AFL.double_agent.PipelineOp module#
- class AFL.double_agent.PipelineOp.PipelineOp(name: str | None | List[str] = None, input_variable: str | None | List[str] = None, output_variable: str | None | List[str] = None, input_prefix: str | None | List[str] = None, output_prefix: str | None | List[str] = None)#
Bases:
ABC
Abstract base class for data processors. All operations in AFL.double_agent should inherit PipelineOpBase.
- Parameters:
name (Optional[str] | List[str]) – The name to use when added to a Pipeline. This name is used when calling Pipeline.search()
input_variable (Optional[str] | List[str]) – The name of the xarray.Dataset data variable to extract from the input dataset
output_variable (Optional[str] | List[str]) – The name of the variable to be inserted into the xarray.Dataset by this PipelineOp
input_prefix (Optional[str] | List[str]) – Prefix for input variables when using pattern matching
output_prefix (Optional[str] | List[str]) – Prefix for output variables when using pattern matching
- add_to_dataset(dataset, copy_dataset=True)#
Adds (xarray) data in output dictionary to provided xarray dataset
- add_to_tiled(tiled_data)#
Adds data in output dictionary to provided tiled catalogue
- abstract calculate(dataset: Dataset) Self #
- copy() Self #
- plot(sample_dim: str = 'sample', **mpl_kwargs) Figure #
Plots the output of the PipelineOp.
This method attempts to guess how to plot the data produced by the operation.