCfxNIsqec1NnHLjPw5qFAPRiWJnwiUwxQmPanZ4am1B8Ugp7x+A+iesCY6w9PDhYX0CQo2rvs5eEiOwZIJ/Wi0FCxNDl2iMbAzeRqjKxWGe9R6HbDO2NS/iAUEiKZVQWf5zwzOFU4umjl2uAPT4S8wdlPDglmaAVxmOX99eURsewQ6aTuAYWi4MGBk4P3I4dojNCeHVSUt1IPKNNJChCvfzvNG/UJUnZAYeUfnx4SLNN5r1ob/OHJH2KZ59lPDwmma6oseCN3R9UC/v7OaPFAKcJ7U+gYq9QsL/1QGDzz/YwUb9QDmOoB1F3Xvjkq7SI9f2Vw3rMhbwpLz35qcKrAdPFPa4Mzn/whlkue8/SQlCrr5/UbgyteGxm77+L+jTuxzvvfX02NHaJRKyCf1HlTnHvrf0J3c1Qb/2fgjUrpT88Mkd+jRjjrySEp1QoFsGc+8UNc6A1vXZXFeZHpK1UI7uQp1+5NgZgFKodoVHWonHTeFILeHLmyU8iK/Fjnzeef8/Rg+T0qQNacXqjLdXA9/Fx4PzMk5drNef/2+khxhga3vj8uVfAKP1Qxr0aqkDeHz5Lx1zvVc5+4bkAh61Wvpnnjdn7OM+E8YR4wH3Te+vxhXpncr5mHymcKk01dLQnvp7+dETsto4JCRq7z/mbKInEPB/g/0RaAeZgE6+vsp8J5grrpzCcGy3wuynt98MenhohPHDj/uaEpNRm8kQkrJ3GMCnG/1nk/+32hGOwCVGmo73Tl0ndTF4skGqBKI07pJqTEMzgB4gXzWC+MJr4wN5TjPNJy3bWbOMVnKSdxDC1N7tfEa8w1AXGceK7zptid+A9QpSEP19tQUJh81lODZT8hPjPexOskiOfsR4uigumLnx+Wdr+G9ztjYydx9g32D503RscoagHycZRiunKJ4nzmnFKn/fml4SneGKX+4YmQd2nCJzLFABbmNmkifT/YEAneNqkci4wNh8pwZT9vAr02mAhssjYoeS7yQ5s0kcBGQCWQ2dQYmOSxIdJjwqY2IvjweSyYVyzO3oDeJlm8cQUmECI/tEn82MjYWF4ePNMqTaSnAhsKPSZUUDTxph8F53jJxTuS3CL5teHZ72bIxvOYgzfqp5Ezl0liYVORoBpAloryxebsjSyVfjskcjZHcuGreFskw4CgykaOTNfmNUNiSmL52pCZVhUJvU5eHzozGDJ9sVVtRNBkfNiASWazxts1T/j3nIdxsJn44RBNgKa9gE1FImttyEzZgGxqI8blsa9CWanNST05P2zScuW0zEb++FfTrLzhjPEevG0qEh6O4E3irCfgSd5KxmtzUk+Os2u8iW1s5MhrbeaDzBHW25vDZ1uVNMz7l4cUSoJlc8iW/jZfhbJpZLwu3sQT1/x+mbW2co0kxCbneoAakV5RJHI25/owRhRKIq76HJl4k8ASv55y8g7jtyuevDpklqw1XNdtDvCon+g1RlsEmyko+9GLgwvlwcdmZsr+gNydhMjmAK944/PnmifMWXrIIBu38UbdmaV+K2l4+XUxoLJxG3g7kuV+zTEscpeBGQGDAOxyhiUb5yktS68/dPrSYKhD5qquSzXqc/Em0XE5w5JQEIBd7rjIJXnayeLEJp95bTOWpJ4KU8dMXyJJkcsZlusiqNh6qAA2C95y2ZKPJKc898TW0yV5Ht5G2IIzIGEmiNt6qCiZJ0Euy9macRqWIb/m2m3BK8mbzcB1HE+N8Lb1IgE86Y2bszxzLJm7We7X8M7y+eM8jJOrLQLzFt6utghc9+g5y3LMgSWZ8mvOkaXsGhrxtvVkAsSJhRltEZhnzKc8MS5Lfs0xpho5/RjmrastAm/d4O1qi8C6pvkna8oF5r9q1ujiRFG08zzTl8h4utYvb1kXrFzjbGdAHOV+5IknWfLrodOXiidV1nng7WrnwFsgxts1d9m3eFjL5D19SaZ/X0nCv5EpBlyGifLzKhUyFwLnyDqmaqUKwfaVK2TK4OTzSopT1nkqV4jre2ygAJLW5lkSxvBc7s/bMRenitYiwPg8OcaI73nhniVPzMepQolwyjNP2CwolnWpLIozT7LuSR5OqHqyPquS4p2x2YVzt2IJcMq+J3nGiHHG7iNrk96xcsUS4bRjzuvPum/Ma+a3qZC9uGMga6Ak5kmOtUQcYY2bCsK3xOfxWbniacYxxO2qlSrIr9KKJzvmuP6sY+CNTUNJcSpN+ESmGMAMzYXenRoGR3So79zIe3duEHRrUt0p8+RzmCyoLWzApBJVjirSM4FzUNzlOibk1FCKHN28G4o806YgUbwJ9KoQ2WZS6TLwAwRdZL6Z4925QXBo+/rOBOTozg2liNdm9glohLZdpQpO2SGFkhTvuTgRcJGVZ40350BJ5kpAGG98U2xKjJB3A+Hdy2I+qYq+KWZ2cWKD69W2Xo550kCKSl0bOQaHFPG6ZJ5HdgjHWxUim0CRKEW1Lk7wwIDz6E5mc8IkJ+SiLt58DvfYZj4JDutQTwK9zTQTUExMUbCLNwkcBpxZ85vroqjUpEhL3hOK7G3mk6qglvHGHNQGYglu0y5OzNfDOtTPFU+IAa4EhGOIA7oXUxLcM8bbxRtlGModFyfiA/EtTzxBuVc1gzdKIpuJo1Kw4n/kinEUxdIwzsWJeMxcc50HHN25gewVruQC3ii3uMc2IMbgYdXFiX2rR7MazvEmIXKtkS0Bn8gUA1TX2xyLqU5HRYKM9RJL1TaSXFQ/qCgwGDRtwEwUXGoBygVTvxkCBAZhAPmlyYkWYcz/HdFGFhSv+EiwTOi7RxPZeKjGvzSSO+pAAk2VvfA+ur2RN5JK5Z6K5NfkREtAvu6o0FiRqvi2Ft5XH9FGkjDUKxicmYDEHTUG6geblJ0q++O7NRK1AoaJpsQBCbiSAyM/NPXJYaO/PhpvpN4kYyZcdRjKsIoiZycomnBC90YSwFDJoDgwgcCMvFF4925nfHOBFFTNs78c0tLoRMvGfd3RIW9UHyS/Zt5tor5FNYNjLY7FqBVQNaBKQuFhAgkjqhhww9HtjbzpV/LnSA6MlNPUCRveyvCUlgBKdaMDHqiDWFc2x2LmLaaDHMf9MYHgjnoN8LmmhId5dlkkv0ZlYurvw/UyzwDjYGvVgGSYdY05H/PBBFQkdNJGjXPV4WbebKbIjhVv0xsX5rNaH6h6TK0aWBf8e+YbKjJbq4a/9ArnGWoi1GcmsOnSR4UN8erD2xiPwZDx1D3dvIkftJ8IebeQ+GLizfqAN/PT1qoBtSj3D3Wfus862HiRwhN3/u/ItkYpO3GWOA+Iv6YEk/uqlKCo+EwPrMRP4j/xVNSrllYNrBPURsRnW4sJ9qP9W9aWB8hrLLxJctknhLfBODapTATsPzbe3C94s4/ZWjVw3cqst7TgE5ligBvYp3PDoJK2ke9QqXyRDJU+Iro0kSyVzU058bKZmZ62WUwkQ6BZzarGxUnC1LZ+uCkRMA5tV1ROB1j4ymWYhU5g1AM0Tx5k6jHvNnVTCQi8uTblaEtw3i1ygC3Cu2WtePLylGRanPBWrrIEjMPap5vCEWiVjBTefbo2TPHeXhtvnqL0BIQupkhhN/OubuxtsM9uNeN+NvDew8S7frVYMkxiSPBI8d6pcvDbhIyUha7z5ukymeDQfKu2loDovNnEWxp40xNDBZvG1bcP9jQEFRqOEbzDMauQcusFbMjJ3hrIWXXpLQG7j8ZbT0A4L0mnchDu2HinlEM2YJNTzdvgz2Zteoukki55A2Lgzecn31j26dIgtbFwHaxXBZqG6QlI6CZfX8ZHJQemtxuMb5K3qW8N90klXdw/7qPeTbe2xpv5oMZMgXnTO5FQ8iBSz8CbN0TK+Zj5qdoIJMF8Vv1swpiQ5o0De+civOuneLO+lBs1YP2ZeB/TpUHcXgDe9XcyjHf7evHXF8QD0wPN7gnexAQVy5JoXqdq0LVx9Zg3b270r+OJZwe33TzeR3fkXqd5M78Vbx6g9B5X/IQ4q75eT8ayJIjXxG3hvVMVY58geo2p9v3sB7wx1HmzfyQbAfKWRH9TVCma3+Ui3nu3qBU0NPKuJw9YoE29akF7I+8acSsIkqfftqxlfGvHw6H67KMNvEmIsprlbQn4RKYYoFjsgheGBWu1ysGVazeI/BN1CMZcSPz0IlQqx3F1RoWgHJt1B2GASkUpPjAzNBkLDp62JPj7O6Hs8LPx88VJW69lnLX05+DcSOZJxfsFzw9LFY5SIIiMGXUI/JCC6mob/h65pCpcQ9KsO/GCF3+YGSsnUKVgjGhSa9zw1phYUXXnR2nzPVQFyHvD368Ozn92aIo3BZlIKlH1wI9r0J2mN2zaFNzwzuhYdnjVaz8aizRfHjIrlh0+9MXk4F2DISKFbUouiTfK7R9MSPGeu2xN8MdIDoyj7XnPpHmjMjvn6aGikEAdcNaTg6UoUOf9j3fHiAMtuPq1kVLMqOPVobNESQaQ1L5tMEQcXrgslkuiSrvl/fEp3qhmkPqiskCNwJzRpbcU3iKDp9A15P1DyrGZ89703tjYAf3/Xh8VjJyV5v3G8NkiwQYoqVDA6Phx1rLYAR2VzD/fG5fizecreSoFiswZXQrKdSCrpXCe47hOXSXEeW9+f1zwbSRxx/nYVFz61og5sWEqyp7XhqZ5j4qk4gCFFJJm7mcSCyLejKO0RXh6aNxGQIF5w/yhAB/ezPW5Bt63/Wd87Itz3Zub12gSzGcMIQFKm1eGpI0cKfJlngFUacQWnTfri/sOb9RNzAcTb9br3EgZxDFzlqV53/7hhFgZdMPbo42Fo8QPpW6jJYJJdYjjPPEIUKB63dujUwpO4hnSZf4eNRmtGn4y8X5umDh/g3OfHRLMXlq0wJazEmeJt+Af74wxqveI1w9EhpIoBk2qQ4rccY5WAgnc13Xe0qrhiR9kP0FNR5sMvaCbQmf2o5lLwiLmc58ZEsw08L77k4mxAzpz0uQFh6GmMsJE9v7coEJjsftfXwmdrSn4xd1c5406Fvk1xpqlCZ/IFANIM23qF5IBpGk4ldqkctxzggkJ0SfRxDIB51wmsEvih0NrKE+1y+moiicwPf/9DKv6hep7+nngIG0zVRPe30yTBcP1WXl/My20sndI/HC2JgF54muzizYg4WAjeH5QoVX9gtoBmfNn4+aLc60JxGJkggQo1ZvHyPvraRKgn/rGPt5vjpgtG88T39h5E6DYEF8YVJjaVJPqp1eGFAafT5hvVXfBm7FkQ3jfxfubabLRuebJOyPmxPJUGwhQSMfpo2NT7RBE2Uwwn7Opu+CN2zgbML0/7LzDMXRxenfkHEmsXHMJFQZSfaTDNtUO14OsFimwS93F55AQvWNxmk6Ot4s3vZRIZDmfrZUGvWwGTlwgvGwmrMwfrov55FI3wYV5ibTYBtYu89vFG0duHhye+Ga6lTdqHDZy1p2NN+sVCToJqM1pGjA+JEQktlbe34a8keDb8OGYuRJvuUYbb9Sfn46bH7wydKZVbUR8ZANHFo/s2cWbhOi1obPsvL+bLnHQxTuMtz/JerGZPdKT5eOx86Utgk1txH70/KAZ8sCGyaYN7BPsF662HzyIsu+45gm9wHAIf8rBm/vh2ie2BLz8uhiY4JCLqo1s8Y5uOTBSyYnzVzidYSfMXyHByeUMS8CYvmhVLk5ZMk84rcyQA3MeNgKXwyobC5um/rSuLzw2cL3hVJrT8sxrg7dLnqyOmZTBW8k8XTJHxTt7LJdLU7Gsscx6YIE3zbJsPYLUxgJvW+IsvDdslOvLw8klhw45LQ8yBFJyDhIdW68dQMK8YMXPEqhdMk82/DxzN8+1ZSmN+Bw+z9UWgXFmvF1tEbjuyfNX5uOdtXbnrchU43CeqQtXOtsi0CtqUUZbBOYZ6yRPPHGdR3Fyecmp80xbtMrZFoG3ZwtXrUk1MUyCaUbTS9Pb7aKclme6X8NJde61nyfk7Yo7vHVjnrgSZ3jLeOeYJ1ny6/FzVwQNd94+8xgSJ1dbBN668QbLNXfZt+CcZ83xlW1pwb+RKQZMBZVJUO+QecyO2cfUrFo5qLZdRWfw5WtRCkZr7VipZDjtmH2MXs+hg+AF7yyZJ3xc5pObOVX6xZzyjDcFlRSDutQh+ceySr5ry3WM+7NoUb7zdhWdKovN453j/uaYA3nWQO2M+4a6YuftKmXKPPPyzscpz9p184Yv450lLc11f2Xtlk48oSZk56oVU5YZ/+2aK5F7kuMY1mO4NnPwLqF4koe3bhWgg/gHb5Pg4b9alzmurfaO+Xi7DHape6GWpqTub2nCJzLFAL4lNoT+II2k4My1kVNdTwEmBY2uY1SxoA342FB0eHw3s3oAsLgpcHTxLhfxpmrfJZeEEwWFJoWUwvERb5c0D78jjOeO627nTQCgoNR1bcK7W6Ow4DGDt60wL8m7UlSoaIMUH9bc3smJQjccho93XJv6PGSsro2ce4bHjE1pBLj+ihXKS2GxDRTnUaTnmgMEXVx2XdcGjuvWWOTOro2ca9+tzo5x8agJKDUqViiI/WZMkKLyOjvIWNkAD6TFrmsLeTcSab3uNaYfg6zWptgBzA/G26aQUgooZPqusSSRYxxd16Y4UfDp2sg5Blkt/j02UNCPH4/yyTEhLHKu5uTNOuMp23UexYl14HorwzHEAZvyBRBHKIZ1jROFwsj0XWtu+4g39821kcOJQmxXUsQxjapvL0XrNoR7QPngOMe8pKAcmb5rvEnkiMus8yze+7eq7UwuGEPEGBQy26CK9V3jTXsCCtpda44H8KO8/PrXC+SnZ1ucaJEastEhY7352A6pqn+AoZiSb992XEdjYO3YcCcxgwPI4Ux28WS7/zimvfweOaHJ0ZXJdMfxnWSDpkLe5uiKJLVZraqSiQtvQy8ZAoqSQd/2u47GJ7sODavFvJEfmvqI8IR5Y5+QN/JNnLdNkkp4E8BYMBiemYArNNX/qAhu+V1HI284qx4Ut1p4k+BcFMuYW6VM7gCB7Z8Rb+Sy9Ikw8b79uE4SwEj4LkwYviWBxJuNniSGOWDq3YNUnp5E4JZjOxo3MhRJm92vWxmVTSSE/zy2g/yeIJ5UQSQllbcf11F4k/ApB3MdGMSRWKHuud3Cm7nNHBfev+uQMkNUAVzJry+NzqmDDZC5CI7t2khUFzr4fMabwMsGzLlMQKLOdXHc7cd3MrYOIIljswD/7NPBuAETwJX8+s8HtTQqm7hPzEVAcolKzMSb+47aiITH5iaPYSDziPvCdZp406tFbTo39WlvfAPAfE66GpsUQiHvDqm1ngTr69bjOsq8JcG0tQ7AWJIHNdYv88TU8oBkQcm3bzymgzFxQBmpPuPCni2MShvWM2OpehOZHqDgzT0hTpCo2loHYJyKspF4yTwxvQ0nzqr2Ajce09741gElKu0nlJkt8VwHcV/xZo6gKE3xLldO1gDXSKJ69WFmKfsf99tVZPwkqneeYOaNeqxvJN/+R+/2xpYH7DNKfo0Zq+kBKuTdSX7PA4SpVYPirUxvSws+kSkmyMZ1sFaVZBpgU2DrtaKkcrSU1uWLgNd/ajLyJGHaDJKdHAmMpp4WnIOvqGLeO2+XkmiHvDfr/VmYlQwbVIOdN/Mm6Jl416haOZaWy6tsw0TeoUr5mDcLr66hN0TligVFNpKG1Q28y4X9X4rwNgRMeCvnY3jTdTjNu1JQJeZdwZg0sOko+SLOvspJNgkCYPKrggY7Z/PmCcrc26ZyzHsnK+/K8Zs/mSeGTYx/l+StS0qFd/mivHnLp08B/lw/0VdCeFt626iEks9V0uCivCvF0nL+r7cpULxV0sn56moSXuFdoaDIV1hcm4l3A523YbxZu4o3n7uDZZ6oea/P0STvagne9XPME3jroYI/FuVNTEhzQvKvnKb53KpV0sfIeo3H28yb+aPGm3ln6tlSuXxBka9xbbyTtRqMN2Olg3i1mbe5Ky+8lSSe9ancyYvwrlyUt21+p3gXGHhH0nrhLbHMwjuaJyRGOxrGm7iu3mwzv01fQ0mc2S78e+IqcUoH+0cy4QjnaOqwIv1eaibWlo23rYM341g1Gm9971DYLrEfwbuhlbe7zmhLwCcyxQBV+Ne/Hcpwk6DO7tKXRojKAkkibrW6hBXc//nk4MuJoezw0peGGw3jMP5Spl04w5qkiRS/KXkqBoRIn3VQ5Y77LFX/FGZd+9bolEQb3n95aYSoLDAUQzq52sAb59nPI9nhZS+PiOWVSSCnxnQM3PXhhFj2rDv/IssFGD6i7tGBqoDxU8WHXGeK9ybk6yNEZRHzNqiEHv5iaiw7/OvLP6YklQDVy4Ofh7z/9fEEMSLUgSrq6tdDeSrqkGcjd9skUHGc98wQ4Y3DOY7KJt7ILikaXbM+nCc/GXj/+6tpwcdR1f8VHL8kzRvZLc664O6PJ6YcyZXzL7JzgIrIpG5C7YPUF7UCxeNXvT4yVRjNn6989UcpFqQ4U3gbVEIYdH4wOlRZIYs1FfOijsJZF/T/dKLREJGizCteDccbtRnO0zr4fKTiyDzhdeVrZt5XvTZSrovjznt2iFHdxLgo5/YrX/sx5QAPvpuyOLjnk4nye+S1XIcO7hP3C6DaeNSgKIQ348c4ogJkPuj1xfyR+UZRLfeF400qoWe+mxGrrJBPz1iU5s18xvEYMM9NRo6sCyUHZr08/GVabcM8JZ4wb1EBsp5MvP/vjZFxkTq8TSoh1Iisf4BcfdrCdPE00uY7I8d5TCN1Z28wZ+nP4hwNUFMNMJgdro54EyeIWxyv10XD+7o3R0nRMPHyvOeGGFVCxFniLSAuTVmQ5j1kxpLgjg/C8SaOm4wcKd697OXh8ntk6A98nubN/nFexBsV4GUvpXkD9qPxc0PeXKdyTE8CtaFSWSHTN6kOke7joA7+/eXUWGaeBPvVn18cHsef/lH8SfF+Fom7WzxS0vCJTDGAPM+mNiIw4WiKbNQ0mRSQypFY2ByE1TGcz+U0je6f6nhcmW1AXUHget7Fe8NGkVO+P2qO1SFbcSKxsDkIq74JbBjISl3yPRamKRlQYKNH5st428QvqEtwx2bjtDlNh5wKJbGwOQjLMYNC2aGLN/JNAiHX6FKHkPAhm7XxRtWCzPnD0fOcqjSk/mzANgdhdU/YMF78wc6JDYCNx8WbwMr10fPCppIS3oMLRTbqUqXxOSQWLt7IczdsQO5qH28Sfs7jcqOGxydj54Xns/AOx6cw+GTsfKvTtPAeNEPmnWnDVJD7unGTsceGwteTF4o89dnv7ZJ41i2JDvPApu7ir/k8NkKbY7OaAyT0po0n5j04vK8uR3ISMxInVzxB1UKfFOZBFu+BE+Y71XRw4QGK++dytiaeuGIFCTxxyTW/UYASJ14eXGhVpcGb+U/ccambnv++UB5YP3LyLpT47eJEgkni5DoGZ2seQBgHmyqNuP78oBky72xtKNT8Jt6oBw0TcFsnUSUe2sCDNYmTizdJ4LuGvlZbEl5+XQwUOuSi4c+Rt21wH7N4daYLK0+yS1atcTrDEpgIYHxmFqcs2SF8XDLfmHfGZ7GREzRcDqt8DgFuZtYYLP4p+9oW/5RprMlTb9Z9Y4MjGSJw2MDwwDsPpzz3xPTKPXWejPvGhojcfUlJ8F6SPS/5eZbSSObbkp+c7QXYEGn45UpA+fd55km4nrLW5epMOTBrjs9y8VYtEVwJKP9e5lwW7xzzknOY6hmKHrM6mLVktbO9APN68cq1zkRu81rJMb9zxBOXl1zMe6mbNw+EjHmW/DjXeOeMJ3liPG+wXPGSt1BLflrrTOTUubI5rQ7mLl+d4/pXZ5znJ3mD5WqLwH7DXHG1RVDnyhNPShP+jUwxoFpmu35eEsdgzFi9amWnOoTvPKlCL5nPKxneBC82DJfMk8SD4xqXEKeSOA+1HXy/7FKHkC/Roj6TU81sTnnnicugE7DJUTvg2qThzXiX1twV3tW3d6osqJ1gvF3qkHLReJfMPMl3nkY13LxDzm6pK/++pOYucynPeajbc+Xz1DXU2KGSsZYuCe5bac4T6vZcDyKsR8bcVPtShHcpxjjO0zCDN0Wx1MpkJXO5xqlmycXKBjtXcRoDS1uE7SvKPCiJGFea8IlMMUDFui3QUcSnZMyuDRGVEWoFm8GZHLN7UzmfS5qHnwUBVZnGmYDjMzJtDBZt85diOJQPyEFdGyK8UQmZvIiSx1DEazPCAyh+aDplM28DbOD4LZ20exMrb4rKkFz2apf2WdI5UZHvkktyDMWHJzoknPg51c3gTeDCb+mkHk2sgQ7eGPMhB3ZtiHwOagWTV0vyGD4Hg0mXoy2Fo5gv2sBGgYLMxZsAeEKPxuJK7toQ+RyC3L6RX5b5mMZBQUGBfJ4NKC3YoF3jDQ9kvly/LUDz9yd2byIu8CbDxCRv7h8GfDacJLzLxcoVE5C3cv2udUkCiuII3jbndrmv3RtLGwJT8W3Me48mUgia9G/ScWJ0X4krNuAdhXrRxZskjrhzQo9Gbt49Ggf7yf3bzsmbOMB9sYF1wrrE2NYG5NvEJdc8IRkKZfqNrY7zTB/u77671XJuwnBh3aJ0s0E+p0KBGLW62jmgXnTxJgHFJR15tam4XvE+efcm4f2LvJJM4HN46OnlcJxHuUdRuYsT7RxwW+/rWAPsfzaT4i0Fn8gUA0hF/967fSqZIVjec2JnmeBUjT/Qt6uxuRqSyr0jHf9dJ3Q2PmkQmJXEG7dZZdKVBPJHZHRK5kmiooPGXff/vqsEXhIn5Nom3v86sbMEFMXb1EsGGSGBCSDxM1XZH9C6tkgBldusKVFDkn1Tnw5xbwtTgOJtzgO/7ya8CVDIYfU9imB55wmdJYCz8B7o283YS+bc3zaXjRwgqTQFVjbMcyOJN7JgU6JGIoS8FdDbRzng6k9hD57SVbhx/M0m3uXKibScxILA9GDfrsavas7Zb1dJnAAyzcYG3iQ45+0fSryRTJv6cRDYlIyZvjWn7xU64CbBW78HT+kmGwZPWsjUTbxvP76jJBYkqhxv4n3WvrsEh0RSaWT6pg2BgHt+JE2/sOduxgSzaY3tRXYO2ID+sE+65QGfDw/4kDgwTnrLA/7M9XBdXB/3x8T7jL2bSSIPkOryAGDqf6Rc6ZEYmxJM7pOS1ZLwqfWQ5t1V7j+JE9JqnTfjz30jsWA+cZ2mt7P99mwad09lnZg2MuazcklnnjPfdbAu4AFInP5kaNXA+oI36403wcxjPenlj7QpQOYsvPt2M7aYOGWPJuKSDYgHJvNc4oeS1J8j6zjNm/GDB6Bf1vmGVg3EM+Ia8Y0HkbtOTPNm+JGBk1gQdzje9FaZOKtMdomnJhNa4rVyGz97X9ZxOlEj7t8Z8Sbhv/CAdKsG9g/iGrxRAd19YudUsg7vG3q3l8QCFdH9fbsaH6KRutPGQHj3bm9sMdG1yc6x3P2sfXaRRNvEm30L7LVbreASQ6uG7SoWBA/8vqtR2bol4ROZYmLqglWp79H53jHZtpzvIimaMrWUp1gQ8D07JpM6KIBTShZsA0zfx+NVtDQqKA7VD+nvI1etXS9FafFnL8zBO1IBpXmvinnT6nyFoZh53rKfY+UQCouFKyy8IzNNivhMvH9as17GQGEqn63x5vvpQo23SbXEtSne1AgsX20Z77WbedM6X8cy4R3+W6WS0YFaLanmmmbivWlTkYI8ijhXG6r7OWZDYrwxjdNBwbRSBqwS3muMNQaqfma9lff6YO6yzfdheg7ecy28ZyR4U9uwbPVaM+814XivWrPBPN6r10qNgeJtsgT4eR28fy46ZtoED3lvVmiE6rw0b8aFzwF8rmmewFPNE+41810H94nrls/eWPSzFRi3ZPEu16bzZgiT/5YaEdN4U4ewmfc6K2+leArnaHrN8e+SvM3jvaEo78S9TvJGmViUd3pdzly6OjYVJB6Y5kkYH0PejLtJKbl89dqYN+t8Wg7eybWlwPCzXovGhPR4E6+UpQLxAK8oI+814X0gJpnGm7i/KIM3+wdxTYF7st7EO2EXMX/FGokFOqjV2cx789pKglo7ZVMD72QMjnmvXieWEeFnbyoyZgpYIGTVBm0J+ESmGECxg2OvCbf8Z5xMKiYK0klTTdVbI2YH740Kq7mRO66MAnoSGJbdH8lT5ZyGSnSKJZX8+rnvp4uEWAfV+UgkmcAYRz5ikFSC2z4YJ6oeNr2rXxtl5P3Oj3OCtyOZJ7LaFQbeY+asCPpH8tTb/jMumGrgvWjVutgdmEp7k0Jk3cZNIq0mAA2bsSQYMDAtTQRIBSfNXyGbBxJbE28UZG+OmBXzNhUh4wlyz8ch79v/Mz6YYpCCLv4J3qEcWClJzLx/FN44nD8QSbp13PXRBFGtsbkgaTaJKDDwe2NYyJtrW7Y6zRtvGWTX4I4PJxgllWxuSn6N8gHFmA7iG3ORDWfUrGVB/2ju6eCzxs1dLoESibGJN0o6ZUrH55p4T5y/SsYgHIvx8mcdS1evFzk1QDZqMqCDNzzYcMbMXh5Lo3Xc++mkYPTsZXIc98dkkYMxH8q9kPdIY/H0pAWrpB0C+Bf30OCjw/VeGcnGMZA1OdczbhzDOKL+UGOhA2k9DsPMp8stvFGaoUgCzE/mqQ7m8x2RrPbuTyYYPYlYF8pF+q0Rs4L3DA7w8L6Ktf/zOlHb3GnhjWM1Ul54s45ZFzo+Hx8qEoX3G6MkLuggISKOAOLKWIMHFHFIycaJTyaljJLgEyeQhSuJsQ6k0rSMIIFgnpjUTcRZ4i0g/pqK1YnXt74ffgZxfPTsNG/ivpLpE6NMhp/wZh/BoBI12a3RWOjAkf2HaYslzv/15RFW3hhCKnd39g8d0xevFhf4eO7NShtQrly7ebwxszUZfoYS/FHGJG9LwicyxQCuxTaQHeMi/faPc5yGYgRMrNtdhmIcw8ZCAuGSS5L5skHZwEIT11fHMfBm8yEI2BybFSc2OpexIMcQwFTSY5NL8gTs4sRGksU7/LxZ0v/D5tisOLGR4ahtPyaUS5JouuSSPCW7OJEMsulm854pskqbY7M6hsTBFFAUuG9r12+Ie3LY5JIkqi5ObGS4CGfyHjxT+rq41HScg41uhMOJl01+3fqNwesOB2HWCImqixM84JNnvJG725yP1TFsdMMMfZsU3hw2K1i7boPT+Zj7RYKC1NcGklg2Alc8CTkVSnLoaucAbx6gXO0c3hw+W96AIK+1YfTs5dIni5YGNjBf3x85V1yks3gjd3epAOHNWx1XOwfiCImF6/OIR8Ql1xwgrhHfXNevOH02bn78lsd4zNCZEr9c7Rzo7UMcdMVmjBl54HHx5u0GY8C+4lLTvTJ4prR9MCUo8TFDZkobBmTaNpBUkfC7OCF15wHTdQz7n2sP2BLw8utigNf8LixctTbuyOo6x6Lo9ZwNSFN58nE5w4bnWpPJic9yTXDFSXW3dR2zwCE7Tb7edjmsqtevmbxzHpNl4CfjnXEeNnLepLkSuc3usGt+MW+uH1VD1jFZ52FjZpNzJXLCaRVjsCbz2lyy4phTxvWH8mQ3bzbypavXOhO5mFPmeGffkzzXFo6Rmzd8l/28zpnIhZxCOb+bU455kuO+5bl+5vXSVeucbRHyclqQa13muydZxxBHmN+uhCg8V54Yly+e5ImVrkRHbeRKOp51rux4wtz95TF+4co1wseVELHfEFMW51lzOeJJacK/kSkGTL4wSbSpt6PRgyUJft6CojJHvoOhJBXmLlUL7cZRtWRxwocmD6fM89TfUYrKXLwpIoO3S9VC+2uKYbM/r1quY3KNd92w+NCGXWtXFUWGS+ZJcSZFia3qVvvFvNvkuSf1q0kxoUsuyTjC2yXzRKUhvHPMXZchqOLUql61zGtrXqeqkzdFwLiEu+TlqGIo9s4epxxzV9ZlxrXV21HmgU2No4piGW9TMbAC1819y8Mpzz3Jc55dau1gVeMAVE84P5uKahVYH8SlTE7188S4ak5TXHUe5q/JCkABlRl2ASbfNgWmGXEpF6cSiifNarp5o0pjnuDP5eJNXMqOJ/murXX97Guj6N0kQtHbIjCeNlBg3Crn3C1N+ESmGEDmZpvAVIujIKLa2yY7JFictmczUVmYqsIVUJdwLKoEG5B6U1mP4sLlxIubL7xtjtyoCo4Vt9q61gDNouu3ZzPZMFGR2HDG3ruEvA3qGAUcj/FhMiloFNo3rBb0aFZDeNsWHm9ijuvaSFRJJmNNxfu0vZqJykKpUmy8CzJ4Y+yGn5FrvEkEfrNrTVEJ2JzE6dWAnBL1CBunLVicvldTUVkoVYoJjCFqBddYog4huTx9r12srQPYdPZsXlPkrjYncdQ2/Hy/FrWMao2Y997NRGVhMh5M8g7/bzZgVeowEnkXbxJn5M7IlG2N+rge5MCopWwbC+fn3hPIlZrGNd5nOMab+4UKkGNsvNmYaS+ATJf5YALzB7n7Xs1rOTcyONE2obfBeFChn+LtmLsYfqIC5P7ZclASof1b1pH5a+PNekXGvMeuNY0GlZt57yJxQJmM2nizLs80qNYUWNeoAOVYC2/UXKixkBfbHNCJj6iSMAbGCdzKe+9dxP9MmYzaeBMHz9zbzhsDV1SA/fZqauVNos8+0adrQ2tvLvajk/doIsbAmOzawL3H/8zlXI4aE3Wfi3fP1nVl/2Ifsz0csk+YDGq3JHwiUwxwA+87uUsqmSGIPnpadzESYyI8fnqPlFkYT2o3HdNerNsBMk09a2VaIEmmfwo4d//dgsMNGzA9CK45sm0sO7zskJapxUAyhWwTsNDvP7mrkfdjp/eQCc6kfLRfj1RPFngj2VOLBHkqbsI6b/pwqP4Df9qvubGPAJLKa49sJ79Hzo1MUefNIngo4k1gDaWTBSlzvkf7dZeAQqD7d7/uRYzhANdzw9HtZIED5KwkSDpvet6cGjnD/nHfXY32892aVA+uPzrkjXz+ikPTvHnqffjUkDcbGdJqPQljc3r4tG6SEBVE4613boX3dUe2FUdbgOzb5KBLQFIycOTJpo2sS5Odg7/3DnmTqOB0XqDtrryFeuS07rLRkTgw9kbep3aTDZPjGHv9rRu8rzmirSSgSp5KIm1KZNWGeubezeTPOjo33jl2d2eu/+3wNqmgyedz3+FDojbAwJs/Dzi1myQoHPfv03qkeskwHpyfBBTQXoHPNyWySgbORkUSrYP7pGT6bIjXHtk2xZv7zX3n/jOezAc96YU390GZ73F/9LeFnBa3YmSwgPmJhFYHjtDIgMEpv2lq7PHExq1c0lkvnMvEm/GGNwkIv9eTXtYpEm1lqsq16a0aOC1u3PtE8vVrj2prbDFBIkwbAkBvGx4Oyhmc62+OZPrcsxt6t0u9CSQuPHp6D7kekgHmrm7CSlxE6swDD3jo1G7SrE/nTZxV8nXm+u7RXNcTWZy0wUlRTCxneOC57Xeh/Bqn8JuO6ZDizf7xeMSb+PxYv+6pZB3e7EcNI64PndI11aqB0156UMu4DcXfjmCup3kf2q5ucH4kAyeBPuU3ad4k1HccH443zuxI7VO8q1YKHj+jR2wKWlrwiUwxgFSOAi69mJfv/F+LVCaAqn/9+1ikcxRnKlm2eG1oBb98fUmxmZLdTV1o9ghCzaCKQKnGp5BNFwcgFVT+K0jlbLyVygT8Z9Sc1Heb8ObalCx78LTFUsyZ4j1+vhSTCe9Fq8y8Zy2TAjdADRBFcTpvCpiVKgjeYQFxUd7IdpPFZviH6PU7GzTeQ6YtkSJMnTfKKVp8A+SEJjPAUbOXBSMKl8Vj9vaI9Hhjz0CBcnK89ZoballeTRSKfjh6bsq3CN6vD58dy1Yp1jUVWGM2p+TrSDMxcTMVcFI0G47Zeilm3qh9SY40Ff+kZDGjiXey4JKCZr3dPbwpOlayVYpmx85ZYVRQqHbq/P+LCWneFGZTUBh+dshbl8zy+Uk106sG3vw5OU/wx9Hb3TMeGAEq2SrjZSoMxztKyZIZ94GR+WsS3Cdl8sr9Q9Wh8+Z+U1idLFjXa5xWa4Wi+BHpfkucFrWLklaPmLlU7rcO5sX0iLfNS4p1oUxeWS8UY5t4J1VYjKte48Q6hTfzH7AedKNWTouIQbWe+DERy1LeT5G8F94onfTyDtR/KDIV7zeGzU5JlIkLFIQrsP6IH0kQFynOVryJwUjEdd7EWdUKgZjw46x0Yfi3kxeKyggQxz8fNz/Fm/g5aNpm3sxdnTf7R1I99uqwWSnjUOE9ZGbcYoIx0q0BhHfC/290IpYl8d3UxSIKAEjdPxuXHm8KfZU5LfsYY5nivWptqfssAZ/IFAMsTFQEJmBsRvU8k/feT81SUJIXFA8EievfGm30vWBDvPeTSH79/nijFJRA9/e3x8jvn/h6mlVJdPN742TyM8GR9JqAEy3JBX0DlJxXB0HulWjBXPfWaKPEj0B7b0J+bSp0I9D9/Z2Q95PfuHiPlUD3xcSFsghNwNGVzY5eOchhTWAzfSkKUDbebIix/PqD8cYiTQLGDZHr+VPfTrMqoG55f5wEjK8nLbIqzhhHgi/Fd3d+aObNZooRJLyZJybDODYW3LqF94fjjcV1FO8pt3bkl0j7bRJ8ip2/mbxQFC4mMG+ReXJfb7NIWFEqMZ9cvOl3g+waIGc2FeEK77dC3pjTsdmZeY8Xmef3UxYVeZBIgmTiuymL5Dgl59XBuCgTPOaJqcie8UXmDpBMm/r2cL034DK/KTRoVEmkDs5DsSQPBckHiSRIUr6ZtFDkt7RhMIHERclqb3hrjFEtyXxW8ut/fTTR6LeU5E17AZty61/RdRMPbIocNjGSPjZ84o8JqKOUE/sNb5t5M89ohwDu+XiC0W+J9Xz9W2PCB8zBhXEypgP3b/oXIQvHGNIEVGQkecQd4o8JxKsnI0dz5qdJ1EC8VvOMeEg810Hc59/Dm/tvU5zx70kqeHC1mTSyH30+Yb4k4je9O9aqkGKfUONtEjVQUK0k3uxfpl4w8GaeyMPW0FlWxdl9n02KH2pLCz6RKQayJGUEHxayy1DsreGzZcG5mgapJy2Xoy1PMWT+Lskw5+BpztSnQOeEHNhlKMbnDCtc4jQU4xieoOnLYQPBl8yetxo28IT6cR7eI2bL05bN0VaOGQ7vpcYmX8n7SsMxU7+SZBDjCdDFmwDBOfKMN4HT5mgrx4yYLRu4erozQSTza9fLmx0bJsxbKRuHa+4SkJEnu65N8Wa8XWo6eHOPpzh4vzdqrvBOPinroC8ODwausYQHCbprDShOvAVxtUXgmDHR3LThA+G9wZpcA66btflWCfJ2qQC5J7xRYbOygXPQaPLdkfbPo/8JiaiT94aN8tY2z/z+eMw8pwqQcyCvZ27aQAyAt2tesq5Z365jiA/EtzzxhIdVl5qOY5Dpm95+KdCvSd6AWh4KAPF/yIwlTk7EY+kzk7HvvDU85K2/sSnKe5bI9G0PBYBzkMi5OJGY8UDj4sT+592vf8UwdU1Mgom0fSX3kNJxN+s8JAMs4CxHajoxZp2L16iuCZ6XEz939eEABC4+L5P3mvWZnGgalYdT9nmyr42NguDlSuTynks4GbqCFvfa8nwWGzNJnyuRU5z01+mmzyuJsVz587rM86yNeLsSubz3d1UuTpxnQ/Z5Mu4bfFmbWW0R8o1TyYw3nLPOw/ygW3hWW4Q88WRFTk555nfWPWE9cq6stgh55i7ruyTiSZ75tiHirTq0u+9v9rzMEytX5hpv9zGEPxL1rHYOIafsaytN+DcyxUBXQ1FaEiiE+OU8R5PqUvDrkkt2aVJdCi9dJmAUriHfKylOec5DYZrNvEwV3FEsbFPjKLUR6pEsThTYdstzbU2yj2nfYCenXJKiVApCbWoc4V25gqh7SopT9nlqBO0a7GRVmwGKl2tmyDwpyER62TUHJ1PRpX5M1jzp3rSGFDO6ZJ6oWeDtUuNQANumQbXsuZtjLLs3y7EGmlYXPja1GeDn8KbI1AbuV7v6O5UIp3Ce1HAf0yTkbVNtKXUX87ujofg6yZv5lOf+llQ8Yd7a1E+AOIJM36XGIR5RrFxSnPLME2TqNvUTQEVJkXEXF+/yBVIcXlLxpHuO+0Z8cxkao1pl3zEVjSvQnoB9IA+n0oRPZIoBZJ44ktqkcjhfI/O0yfcI7krm+btudtkh1fqoLP64X9oETYHzYCiGIsHWswOjNfT+yGZtztZUvCM5ReZpUpmoIMfncQ6csu28mwtvpTYw8t6zmby1wmDQxhtFE8oo3L9tztaohI7u1FBknqhzTCB5QSGDSsjlEK1UBi7ep+zZNKhauYIoV2y9RpACU82PNJN7bAKqmWO6NBB1jy34wBtFD6osl0O04q3+b+T9m6ayyZ25TzNr8owhIpsFCiJb7yJUQkhlCVAoiWybyhn7NJMk2+UQfU5kSujijQoOtQbSeFvyDA82qD5dG1l7F6G2wTCPJNuk1hDekeQU1aHLaVnxxsTQBq6b+4Zk2MYb9R4JCuNpc+QOY0QjeeixObczD/kc5qXLaVnxZX3awDxDjcS8syX9bHCMOcaJtp5LrFfWLUm4zbkd3mfts6vEgVMdLSZQP4JzDSaWyZhMXArjoZk39x7VHgouW88l1DbESXqymIw1AfHqrH13FUNEV6sGFb9d8/u47o0kKUZ5aEv6STxRSbKv2Fp61IhiW4u6O1od0EPeu8h+Qfy1AZPTMH43d7b9IEYgG7cl/ST6tnu/peATmWJAZJ6nph1dyb4f69dDnGGZCMgldedfJutdJ3SKe54gcdQ3BCYcEjjlIIx0j94Gyf2e3x7ctk7sPMoive6odqmgyVPaPSd3kd+zkQ84Je3oStB57PTuMsGBjfcdx3WS5mSAz9I3BCSC5+3fPO7VcmKPJiLf03kf1KaOOEwDsnrk0XrQ5Cmtf8SbDWHAqd1TvAk6SCqVw+rDp3RLvb2CN47NONoC5Or6hgBvgg7O0IC+Hkixdd5IF5WjLYkKcnSdN0+9uI0L7+0qBv8+rZs4kOu8GW/19SNzaZdaRXkTjHFsJjApuSQJks6bBJZeK4CNmr4zOu/9W9UWqStgY7mxT5r3brV3CB7oG443GzmyWv2prcb2yFZ7yIYJHurbNfXWDd63HNshbjx39eGtU8EM3qFUPEzi6bvExqm7P9OrBmkx4O0OMk99k6IXC3M6bn/Qr0fqIYM/cz3qbQWSeL25GuOBZFq1FLji0NaykSUZwY9+LX26hEk8GyIbgy5R5j5dfXgb+T1NxW49tmOKN71YVHsB5gHzQX/IYPwf7UecCa+HFgT620J4Mw+Zj+DyXq3lwaWc3kdpz6Zx7xA2ROa7znvv5jVlngHWC60hdN6sL9VegHWHjLmmznu7isHDrNfoPtz3+66pt4XwJvapNhSXHdIq6Nm6Too38QMZMDi0fX1xstd5k4CrNhSMD3FKTwqaJngT5x49vXvq4Yj1OoD1GnXb7v/7LqmGb4q3kub/+aCWwcFt0rxJwFX7DOI48VznjSP59UeFbRFwCr/jhI4p3sThR07tHvNGiq3zZh9Ccl0jug/3nNQ59ZaTfYE2ALzlBxf3bBH0alc3xRt5OzJ35dx+4YG7pR40ScCRuIfjWlX2Mz2ZQf7NWmQfLE34RKYY4LtxKsP1Vt9I/P6ZqHRHlaEXl/I9LyoLJd9DdaNXffOdMGoeikoBRVVI3JKlG/wWHxMkxwC1Uf9PJ6a+t6c4dcDA0LgQn5Wb3gsVNboSg79XQAVj4o26BPWEUt18N2Vx6jthVAh4AwFUOVxfive4+XGBJyoCquP1AkyKUx/8PMH73TEp3igxGG8ll7z7k4kpc03h/cGE2G0bvxJdWg1vVB8UeYKhM5aIyknnjSpAFXiiksKgUOeNlP7+z0O1GY7EN747NnYoT/Lm7xVvzpN0CwbUMdz5UajGAZhHogLReT/7PSqksHBPqTF03qgwlHoKddDdH01I8Z60YGVw32eT4/Myv/WW8JgR8vdK5okR4xTNpFJ4fzghVquhftLNTDk/6gtUGAC13HODZqTcn1GrqaJT1D2obfT6DoqB4QHgdeO7Y1IKP/7MeKuaLa5TN9dkPFDrKfUURYyMW5IR/F74YbMKiXF/9rsZqVow7pMy+2QcuI86b4qBlbov5D02pfBbqvG+/7NJqSJkeDN/lHqKVgafa7z556EKaUksvX36u+kp3l9PXhT7XrFeuI86b9YX6wwwf//53riUwo/5ftN7Y2NH7gc+nyTrWefd/5NJsv7B+6PmBJ+OLypRhh6eT0qFFKqcpqV40+JBqb6IT6j39Hoa3K7/9fFm3sxjXeFHfOHvlSP3Q59PTrVqgDf3TblCU6z9sSathh5tClCjAc5BPNd5I2EmzqjPJk7pvInDSUNRxlXnzT5E/F4brWmML3UlKD/r/9mk2D0clROCBJ03qkS1H02MVE56zSCqW+ZT+Nmos8an6mmQfytz1dKET2SKAar+bWZ49D75dvIiCThs4iagQMH1ld4Bd1luNkVSKtAhmzQVFjK/SIpYmP/+ckqqF4nCI19MlY2Ain02OxPoR0KvCXoI2KSJBDE2HLjc6eBNgAIEQhNv9iukvvDGtdUkBQWPfjVFAjTJmurLoYNNkl8YOcLNBIIBsni43P7BBGsRoBrvuz5Mb/SK9+0fjJON5/Gvp6V6eig89tVUCdAECpukkmSKDQfjOSWd1UF/FX5GYLW59RJAlOMzAc9UyBnyHi+8CUwmKSh44ptpEuhQidgklWwaJHT03GFTsSkx+Nl6B28CNnJYJee1FaDy79kAnvx2ulXh91T0M9QWenKtwPWE/UxWy3VaeUcbjpL86oCnkrvD31aAShDn+p/+drpV4Ucywf0nYTL1LVKbBvOI+8KcM4F5+MQ3U+X+sqmYfHSYz2pDpM2ArZCTJID5xryzKfxIQjF6hLeeXCuQfLBZsg5YDyYgpX7s62k5eIf3gvVpUxIRj1jfz3w/XZIWE0hCUezAWU+uFZCc85BF3Pn3l2bexFniFvELibWJdxgjw/HmQc1W9MrcpxcLMn2bMvGlIYWikEKGTwsNE0iu3x81R+L8gC+mGI8Jr2lKzNukaaCQXSUgPCDY/MTCNbsheHFQoVWZyMMuirTShFctFQMuea6SOapunNZjRs+T1/ym/jCbzzNPnjBU8yETmPw87dj62qjJSYKFM6qb09ygYfXtnIZiXFunxjs5zfA4Zvlq+pHYnWEJNjRKc40lKguaUrmcWtXn4Xvi5D16rtSiuEwD2cBX0P/F8XkkF/SPcfHmCYa3Tj847lvIaV4wtc4qY0BR+GDMXPle35akApFc/rwu+NLQnC25SdO8y8WbDZwxcDk/C6dR82QcnLxHz5MaJ1PfDwXaCsDb1JwtuUnzxiaLN+0F1JspO6e5wselpmMdYdNhS/ZU0g9v1bDRBJJzmtMlm97pgAbjrd682jnNlbc1LjUdc+mw9vWd7RzYwFEkMTdtYLPj/rviCTTg5GoJEHKaKzJel5qO8/AVnastAnGE87jmAG8pSJ5cxxAf+Hlh1PjSzmmebNIuNR3XRi2Z/gZYT/p50/JRooGgDuIoTTrz8FZvU+yc5gXrN2xyqumIJ9TSuNoikPTzRu4jx9xl3+Kbgqy9kDigvtYvDfg3MsVAlsyVQKleq9pAUFKvMG3gSUV/3W4+10aZwG5O2ceEnLKvLUtWHR7jPCQ+bt3G7HHKvrZNmZLp9Xl4b+I8G50JUbHub+Y4bczkxLVnXZuM44ZNmbxDThtz3Lsc9yTHtWXdN07BeTaWxHjnHKc89405kId3nnuXZ61krku5tuz7lhVPmB+cR+/q/N/Fk00lFk+yri3knR0L85wrH6eNueJJ1vXLuTZszOS9Lse8zHdtG7PnW451Ep4rx/zOGU9KEz6RKQYoQnRh3xa1g30tFe/Jc6D8sJnzAXxIKODSvYGSQO2AHHi/lnZO1GpR9b5vy2zetkr9zcfUEoWIS+a5T4vaUljsknmiIsGplc908aZwMqvynXNgvpd1TOcmO4vs24a9m9cKqlet7JR5oiKh8NTFm/q2fXPyzron3A8KC10yT4odGW+XXJKCTFQE+2XxbgHvjLnbslbmGuBzuP8umSdF7hRWUjxoA4W6FLLm45R9TNZ5uH4+z6ZKBLzZgzfFmjZQOMo8ypoDvLXKjBUta8s6cNVN8jm84dULb5NA1Qdv5osNzLMujatnzsuQd/YcgFcWb9aTTd0HUFFW375Sqtg9CeTbXZvunOv+5onffJbDuF2OoaBW90hLgvlfY4fKTt7EUfaBzPktY5kd4/Zu4ebNfaMA3aaSA8SJWhm8Ke5lHeQZ79KET2SKAdQhNodoJi/V92w+qAdMoOocGS/qkD9ERm4maeIFkXnXRQe2sAaD86kqL18g6hVbcoFaAYdVZJ62njQkSziVEsRRFZlAkMTtFNWKMqDTQYW74k1lvJX3AbsFFSPeth4SqEOwnEfdgsrD1ovkkLZ1RW3C/00IZZnIBCtYpdXC+8CQN0owWzBAlYUCALWKLSk6pnPDoFmtqvLKXFfHKBAEUXeh7sFx2AQ2UyWv/9P+ZikkSogLe0bzxMH73P2bi5oOtZAtKTqqYwNRTxzZqb6or0wgaeYrDNRUqF9MIHnBPVl4/9bOm3mdxZt/z3mQz9ucfzEW5PU1Rn22XjpcDz9H1WJztmZckF8zTuftH46pDnjCV/G2Of8i0YY3Lsm2ZO7wDvVkU+H+23rpwJfr4770tvBmHv5hn11lXp53QDbvCw9sYW15gEQbNRLqLFsyh9qF5KNXu3ryfxNQsx3duYGoWmzO1qx75NfEgQsOMM8T4sfFB4W8iSs23mfvF8q4kRXbkjkcpIlvxDlbDyDUpKxfjIGRGJtAnD2bthHlC0TVY+Ot5jfH2Fo1sB45H6oyW4sJ5NSou+Bva+nBftSnS0ORlSMfN4GHZmTjyZhh5B3NkwsyeLN/oSqzJaE8hCmVVGmhTCQy999/f9CsWbOgSpUqwR577BEMGjRoq/BgI//XiZ1Tckl6Ktx7UhdxhgV3HN8ptQETdG45tmNcQ3NJz92k50xyujB5LjyghTjnKvkeEz0ZNPktgVA5NhPorjmyTbCdJpds36Ba7NjMQr/bwVud/3aRWRflzWK76dj2saPthQc2D58SNd4EGyUnp9bgjMjKPsn70Hb14v4LBI6Qd9E3U+3qV4sdmwmsd5/UORWg6Bly78mdY4dV5Mq71dF5lxe3ceVoSwLFk7nOm41eOR8f0LqO9C1JBk0WOIkS/ToAARrppC47bFN/x5g3G9k9J3VJBSie4hhvAjhArkxTwyRw5sX5GcdywMaKjDrJG35/2m9X6f2jHNAJVDrvg9vUlb8HBGjk7jpvNlLl2MxGjoSztoH3PSd3jiX+N/fpELTSeHPevx/dThJnlYgc0DrNmwRWOR/zVEfviiK8owCuep/A+x+907z5/H/2CR2b4XXvyV1SPXD4870ndZbrAsi49cRBePduL5+jNkYS+mQirnjzVAt4y3mOgTf3SSVCbCw3HtM+9eaVhIvxA8wD5oP+dM+84T6otgjMhzYG3sxDEn61wTBPdd4kaMr5mJorEuPkJlUu2niU8zHr5aY+HVIO0SRWt/2uY4J356CuifeJXTbz7t1eHjh03jhek/ADEj7iQpI3cYP4cWDr8AGFXlHnH5DmzVO/Sijq7VRF4pT+ULdb7arB7ceFvCtEvPW3EsQX4qNq50Dc1BMe4ivxingLTt2zmcThAo13vz2binwZEMeJ5zpv4ufFUUJRp1oVmcc6b/YPxZvzMr/13j3Ec/ajqtG/ve6otqmEB97/d2SbWL6PxJoEWefNfkKCCuhxdGHPNG/aV/w5Si7Zx279XYfUQx1xXTlklyZ+9YnMiy++GFx66aXBddddFwwdOjTo1KlT0KtXr2D+fHcB65YAFegXvzAsJZekMPGC54fG3wte+tKIVFEV7f2vePXHWHaIJBBzweQ3iXyHS6W7Uo5QRY8yI/l9I7/FFVUpR1BJYSC5WlN/jJq9PLj2zdFxS+mLXhhu5v3csPh72steHpGSp3LNV782Ki44u+eTSVI8qPPGKAzzPkAh2OOa7JDfIll8/OtQEYBKymRgNnrO8uCaN0bJ72mXfdHzw1IFxhRUJnn/9ZUfg0nzdd4bgqtfHxmbl/X/dJI4Leu8H/h8spglAgpHH/t6apHvkvmamyJAqv4BhY4YC+rqDwqY/y/iTcEgvHW5JIW7Fz4/LK5puPzVH4OJmjyVluV/e31UXLyJ9FZ3/oXfQ19MiR2vKYx+5MspKd64PT/8RSitRt11rYE3cs2rXhsZ84bfAgNvrkcVE1752o/BeI035+X6UeMo6a3uoAs/+FA0Cyj2RTJahHdUxKwk+JyP8+q8+Xx4ANQfFz43LGXkyJ8vfGF47Dh/5WsjU/JUznvNm6NEjQNoWYBXWLK8AX6Mryqa/2riwuChgZNTvLlP3C+Auov7qKttKNC/4tVwvBlPxlsv6Gbe8PfKuZ3zjDXwxngQNQ5gfjJPdd6Pfj01+HRcWJiJ+oVxTdaKKJl+/0gBx3ph3eit84kzf3klHG/mL/zmGXhf9MKw2Lmd+6YbrMKbda8KhlE2EReSvIkbxA/8mgCmn0jndd4okJRyD7Peq14dmVIJTVqwKvjLyyPC8diwMbjg+eGpQnTiC7yVcztxU/dSIr4SZ5UMHlk1cThZCqJUdsr7jDhOPNd5Ez+VQS9ybualzpv9g3isznvBc0NTakni+SUvDI8tE4hLupM4vP/xzthYRYRijpYMOm/2GXy0APLxez9O86b4+s5IAUcbistf+TFlW8N9Zf8rbfzqE5m77rorOPvss4MzzjgjaNu2bfDQQw8F22+/ffDYY4+VOhd6kaDasDnoshHSs8GmxmDBMJGoxEfGZwLBRwVDZIe2ejGOYWESwGzSxJDvT8Hrw2ZZ1QEEGhQUKETYQExgwZA4sdhcvO/LwZvEgUD4yJdTrbxfHz5LNpY3hs+yqgPYkKiMR7ECf1uF/ZPfTpOF/ohFmrgh53izcbHxIA23SSrpfSJGnsNnW9UBmPthGElvDPibgOKBQMmGoHoBmXjTP0h4f+riPUU2cjYMm1cWgY0Azf/1RDa5ASPzpDcGAdwE+logcWYDHjDQPN4E0Pui/i9snraawAFfTJbzkFjqfZsU4EHPC9oL0MfHBK4LAzsCuc3IjnHhc/g87rONN8mwGm8r74GT5b4hd9f7HymwcTOOMp4W5RJ9ejDvQ35rM+hDIgtv7q9K/HQwL+6N2iLA31aE+fCXU2QjZ97pfYQUeECh5xIPWDbn+tDINjQoZP2awPohbrGeHnDxjub3fQ7ejxJH1sB7ulUJilqLOEGiZzOpRE35xrDZEndeH2Zun0G8Yv0Tv1Ssc/ImRtt4fzVVxoG4qj9gKpAYI69m3G0mlcT114bNksQZ2bMJJI+04mC/uC/iZgIPqVm8aQVAD5lnvp1uVbCSYNKTqzTxq5Zfr127NhgyZEhw1VVXxX9XUFAQHHTQQcG3335r/Ddr1qyRXwrLl9tdSosLWw+C5M9dRWCq2RdFXi5jLjL2hSt+Tj3N6G8lCCYuTsxFntp5gsziZGvdrcDn8GraZQbGZy1euSb1VKA/JRNMvppkl7ASDL6ctCD4ZtKiDE4LgsIlVd3HTFgoBXO2vghB9KSxZBWyWTtvnja5H66xhPdXExcEg6a5F/GXExYEc5e5be55a8FXArZNHNA7hcZ5Ltk0QZIk+0tL3w8FeNt6DSmQoOtvPUy8eUVt28TBoGmhzNPWawewmTKP8szd0Rnyazi5+Ki5dFSn+s62CMh84W3rtQO4X8ivs2IFnFyO1SGnhfLG0iV+4RiSC1dbBO4r8/u7qfb1RDI3fMZSGU8n74kLgqmWZHfzMQsz1XTwpoGmqy0CTs2LV651tkVgXbNpuuKJ4m17CN3MaYF8xeUS3PBWlyTUtQ5Yb/R1UW9MbUkR8ylrfsPJ1cpAjpmwIKhcvsDNe+ICeRix9e4CxGWuy8WbfQvZeFY8Ie5m+bv9z7yRWbhwYbBhw4agbt2ixZz8ee5c81PhzTffHOy0007xr8aN7R47xYWtAEqhQvlycd2G9RwF5eIaCet55Bi7qkmB2oAKmZyyjwk55bi2gize4Wdldafm+itmnIufV8jFKePachxDC3o4ZfHmPFn3l58znlnHZI2ljFHG9fPddsVc410uc7zDeeI+Bk+irLnLz7PuG8PDMQUlMN5yf7Pmd45rk2Myxkh4F5SzFvoWj1NJrbnseML8IJ7oVhApThWy51zFUownwrtCnjWeYz0VZF9buC5/+b2V4yoUZM+TnPEkT6yokOO+ZV1/eFz2/K6QK554i4JfBN7eLFu2LP5VWGjuVvvf4JC2ZpWJAk+ih7Srm3kMzrc2E0f5nHb1xK/EZnKn1AEoMlSBli3RQUGlvJtcnA5uW7TgznQMb5JsFfbg4HZ1g2rbVbKa3AHUUxRccqyVd/kCKbzNNd4ZvLl2HGttZojCu23dYIcqFZ2yQ7xPlFLKFQRQrmXPgbryma54wTEo4GxmiIDPgrdLfsybNty/XZwI3igjXNcWcqonhYyuQMcxnRrt7JR5Usy7Q+WKUqRsA6ag+HG5OJWPeLvWQMy7TR0nb+YJyhbXm0mKYhlvVTxrAtfN9bs4QeNgiRXZvHu2qePcXDmGeWkzFVRF1TtUqSDnsoE3ybg1Z/HmfuThzfp1bZyh8mnHlLeb3hYBhQxrxQaUM8Ql1/yWgv12zO8s3nWFt81cVfFGwac880wg/uGT5Zq7FBhTDOw6RgkNsuLJIe3qylqymZSGvOuK4tCmpgS0FUCm7xonFG2IOvLsc6WJX3UiU6tWraB8+fLBvHlFawn4c7165oGqXLlyUK1atSK/SgrIOG1OywRK1C+YK2L0aAKT6KTdG4uKQpkQ6qAK/KKoEv+vvVobnWgJKJjbYcx11j67WDcNlCMYXSLztNmqk+jstVstWZgYnplABT2uviwUZUKY4l25gsiuAdeWxRuVhc1BFyULiQeLz9ZrhE2FxAPVhlJw6eCaTtmjqTyNXG7hjVpAyTwxsDM56JaLeKNKQ9Vk2+xQCKFCICm0OUSjtIA7Khkk7TZJJa7VPI1hBmgCaphLDgoNOC87pKXRQVd4HxbyRlZr4829QPWB2syWPDPW8OYcnMvmAK9Udlcc1sqYYG6f4H3pwS2NDrr8u8sPbR2qQPZqJuc1AWUL6i4SCxSAJtA7hcQJNQ7XaQJJAGoTPu/yQ828Gd9LDw7n0J8PbmHtA8W/574xDrZN+vS9wjm0Pz1ZLP022FRI0lAL/mFfM2+5F3s3k/uLyaaJN/P5ssiolXG3tWpgvOHNerG1amC+Mm/px6IUXDp2b1ZDEg9ULbZWDSSpqKmIA/AusPE+JOR9cc+W1lYNrGvWN2ocW6sGrgm1IXMEZZkJ9EZh8yUxUi7nOoizzCF4Szww8CbuEUdC3i2srRr+0quVxNOT92iSMmBVIOaikkKdyEOLCfSQOrxDfXkwxljTBB6GlHrxysPaGHknY/tFDt5cG/sXXYJ1I1OFkxw/21Iot0k52P1Kgdx69913D/r37y9/3rhxY9CkSZPgggsuCK688srMf0+NDF8x8XamJJIaakTw96Cwiu+VeUNBAnDBgS3ijHhjpHKgcI6W5wTB3p0byORNau8xerv/s8ny3SRBVFyWe7WMHYQB3//ibyFKoU3hxL34oJZFGthR0ItPxvsj50p7bTZw+p0oN1NAQRyeKy8PLpTv8XkiYKHQV0DJU+FNERoFm6hm4E1PFHgn32hQXEkBHjUjLApkkgSdZG8Jip7vSvAmAWSBJJ9mKVDDT+q9UXOl8I8ASn+dZGJCASIeSC9FvFmwJIqcS/FW3k0UosGbIEhvlL8e2qqIZQRV+RSy8R02vOHCwlTOx6qeAN58Nw1v3opc1HO3WAqqlB3wfmfkHOFN4kFCiSQzyRtlAiZr1GfAm8VPcFPyVHjjOYOSC1+emHevVpIQJVvsM97UjMCbpy+SAOV8DCjWxuPli4g3TdlIiElOFFB24GFEUS+82WgJzEoSDyhUxUvoxcGFUqfCExhu5pccVJQ3c4QxhzfBGyduNnEl0weoNxhvah3gzZxlvJO8MZDEXJGaEb7jpx8T/U6ST+Eo5kLes8WDh8SGjZCkUoFCXbyQGG9408PlxO6NxW1d8QZPfD1VlDzUS8CbnjgkiyRyCqhlKKSmZqpcxJvx5g2RAsWjzBOUTPBG9kr/jeSTKIoUeFO0C28SppB3s9gdGN4ob/Bgoz6HnjnME9yVlRwYUBTKeFOUSpw5skN9WZdKpg8QG+CTQ4Fo2OSwtiQxyUaPGEeynj6LeNNH6oIDWsTO9UqRgucURcZ4TJEwwVlt4oo3xfH4s1GHBe8TujeS8Vbu7gBxw6NfTpGifXgfEfFOJtWo7hgD1h6nJ2lmniinaUCMJO4iSIA38mhaPijnekB9B55oFN0r3iTdxELFm8Jo4T2oUOqK6CGE6z33V8mYAZ5TjDfFy7yhOaxDPVmXqr0A4N5zLvzgFG+uP1kbQh0QppCMNwXLvD1D6p7sxUSdEPEEo1Vqokj0SFDptaNaeoj546cTxZuJej14H9etcXDpIUWTU/yw2HuSvHmwVO0FVK0bvKnRgTdvvuCdfNilDuiOaLzhTWynl1ayFxN1QBxDkbTifdpezYI/7ruZ9y9F3v37V5/IIL/u169fMGDAAElo7r777uCll14Kxo0bl6qdKY1ERoEKcJIaXn3aXlmTGFDhzcJ2vfZjo2PSJQOXDhIRWozzeTYQXNas2xhU266C1UY9D2+mBJxKgjcbOhXwvGq1geDy89qS4b189Xrhs63y5nV9cqPY0rwJkrbv8RXvKpUK4qTSBNYAX4943nbebBaoGUuLNwkrDz22ZoNq8+S4ssib+8IxpcGb8xSUK1ckEfolvJlLtkSgOLwrVywoksRvTd7B/3oiA+67777g9ttvlwLfzp07B/fee6+8qcmDLZXIeHh4eHh4eGw5bFOJzC+BT2Q8PDw8PDy23f37V13s6+Hh4eHh4eHhgk9kPDw8PDw8PMosfCLj4eHh4eHhUWbhExkPDw8PDw+PMgufyHh4eHh4eHiUWfhExsPDw8PDw6PMwicyHh4eHh4eHmUWPpHx8PDw8PDwKLPwiYyHh4eHh4dHmYXdZGEbgWpcTIdADw8PDw8Pj7IBtW9nGRBs84nMihUr5P+NGzfe2lQ8PDw8PDw8/ot9HKuC/1mvpY0bNwazZ88OdtxxR6sT6n+bKZIcFRYWeg+nLQw/1qUDP86lAz/OpQM/zmV/nElPSGIaNGgQFBQU/O++keHiGzVqtMXOz43zi6R04Me6dODHuXTgx7l04Me5bI+z602Mgi/29fDw8PDw8Ciz8ImMh4eHh4eHR5mFT2T+S1SuXDm47rrr5P8eWxZ+rEsHfpxLB36cSwd+nP93xnmbL/b18PDw8PDw2Hbh38h4eHh4eHh4lFn4RMbDw8PDw8OjzMInMh4eHh4eHh5lFj6R8fDw8PDw8Ciz8InMf4n7778/aNasWVClSpVgjz32CAYNGrS1KW1TuPnmm4MePXpIR+Y6deoExxxzTDB+/PitTWubxy233CIdsC+55JKtTWWbxKxZs4JTTjklqFmzZrDddtsFHTp0CAYPHry1aW1T2LBhQ3DNNdcEu+yyi4xx8+bNg3/84x+Zfj0ebnzxxRfBUUcdJV12iRFvvPFGkZ8zvtdee21Qv359GfeDDjoomDhxYlAa8InMf4EXX3wxuPTSS0VyNnTo0KBTp05Br169gvnz529tatsMBg4cGJx//vnBd999F3z00UfBunXrgkMOOSRYtWrV1qa2zeKHH34IBgwYEHTs2HFrU9kmsWTJkmDvvfcOKlasGLz//vvBmDFjgjvvvDOoXr361qa2TeHWW28NHnzwweC+++4Lxo4dK3++7bbbgv79+29tamUaq1atkr2Oh3gTGON77703eOihh4Lvv/8+qFq1quyLP//885Ynh/zao3jYfffdN51//vnxnzds2LCpQYMGm26++eatymtbxvz583mc2jRw4MCtTWWbxIoVKza1aNFi00cffbTpt7/97aaLL754a1Pa5nDFFVds2meffbY2jW0eRxxxxKYzzzyzyN8de+yxm/r27bvVOG1rCIJg0+uvvx7/eePGjZvq1au36fbbb4//bunSpZsqV6686fnnn9/ifPwbmWJi7dq1wZAhQ+S1WdLPiT9/++23W5Xbtoxly5bJ/2vUqLG1qWyT4O3XEUccUWRee5Qs3nrrraB79+7B8ccfL1+XdunSJXjkkUe2Nq1tDnvttVfwySefBBMmTJA/jxgxIvjqq6+Cww47bGtT22YxderUYO7cuUXiBx5JlF2Uxr64zZtGljQWLlwo38HWrVu3yN/z53Hjxm01Xtu6gzk1G7yWb9++/dams83hhRdekK9I+WrJY8thypQp8pUHX0tfffXVMt4XXXRRUKlSpaBfv35bm942gyuvvFIcmVu3bh2UL19e4vVNN90U9O3bd2tT22Yxd+5c+b9pX1Q/25LwiYxHmXhbMGrUKHmq8ihZFBYWBhdffLHUIVG47rFlE3LeyPzzn/+UP/NGhnlNTYFPZEoOL730UvDss88Gzz33XNCuXbtg+PDh8iBEkaof520T/qulYqJWrVqS5c+bN6/I3/PnevXqbTVe2youuOCC4J133gk+++yzoFGjRlubzjYHvialSL1r165BhQoV5BeF1hTt8XueZj1KBqg52rZtW+Tv2rRpE8yYMWOrcdoW8de//lXeypx00kmiCjv11FODP//5z6KE9NgyUHvf1toXfSJTTPAauFu3bvIdbPJJiz/vueeeW5XbtgTqyUhiXn/99eDTTz8VKaVHyaNnz57ByJEj5alV/eKtAa/h+T1Ju0fJgK9G9RYC1HE0bdp0q3HaFvHTTz9J3WISzGPitMeWAfGZhCW5L/L1Huql0tgX/VdL/wX4jptXlAT83XffPbj77rtFmnbGGWdsbWrb1NdJvBp+8803pZeM+p6VAjJ6FHiUDBhbve4I2SR9Tnw9UsmCtwIUovLV0gknnCC9px5++GH55VFyoNcJNTFNmjSRr5aGDRsW3HXXXcGZZ565tamVaaxcuTKYNGlSkQJfHnYQYDDWfH134403Bi1atJDEhl4+fJ1HD7Atji2ui9pG0b9//01NmjTZVKlSJZFjf/fdd1ub0jYFpqbp1+OPP761qW3z8PLrLYe33357U/v27UWW2rp1600PP/zw1qa0zWH58uUyf4nPVapU2bTrrrtu+tvf/rZpzZo1W5tamcZnn31mjMn9+vWLJdjXXHPNprp168r87tmz56bx48eXCrdy/GfLp0seHh4eHh4eHiUPXyPj4eHh4eHhUWbhExkPDw8PDw+PMgufyHh4eHh4eHiUWfhExsPDw8PDw6PMwicyHh4eHh4eHmUWPpHx8PDw8PDwKLPwiYyHh4eHh4dHmYVPZDw8PDw8PDzKLHwi4+Hh4eHh4VFm4RMZDw+PMolvv/1WzACPOOKIrU3Fw8NjK8JbFHh4eJRJnHXWWcEOO+wQPProo+IqjUGdh4fH/x78GxkPD48y6cT74osvBueee668kXniiSe2NiUPD4+tBJ/IeHh4lDm89NJLQevWrYNWrVoFp5xySvDYY48F/uWyh8f/Jnwi4+HhUebA10kkMODQQw8Nli1bFgwcOHBr0/Lw8NgK8DUyHh4eZQrUw7Rv3z6YNWtWUKdOHfm7Cy64QJKZp59+emvT8/DwKGVUKO0P9PDw8Pilb2PWr19fpLiX57HKlSsH9913X7DTTjttVX4eHh6lC//VkoeHR5kBCcxTTz0V3HnnncHw4cPjXyNGjJDE5vnnn9/aFD08PEoZ/qslDw+PMoM33ngjOPHEE4P58+en3rxcccUVwaeffhr88MMPW42fh4dH6cMnMh4eHmUGRx11VLBx48bg3XffTf1s0KBBwR577CFvZzp27LhV+Hl4eJQ+fCLj4eHh4eHhUWbha2Q8PDw8PDw8yix8IuPh4eHh4eFRZuETGQ8PDw8PD48yC5/IeHh4eHh4eJRZ+ETGw8PDw8PDo8zCJzIeHh4eHh4eZRY+kfHw8PDw8PAos/CJjIeHh4eHh0eZhU9kPDw8PDw8PMosfCLj4eHh4eHhUWbhExkPDw8PDw+PoKzi/wH5wAmgJQIUTgAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ds.composition_grid.to_dataset('component').plot.scatter(x='A',y='B',edgecolor='None')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Saving the Dataset to disk" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can save this dataset to disk for use in other notebooks or to memorialize the input data used in a calculation. We'll use the `netcdf` format for this:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "\n", "ds.to_netcdf('../data/example_dataset.nc')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we demonstrated how to build an `xarray.Dataset` from scratch. \n", "\n", "We:\n", "\n", "1. Created an empty dataset\n", "2. Added composition data for samples\n", "3. Added ground truth labels for the samples\n", "4. Added simulated measurement data\n", "5. Added a composition grid for the agent to explore\n", "6. Saved the dataset to disk in netCDF format\n", "\n", "The resulting dataset contains all the necessary components for training and evaluating an active learning agent:\n", "- Sample compositions and their corresponding measurements\n", "- Ground truth labels for validation\n", "- A grid defining the composition space for exploration\n", "\n", "This dataset structure represents a typical format expected by many agent pipelines in `AFL.double_agent`. The exact variables and variable names will change with the pipeline, but the concept of having measurement data and composition information that shares dimensions is a foundational feature of analyzing formulations and materials problems where the composition is varying. " ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 2 }