Internet-Draft | ACVP XOF | November 2024 |
Celi | Expires 5 May 2025 | [Page] |
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 5 May 2025.¶
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
There are no acknowledgements.¶
This document defines the JSON schema for testing Extendable Output Function implementations with the ACVP specification.¶
The Automated Crypto Validation Protocol (ACVP) defines a mechanism to automatically verify the cryptographic implementation of a software or hardware crypto module. The ACVP specification defines how a crypto module communicates with an ACVP server, including crypto capabilities negotiation, session management, authentication, vector processing and more. The ACVP specification does not define algorithm specific JSON constructs for performing the crypto validation. A series of ACVP sub-specifications define the constructs for testing individual crypto algorithms. Each sub-specification addresses a specific class of crypto algorithms. This sub-specification defines the JSON constructs for testing Extendable Output Function implementations using ACVP.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 of [RFC2119] and [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
The initial request from the client to the server describing the capabilities of one or several algorithm, mode and revision combinations¶
A collection of test cases that share similar properties within a prompt or response¶
A collection of test groups under a specific algorithm, mode, and revision¶
JSON sent from the server to the client that specifies the correctness of the response¶
The following XOFs may be advertised by this ACVP compliant crypto module:¶
Other XOFs may be advertised by the ACVP elsewhere.¶
This section describes the design of the tests used to validate Extendable Output Function implementations.¶
This section describes the design of the tests used to validate implementations of XOFs. There are three types of tests for these algorithms: Algorithm Functional Tests (AFT), Monte Carlo Tests (MCT) and MAC Verification Tests (MVT). Each has a specific value to be used in the testType field. The testType field definitions are:¶
INPUT: The initial Msg is the length of the digest size MCT(Msg, MaxOutLen, MinOutLen, OutLenIncrement) { Range = (MaxOutLen - MinOutLen + 1); OutputLen = MaxOutLen; FunctionName = ""; Customization = ""; Output[0] = Msg; for (j = 0; j < 100; j++) { for (i = 1; i < 1001; i++) { InnerMsg = Left(Output[i-1] || ZeroBits(128), 128); Output[i] = CSHAKE(InnerMsg, OutputLen, FunctionName, Customization); Rightmost_Output_bits = Right(Output[i], 16); OutputLen = MinOutLen + (floor((Rightmost_Output_bits % Range) / OutLenIncrement) * OutLenIncrement); Customization = BitsToString(InnerMsg || Rightmost_Output_bits); } OutputJ[j] = Output[1000]; Output[i] = Output[1000]; } return OutputJ; }¶
INPUT: The initial Msg is the length of the digest size MCT(Msg, MaxOutLen, MinOutLen, OutLenIncrement, MaxBlockSize, MinBlockSize) { Range = (MaxOutLen - MinOutLen + 1); OutputLen = MaxOutLen; BlockRange = (MaxBlockSize - MinBlockSize + 1); BlockSize = MinBlockSize; Customization = ""; Output[0] = Msg; for (j = 0; j < 100; j++) { for (i = 1; i < 1001; i++) { InnerMsg = Left(Output[i-1] || ZeroBits(128), 128); Output[i] = ParallelHash(InnerMsg, OutputLen, BlockSize, FunctionName, Customization); Rightmost_Output_bits = Right(Output[i], 16); OutputLen = MinOutLen + (floor((Rightmost_Output_bits % Range) / OutLenIncrement) * OutLenIncrement); BlockSize = MinBlockSize + Right(Rightmost_Output_bits, 8) % BlockRange; Customization = BitsToString(InnerMsg || Rightmost_Output_bits); } OutputJ[j] = Output[1000]; Output[i] = Output[1000]; } return OutputJ; }¶
INPUT: The initial Single-Tuple of a random length between 0 and 65536 bits. MCT(Tuple, MaxOutLen, MinOutLen, OutLenIncrement) { Range = (MaxOutLen - MinOutLen + 1); OutputLen = MaxOutLen; Customization = ""; T[0][0] = Tuple; for (j = 0; j < 100; j++) { for (i = 1; i < 1001; i++) { workingBits = Left(T[i-1][0] || ZeroBits(288), 288); tupleSize = Left(workingBits, 3) % 4 + 1; // never more than 4 tuples to a round for (k = 0; k < tupleSize; k++) { T[i][k] = Substring of workingBits from (k * 288 / tupleSize) to ((k+1) * 288 / tupleSize - 1); } Output[i] = TupleHash(T[i], OutputLen, Customization); Rightmost_Output_bits = Right(Output[i], 16); OutputLen = MinOutLen + (floor((Rightmost_Output_bits % Range) / OutLenIncrement) * OutLenIncrement); Customization = BitsToString(T[i][0] || Rightmost_Output_bits); } OutputJ[j] = Output[1000]; } return OutputJ; }¶
BitsToString(bits) { string = ""; foreach byte in bits { string = string + ASCII((byte % 26) + 65); } }¶
The function Left(bitString, numberOfBits) returns the leftmost numberOfBits bits of bitString.¶
The function Right(bitString, numberOfBits) returns the rightmost numberOfBits bits of bitString.¶
The function ZeroBits(numberOfBits) returns an all-zero bit string of length numberOfBits bits.¶
The tests described in this document have the intention of ensuring an implementation is conformant to [SP800-185].¶
In TBD.¶
Some requirements in the outlined specification are not easily tested. Often they are not ideal for black-box testing such as the ACVP. In TBD.¶
ACVP requires crypto modules to register their capabilities. This allows the crypto module to advertise support for specific algorithms, notifying the ACVP server which algorithms need test vectors generated for the validation process. This section describes the constructs for advertising support of XOF algorithms to the ACVP server.¶
The algorithm capabilities MUST be advertised as JSON objects within the 'algorithms' value of the ACVP registration message. The 'algorithms' value is an array, where each array element is an individual JSON object defined in this section. The 'algorithms' value is part of the 'capability_exchange' element of the ACVP JSON registration message. See the ACVP specification [ACVP] for more details on the registration message.¶
Each algorithm implementation MAY rely on other cryptographic primitives. For example, RSA Signature algorithms depend on an underlying hash function. Each of these underlying algorithm primitives must be validated, either separately or as part of the same submission. ACVP provides a mechanism for specifying the required prerequisites:¶
Prerequisites, if applicable, MUST be submitted in the registration as the prereqVals
JSON property array inside each element of the algorithms
array. Each element in the prereqVals
array MUST contain the following properties¶
JSON Property | Description | JSON Type |
---|---|---|
algorithm | a prerequisite algorithm | string |
valValue | algorithm validation number | string |
A "valValue" of "same" SHALL be used to indicate that the prerequisite is being met by a different algorithm in the capability exchange in the same registration.¶
An example description of prerequisites within a single algorithm capability exchange looks like this¶
"prereqVals": [ { "algorithm": "Alg1", "valValue": "Val-1234" }, { "algorithm": "Alg2", "valValue": "same" } ]¶
This section describes the constructs for advertising support of XOFs to the ACVP server. ACVP REQUIRES cryptographic modules to register their capabilities in a registration. This allows the cryptographic module to advertise support for specific algorithms, notifying the ACVP server which algorithms need test vectors generated for the validation process.¶
The XOF capabilities MUST be advertised as JSON objects within the 'algorithms' value of the ACVP registration message. The 'algorithms' value MUST be an array, where each array element is an individual JSON object defined in this section. The 'algorithms' value MUST be part of the 'capability_exchange' element of the ACVP JSON registration message.¶
Each XOF algorithm capability advertised SHALL be a self-contained JSON object.¶
Each algorithm capability advertised is a self-contained JSON object. The following JSON values are used for XOF algorithm capabilities:¶
JSON Value | Description | JSON type |
---|---|---|
algorithm | The algorithm and mode to be validated. | string |
revision | The algorithm testing revision to use. | string |
xof | Implementation has the ability to act as an XOF or a non-XOF algorithm | array of boolean |
hexCustomization | An optional feature to the implementation. When true, "hex" customization strings are supported, otherwise they aren't. ASCII strings SHALL be tested regardless of the value within the hexCustomization property. |
boolean |
msgLen | Input length for the XOF | domain |
outputLen | Output length for the XOF | domain |
keyLen | Supported key lengths | domain |
macLen | Supported MAC lengths | domain |
blockSize | block size (in bytes) to be used with ParallelHash | domain |
The following grid outlines which properties are REQUIRED, as well as all the possible values a server MAY support for XOF algorithms:¶
algorithm | xof | hexCustomization | msgLen | outputLen | keyLen | macLen | blockSize |
---|---|---|---|---|---|---|---|
cSHAKE-128 | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 16, Max: 65536, Increment: any} | ||||
cSHAKE-256 | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 16, Max: 65536, Increment: any} | ||||
KMAC-128 | [true, false] | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 128, Max: 524288, Increment: 8} | {Min: 32, Max: 65536, Increment: 8} | ||
KMAC-256 | [true, false] | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 128, Max: 524288, Increment: 8} | {Min: 32, Max: 65536, Increment: 8} | ||
ParallelHash-128 | [true, false] | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 16, Max: 65536, Increment: any} | {Min: 1, Max: 128, Increment: 1} | ||
ParallelHash-256 | [true, false] | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 16, Max: 65536, Increment: any} | {Min: 1, Max: 128, Increment: 1} | ||
TupleHash-128 | [true, false] | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 16, Max: 65536, Increment: any} | |||
TupleHash-256 | [true, false] | true, false | {Min: 0, Max: 65536, Increment: any} | {Min: 16, Max: 65536, Increment: any} |
The ACVP server provides test vectors to the ACVP client, which are then processed and returned to the ACVP server for validation. A typical ACVP validation test session would require multiple test vector sets to be downloaded and processed by the ACVP client. Each test vector set represents an individual cryptographic algorithm defined during the capability exchange. This section describes the JSON schema for a test vector set used with Extendable Output Function algorithms.¶
The test vector set JSON schema is a multi-level hierarchy that contains meta data for the entire vector set as well as individual test vectors to be processed by the ACVP client. The following table describes the JSON elements at the top level of the hierarchy.¶
JSON Values | Description | JSON Type |
---|---|---|
acvVersion | Protocol version identifier | string |
vsId | Unique numeric vector set identifier | integer |
algorithm | Algorithm defined in the capability exchange | string |
mode | Mode defined in the capability exchange | string |
revision | Protocol test revision selected | string |
testGroups | Array of test group JSON objects, which are defined in Section 8.1 | array |
An example of this would look like this¶
[ { "acvVersion": <version> }, { "vsId": 1, "algorithm": "Alg1", "mode": "Mode1", "revision": "Revision1.0", "testGroups": [ ... ] } ]¶
Test vector sets MUST contain one or many test groups, each sharing similar properties. For instance, all test vectors that use the same key size would be grouped together. The testGroups element at the top level of the test vector JSON object SHALL be the array of test groups. The Test Group JSON object MUST contain meta-data that applies to all test cases within the group. The following table describes the JSON elements that MUST appear from the server in the Test Group JSON object:¶
JSON Value | Description | JSON type |
---|---|---|
tgId | Numeric identifier for the test group, unique across the entire vector set | integer |
testType | Test category type. AFT, MCT or MVT as defined in Section 6 | string |
xof | Whether or not the group uses the arbitrary output (XOF) version of the algorithm | boolean |
hexCustomization | Whether or not the group uses customization strings in hex (true) or ASCII (false) | boolean |
tests | Array of individual test case JSON objects, which are defined in Section 8.2 | array of testCase objects |
minOutLen | The minimum outputLen as specified in the capabilities registration (used in monte carlo tests). | integer |
maxOutLen | The maximum outputLen as specified in the capabilities registration (used in monte carlo tests). | integer |
outLenIncrement | The outputLen increment as specified in the capabilities registration (used in monte carlo tests). | integer |
minBlockSize | The minimum blockSize as specified in the capabilities registration (used in ParallelHash monte carlo tests). | integer |
maxBlockSize | The maximum blockSize as specified in the capabilities registration (used in ParallelHash monte carlo tests). | integer |
Each test group SHALL contain an array of one or more test cases. Each test case is a JSON object that represents a single case to be processed by the ACVP client. The following table describes the JSON elements for each test case.¶
JSON Value | Description | JSON type |
---|---|---|
tcId | Numeric identifier for the test case, unique across the entire vector set | integer |
len | Length of the message or seed for cSHAKE, KMAC and ParallelHash | integer |
len | Length of each tuple for TupleHash | array of integer |
outLen | Length of the digest | integer |
functionName | Only applies to cSHAKE. The value to use for the function-name input to cSHAKE, denoted as N in Section 3.2 of [SP800-185]. | string |
customization | The ASCII customization string used (between 0 and 161 ASCII characters in length) | string |
customizationHex | The hex customization string used (between 0 and 322 hex characters in length) | hex |
msg | Value of the message or seed. Messages are represented as little-endian hex for all SHA3 variations | hex |
keyLen | Length of the key used in KMAC | integer |
key | The key used in KMAC | hex |
macLen | Length of the MAC | integer |
mac | The MAC used in KMAC | hex |
blockSize | The blockSize used in ParallelHash | integer |
tuple | The tuple of messages used in TupleHash | array of hex |
After the ACVP client downloads and processes a vector set, it SHALL send the response vectors back to the ACVP server within the alloted timeframe. The following table describes the JSON object that represents a vector set response.¶
JSON Value | Description | JSON type |
---|---|---|
acvVersion | Protocol version identifier | string |
vsId | Unique numeric identifier for the vector set | integer |
testGroups | Array of JSON objects that represent each test vector result, which uses the same JSON schema as defined in Section 8.2 | array of testGroup objects |
The testGroup Response section is used to organize the ACVP client response in a similar manner to how it receives vectors. Several algorithms SHALL require the client to send back group level properties in its response. This structure helps accommodate that.¶
JSON Value | Description | JSON type |
---|---|---|
tgId | The test group identifier | integer |
tests | The tests associated to the group specified in tgId | array of testCase objects |
Each test case is a JSON object that represents a single test object to be processed by the ACVP client. The following table describes the JSON elements for each test case object.¶
JSON Value | Description | JSON type |
---|---|---|
tcId | Numeric identifier for the test case, unique across the entire vector set | integer |
mac | The IUT's MAC response to an AFT for KMAC | hex |
testPassed | The IUT's reponse to an MVT for KMAC | boolean |
md | The IUT's digest response to an AFT | hex |
outLen | The output length of the digest | integer |
resultsArray | Array of JSON objects that represent each iteration of an MCT. Each iteration will contain the md and outLen | array of objects containing the md and outLen |
There are no additional security considerations outside of those outlined in the ACVP document.¶
This document does not require any action by IANA.¶
The following is an example JSON object advertising support for cSHAKE-128.¶
{ "algorithm": "cSHAKE-128", "revision": "1.0", "hexCustomization": false, "outputLen": [ { "min": 256, "max": 4096, "increment": 1 } ], "msgLen": [ { "min": 0, "max": 65536, "increment": 1 } ] }¶
The following is an example JSON object advertising support for KMAC-128.¶
{ "algorithm": "KMAC-128", "revision": "1.0", "xof": [true, false], "hexCustomization": false, "msgLen": [ { "min": 0, "max": 65536, "increment": 1 } ], "keyLen": [ { "min": 256, "max": 4096, "increment": 1 } ], "macLen": [ { "min": 256, "max": 4096, "increment": 1 } ] }¶
The following is an example JSON object advertising support for ParallelHash-128.¶
{ "algorithm": "ParallelHash-128", "revision": "1.0", "xof": [true, false], "hexCustomization": false, "blockSize": [ { "min": 1, "max": 16, "increment": 1 } ], "outputLen": [ { "min": 256, "max": 4096, "increment": 1 } ], "msgLen": [ { "min": 0, "max": 65536, "increment": 1 } ] }¶
The following is an example JSON object advertising support for TupleHash-128.¶
{ "algorithm": "TupleHash-128", "revision": "1.0", "xof": [true, false], "hexCustomization": false, "outputLen": [ { "min": 256, "max": 4096, "increment": 1 } ], "msgLen": [ { "min": 0, "max": 65536, "increment": 1 } ] }¶
The following is an example JSON object for cSHAKE test vectors sent from the ACVP server to the crypto module.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "cSHAKE-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "testType": "AFT", "hexCustomization": false, "tests": [ { "tcId": 1, "msg": "", "len": 0, "functionName": "", "customization": "", "outLen": 256 }, { "tcId": 2, "msg": "", "len": 0, "functionName": "", "customization": "[", "outLen": 323 } ] }, { "tgId": 2, "testType": "MCT", "hexCustomization": false, "minOutLen": 256, "maxOutLen": 4096, "outLenIncrement": 1, "tests": [ { "tcId": 101, "msg": "EDAF0D79E36F13461FE18B098F77A76B", "len": 128, "functionName": "", "customization": "" } ] } ] } ]¶
The following is an example JSON object for KMAC test vectors sent from the ACVP server to the crypto module.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "KMAC-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "testType": "AFT", "xof": false, "hexCustomization": false, "tests": [ { "tcId": 1, "key": "57F9E51E6EE790EA224F33B09184980EC53D4ADC437269BC64CAD4E0BF43FC72", "keyLen": 256, "msg": "", "msgLen": 0, "macLen": 256, "customization": "" }, { "tcId": 2, "key": "BBEA88A07BD90177E199E488D8725CF926F4702A3703E53CF8E4EF19C10B8A6F80", "keyLen": 257, "msg": "C0", "msgLen": 4, "macLen": 264, "customization": "i" } ] }, { "tgId": 3, "testType": "MVT", "xof": false, "hexCustomization": false, "tests": [ { "tcId": 501, "key": "4389AD97264009279AD996F6BCFE30BBCF73644DBEFA109A60B3B9E3E3B29520", "keyLen": 256, "msg": "572C482D8B06A9F1493B1DB1D82621D5", "msgLen": 128, "mac": "DF47909B75ADB5DC4B508B8C6CEFB9D2CA28F8C36BC5677CB0FCC06C7F5021...", "macLen": 4089, "customization": "" }, { "tcId": 502, "key": "71E9CAE4EA9FE46DA380B387A4F4C6A0E343B1117812E7252FDC73DB8BDC9437", "keyLen": 256, "msg": "7CA0261C96E9FEE41B2A855FC2765D2A", "msgLen": 128, "mac": "CF0A761E9AB2D7A5CB8B6CD437541AB1F1F74FAA28F6D7896631EF9B79E93...", "macLen": 831, "customization": "." } ] } ] } ]¶
The following is an example JSON object for ParallelHash test vectors sent from the ACVP server to the crypto module.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "ParallelHash-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "testType": "AFT", "function": "ParallelHash", "xof": true, "hexCustomization": false, "tests": [ { "tcId": 1, "msg": "", "len": 0, "blockSize": 64, "customization": "", "outLen": 256 }, { "tcId": 2, "msg": "8B30", "len": 12, "blockSize": 64, "customization": "O", "outLen": 289 } ] }, { "tgId": 3, "testType": "MCT", "function": "ParallelHash", "xof": true, "minBlockSize": 1, "maxBlockSize": 16, "hexCustomization": false, "minOutLen": 256, "maxOutLen": 4096, "outLenIncrement": 1, "tests": [ { "tcId": 201, "msg": "8A4609316F3BCB102CBBD6428E7E1FC8", "len": 128, "blockSize": 256, "customization": "" } ] } ] } ]¶
The following is an example JSON object for TupleHash test vectors sent from the ACVP server to the crypto module.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "TupleHash-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "testType": "AFT", "xof": true, "tests": [ { "tcId": 1, "tuple": [], "len": [], "customization": "", "outLen": 256 }, { "tcId": 2, "tuple": [ "" ], "len": [ 0 ], "customization": "", "outLen": 256 } ] }, { "tgId": 3, "testType": "MCT", "xof": true, "minOutLen": 256, "maxOutLen": 512, "outLenIncrement": 8, "tests": [ { "tcId": 201, "tuple": [ "" ], "len": [ 0 ], "customization": "" } ] } ] } ]¶
The following is an example JSON object for cSHAKE test results sent from the crypto module to the ACVP server.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "cSHAKE-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "tests": [ { "tcId": 1, "md": "7F9C2BA4E88F827D616045507605853ED73B8093F6EFBC88EB1A6EACFA66EF26", "outLen": 256 }, { "tcId": 2, "md": "4DF7FFE48F76B1083A35A28D8580B15E9910BBC7C1E55B4986B7C257A1F62E36317180B322D0BFAFC0", "outLen": 323 }, ] }, { "tgId": 2, "tests": [ { "tcId": 251, "resultsArray": [ { "md": "59A04B1AF85FA05A1B830B04257A382119CCE8815C29C02EFCEA0A...", "outLen": 2864 }, { "md": "B9C5B6D1CF00B17F39B5D8688F187BF974E567FA42E89221C230EF...", "outLen": 2176 }, { "md": "FEFAB0000CC69905FF217BA2E8CABB45CE9AE46AC9E8AECAC7BEA5...", "outLen": 1128 } ] } ] } ] } ]¶
The following is an example JSON object for KMAC test results sent from the crypto module to the ACVP server.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "KMAC-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "tests": [ { "tcId": 1, "mac": "5D3138562EBFFB47C88261CDDD988D077A3010EBE48AD01B75DFE5547F96963A" }, { "tcId": 2, "mac": "FFC6F9C7D02D6D9F55434CE9301E5F6E0374EB64D11D2DCB596BEC894EB22E0787" } ] }, { "tgId": 4, "tests": [ { "tcId": 516, "testPassed": true }, { "tcId": 517, "testPassed": false } ] } ] } ]¶
The following is an example JSON object for ParallelHash test results sent from the crypto module to the ACVP server.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "ParallelHash-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "tests": [ { "tcId": 1, "md": "332D7D2860A08CB47E1B6B4256BA01749570D6D36A0A9C9F544A8BA3472BFF5DA40AE98320", "outLen": 291 }, { "tcId": 2, "md": "0DFE7A0350FE2D309B5929516B03946480D0818733D99ADDD508C3FCE8E73D136920", "outLen": 269 } ] }, { "tgId": 2, "tests": [ { "tcId": 251, "resultsArray": [ { "md": "2F36BCFCA14850E589DD5F1DC82A8B543E18E52F6BA832B560BA46FD7CDC4E19654177E7BA88F808FAFD5E1DC2E6F1C16B42CC968D1DE1E37B145BD2978ED509B2F8B1871F86D566263BFE093D8AC37C634820CC92D6DF3F30EAE2810FFFA1FC12E2853ABF047F4E2CA2307736831AC9A7FCA4255577424800CF058AF83C65DABBE0CA0C36385D60266DD5F0C9EFE795AA5ECA13D76E72B36138DECCB2C6220FBEA5B56D6044EA06B57ACDA3D32938DBC909DF4FAA5213AA2E5A6A7580069131724529C28E2A3176A7CFEC5FD9BAF660", "outLen": 1661 }, { "md": "F1B1D2D5B6C554F75FE0C46E9623E005219E29EBB7ED718DAA7C6A40F92BF2B1DFF9EDF1D03F15883A8EAABA7972AC6202D8B64915C1A82FD75FF7B6E50015B2226583BC93CE3CD73F964D2CA0B03E5FBD4FB2D4920520C15B835E0F6183882A74989B88F3A768A5820DE3F17CC9EB7C99E0E90B9799C233D140BA3F0F30E69228B5E1CE63FA7F6ACA63CF697613223B9E238978AEA3F617298D0C07CA", "outLen": 1256 }, { "md": "A4CC42F5F3CD731400A84349C3F5DA2CCAD193EFADEF1BE6F80E0B27B4FA35A82606C709F96822224B6389008701653689658BA8436DC92631EBF99537113223D1B96BC98A8C7B20D31A2BC2BF031470BDCAA8362720ACB54F6287F9884224B15471EEE6A46534D01763CCCEEFC16C3A00E6323E7E6DBABFD35000FEAC985049BE5D239EB7F4FCAD1B497390D9C779B5E2255B40B4CD2FAD9D4B59A535A48BF334AF5F76F1F23C786D17F96D5B7D4FF5A8BA08614879DD7F62B0D53DA223CB5D21B44BEB6DFA04708CDEE4D3B98FCDCFB8011BC80649BC4B1DE3F181C4A3B0D457C8B8A057E5F0D22CD08309AE9B89521FA1038046576C8BA59D91932F382FD129CAEB318793D68632D785C0", "outLen": 2138 } ] } ] } ] } ]¶
The following is an example JSON object for TupleHash test results sent from the crypto module to the ACVP server.¶
[ { "acvVersion": <acvp-version> }, { "vsId": 0, "algorithm": "TupleHash-128", "revision": "1.0", "testGroups": [ { "tgId": 1, "tests": [ { "tcId": 1, "md": "1768DE4C4000C9407A4A743F66EA85DFF33DEC126C9C66B731019142A0349CF39743617DF39F2D38801536BA69B62C9AC4C800C89BC63445", "outLen": 448 }, { "tcId": 2, "md": "33C1112658241D2197EA99F0559A22D35E22C07F2690F5A2111A9168DBA6692810AAEA9A27F89DA1", "outLen": 320 } ] }, { "tgId": 2, "tests": [ { "tcId": 251, "resultsArray": [ { "md": "FD07E27A3C29C9A26109A4643905D42BD7312F21E2ED0D161B2B83D39EF12DF26C54FD9F3F9D484FD42B5EA2", "outLen": 352 }, { "md": "2FAEAABC915EC7372600AB935F4038FFF6E068606460CDA0859A963CBFE5D9DB51DFB4420C4108C4AAD6DD9FA8065ED720EB39", "outLen": 408 }, { "md": "446695F0DA537AA98A74480263BA9E990F9E45702A12FD0E8746EC307C2372C1BE796815FFD9256FEFD6A2D5D1DF650F54BCC73DAB7049", "outLen": 440 } ] } ] } ] } ]¶